1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
|
/* -----------------------------------------------------------------------------
*
* (c) The University of Glasgow 2006-2007
*
* OS-specific memory management
*
* ---------------------------------------------------------------------------*/
#include "Rts.h"
#include "sm/OSMem.h"
#include "sm/HeapAlloc.h"
#include "RtsUtils.h"
#if HAVE_WINDOWS_H
#include <windows.h>
#endif
typedef struct alloc_rec_ {
char* base; // non-aligned base address, directly from VirtualAlloc
W_ size; // Size in bytes
struct alloc_rec_* next;
} alloc_rec;
typedef struct block_rec_ {
char* base; // base address, non-MBLOCK-aligned
W_ size; // size in bytes
struct block_rec_* next;
} block_rec;
/* allocs are kept in ascending order, and are the memory regions as
returned by the OS as we need to have matching VirtualAlloc and
VirtualFree calls.
If USE_LARGE_ADDRESS_SPACE is defined, this list will contain only
one element.
*/
static alloc_rec* allocs = NULL;
/* free_blocks are kept in ascending order, and adjacent blocks are merged */
static block_rec* free_blocks = NULL;
void
osMemInit(void)
{
allocs = NULL;
free_blocks = NULL;
}
static
alloc_rec*
allocNew(uint32_t n) {
alloc_rec* rec;
rec = (alloc_rec*)stgMallocBytes(sizeof(alloc_rec),"getMBlocks: allocNew");
rec->size = ((W_)n+1)*MBLOCK_SIZE;
rec->base =
VirtualAlloc(NULL, rec->size, MEM_RESERVE, PAGE_READWRITE);
if(rec->base==0) {
stgFree((void*)rec);
rec=0;
if (GetLastError() == ERROR_NOT_ENOUGH_MEMORY) {
errorBelch("Out of memory");
stg_exit(EXIT_HEAPOVERFLOW);
} else {
sysErrorBelch(
"getMBlocks: VirtualAlloc MEM_RESERVE %d blocks failed", n);
}
} else {
alloc_rec temp;
temp.base=0; temp.size=0; temp.next=allocs;
alloc_rec* it;
it=&temp;
for(; it->next!=0 && it->next->base<rec->base; it=it->next) ;
rec->next=it->next;
it->next=rec;
allocs=temp.next;
}
return rec;
}
static
void
insertFree(char* alloc_base, W_ alloc_size) {
block_rec temp;
block_rec* it;
block_rec* prev;
temp.base=0; temp.size=0; temp.next=free_blocks;
it = free_blocks;
prev = &temp;
for( ; it!=0 && it->base<alloc_base; prev=it, it=it->next) {}
if(it!=0 && alloc_base+alloc_size == it->base) {
if(prev->base + prev->size == alloc_base) { /* Merge it, alloc, prev */
prev->size += alloc_size + it->size;
prev->next = it->next;
stgFree(it);
} else { /* Merge it, alloc */
it->base = alloc_base;
it->size += alloc_size;
}
} else if(prev->base + prev->size == alloc_base) { /* Merge alloc, prev */
prev->size += alloc_size;
} else { /* Merge none */
block_rec* rec;
rec = (block_rec*)stgMallocBytes(sizeof(block_rec),
"getMBlocks: insertFree");
rec->base=alloc_base;
rec->size=alloc_size;
rec->next = it;
prev->next=rec;
}
free_blocks=temp.next;
}
static
void*
findFreeBlocks(uint32_t n) {
void* ret=0;
block_rec* it;
block_rec temp;
block_rec* prev;
W_ required_size;
it=free_blocks;
required_size = n*MBLOCK_SIZE;
temp.next=free_blocks; temp.base=0; temp.size=0;
prev=&temp;
/* TODO: Don't just take first block, find smallest sufficient block */
for( ; it!=0 && it->size<required_size; prev=it, it=it->next ) {}
if(it!=0) {
if( (((W_)it->base) & MBLOCK_MASK) == 0) { /* MBlock aligned */
ret = (void*)it->base;
if(it->size==required_size) {
prev->next=it->next;
stgFree(it);
} else {
it->base += required_size;
it->size -=required_size;
}
} else {
char* need_base;
block_rec* next;
int new_size;
need_base =
(char*)(((W_)it->base) & ((W_)~MBLOCK_MASK)) + MBLOCK_SIZE;
next = (block_rec*)stgMallocBytes(
sizeof(block_rec)
, "getMBlocks: findFreeBlocks: splitting");
new_size = need_base - it->base;
next->base = need_base +required_size;
next->size = it->size - (new_size+required_size);
it->size = new_size;
next->next = it->next;
it->next = next;
ret=(void*)need_base;
}
}
free_blocks=temp.next;
return ret;
}
/* VirtualAlloc MEM_COMMIT can't cross boundaries of VirtualAlloc MEM_RESERVE,
so we might need to do many VirtualAlloc MEM_COMMITs. We simply walk the
(ordered) allocated blocks. */
static void
commitBlocks(char* base, W_ size) {
alloc_rec* it;
it=allocs;
for( ; it!=0 && (it->base+it->size)<=base; it=it->next ) {}
for( ; it!=0 && size>0; it=it->next ) {
W_ size_delta;
void* temp;
size_delta = it->size - (base-it->base);
if(size_delta>size) size_delta=size;
temp = VirtualAlloc(base, size_delta, MEM_COMMIT, PAGE_READWRITE);
if(temp==0) {
sysErrorBelch("getMBlocks: VirtualAlloc MEM_COMMIT failed");
stg_exit(EXIT_HEAPOVERFLOW);
}
size-=size_delta;
base+=size_delta;
}
}
void *
osGetMBlocks(uint32_t n) {
void* ret;
ret = findFreeBlocks(n);
if(ret==0) {
alloc_rec* alloc;
alloc = allocNew(n);
/* We already belch in allocNew if it fails */
if (alloc == 0) {
stg_exit(EXIT_FAILURE);
} else {
insertFree(alloc->base, alloc->size);
ret = findFreeBlocks(n);
}
}
if(ret!=0) {
/* (In)sanity tests */
if (((W_)ret & MBLOCK_MASK) != 0) {
barf("getMBlocks: misaligned block returned");
}
commitBlocks(ret, (W_)MBLOCK_SIZE*n);
}
return ret;
}
static void decommitBlocks(char *addr, W_ nBytes)
{
alloc_rec *p;
p = allocs;
while ((p != NULL) && (addr >= (p->base + p->size))) {
p = p->next;
}
while (nBytes > 0) {
if ((p == NULL) || (p->base > addr)) {
errorBelch("Memory to be freed isn't allocated\n");
stg_exit(EXIT_FAILURE);
}
if (p->base + p->size >= addr + nBytes) {
if (!VirtualFree(addr, nBytes, MEM_DECOMMIT)) {
sysErrorBelch("osFreeMBlocks: VirtualFree MEM_DECOMMIT failed");
stg_exit(EXIT_FAILURE);
}
nBytes = 0;
}
else {
W_ bytesToFree = p->base + p->size - addr;
if (!VirtualFree(addr, bytesToFree, MEM_DECOMMIT)) {
sysErrorBelch("osFreeMBlocks: VirtualFree MEM_DECOMMIT failed");
stg_exit(EXIT_FAILURE);
}
addr += bytesToFree;
nBytes -= bytesToFree;
p = p->next;
}
}
}
void osFreeMBlocks(char *addr, uint32_t n)
{
W_ nBytes = (W_)n * MBLOCK_SIZE;
insertFree(addr, nBytes);
decommitBlocks(addr, nBytes);
}
void osReleaseFreeMemory(void)
{
alloc_rec *prev_a, *a;
alloc_rec head_a;
block_rec *prev_fb, *fb;
block_rec head_fb;
char *a_end, *fb_end;
/* go through allocs and free_blocks in lockstep, looking for allocs
that are completely free, and uncommit them */
head_a.base = 0;
head_a.size = 0;
head_a.next = allocs;
head_fb.base = 0;
head_fb.size = 0;
head_fb.next = free_blocks;
prev_a = &head_a;
a = allocs;
prev_fb = &head_fb;
fb = free_blocks;
while (a != NULL) {
a_end = a->base + a->size;
/* If a is freeable then there is a single freeblock in fb that
covers it. The end of this free block must be >= the end of
a, so skip anything in fb that ends before a. */
while (fb != NULL && fb->base + fb->size < a_end) {
prev_fb = fb;
fb = fb->next;
}
if (fb == NULL) {
/* If we have nothing left in fb, then neither a nor
anything later in the list is freeable, so we are done. */
break;
}
else {
fb_end = fb->base + fb->size;
/* We have a candidate fb. But does it really cover a? */
if (fb->base <= a->base) {
/* Yes, the alloc is within the free block. Now we need
to know if it sticks out at either end. */
if (fb_end == a_end) {
if (fb->base == a->base) {
/* fb and a are identical, so just free fb */
prev_fb->next = fb->next;
stgFree(fb);
fb = prev_fb->next;
}
else {
/* fb begins earlier, so truncate it to not include a */
fb->size = a->base - fb->base;
}
}
else {
/* fb ends later, so we'll make fb just be the part
after a. First though, if it also starts earlier,
we make a new free block record for the before bit. */
if (fb->base != a->base) {
block_rec *new_fb;
new_fb =
(block_rec *)stgMallocBytes(sizeof(block_rec),
"osReleaseFreeMemory");
new_fb->base = fb->base;
new_fb->size = a->base - fb->base;
new_fb->next = fb;
prev_fb->next = new_fb;
}
fb->size = fb_end - a_end;
fb->base = a_end;
}
/* Now we can free the alloc */
prev_a->next = a->next;
if(!VirtualFree((void *)a->base, 0, MEM_RELEASE)) {
sysErrorBelch("freeAllMBlocks: VirtualFree MEM_RELEASE "
"failed");
stg_exit(EXIT_FAILURE);
}
stgFree(a);
a = prev_a->next;
}
else {
/* Otherwise this alloc is not freeable, so go on to the
next one */
prev_a = a;
a = a->next;
}
}
}
allocs = head_a.next;
free_blocks = head_fb.next;
}
void
osFreeAllMBlocks(void)
{
{
block_rec* next;
block_rec* it;
next=0;
it = free_blocks;
for(; it!=0; ) {
next = it->next;
stgFree(it);
it=next;
}
}
{
alloc_rec* next;
alloc_rec* it;
next=0;
it=allocs;
for(; it!=0; ) {
if(!VirtualFree((void*)it->base, 0, MEM_RELEASE)) {
sysErrorBelch("freeAllMBlocks: VirtualFree MEM_RELEASE failed");
stg_exit(EXIT_FAILURE);
}
next = it->next;
stgFree(it);
it=next;
}
}
}
W_ getPageSize (void)
{
static W_ pagesize = 0;
if (pagesize) {
return pagesize;
} else {
SYSTEM_INFO sSysInfo;
GetSystemInfo(&sSysInfo);
pagesize = sSysInfo.dwPageSize;
return pagesize;
}
}
/* Returns 0 if physical memory size cannot be identified */
StgWord64 getPhysicalMemorySize (void)
{
static StgWord64 physMemSize = 0;
if (!physMemSize) {
MEMORYSTATUSEX status;
status.dwLength = sizeof(status);
if (!GlobalMemoryStatusEx(&status)) {
#if defined(DEBUG)
errorBelch("warning: getPhysicalMemorySize: cannot get physical "
"memory size");
#endif
return 0;
}
physMemSize = status.ullTotalPhys;
}
return physMemSize;
}
void setExecutable (void *p, W_ len, rtsBool exec)
{
DWORD dwOldProtect = 0;
if (VirtualProtect (p, len,
exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE,
&dwOldProtect) == 0)
{
sysErrorBelch("setExecutable: failed to protect 0x%p; old protection: "
"%lu\n", p, (unsigned long)dwOldProtect);
stg_exit(EXIT_FAILURE);
}
}
#ifdef USE_LARGE_ADDRESS_SPACE
static void* heap_base = NULL;
void *osReserveHeapMemory (W_ *len)
{
void *start;
heap_base = VirtualAlloc(NULL, *len + MBLOCK_SIZE,
MEM_RESERVE, PAGE_READWRITE);
if (heap_base == NULL) {
if (GetLastError() == ERROR_NOT_ENOUGH_MEMORY) {
errorBelch("out of memory");
} else {
sysErrorBelch(
"osReserveHeapMemory: VirtualAlloc MEM_RESERVE %llu bytes failed",
len + MBLOCK_SIZE);
}
stg_exit(EXIT_FAILURE);
}
// VirtualFree MEM_RELEASE must always match a
// previous MEM_RESERVE call, in address and size
// so we necessarily leak some address space here,
// before and after the aligned area
// It is not a huge problem because we never commit
// that memory
start = MBLOCK_ROUND_UP(heap_base);
return start;
}
void osCommitMemory (void *at, W_ size)
{
void *temp;
temp = VirtualAlloc(at, size, MEM_COMMIT, PAGE_READWRITE);
if (temp == NULL) {
sysErrorBelch("osCommitMemory: VirtualAlloc MEM_COMMIT failed");
stg_exit(EXIT_FAILURE);
}
}
void osDecommitMemory (void *at, W_ size)
{
if (!VirtualFree(at, size, MEM_DECOMMIT)) {
sysErrorBelch("osDecommitMemory: VirtualFree MEM_DECOMMIT failed");
stg_exit(EXIT_FAILURE);
}
}
void osReleaseHeapMemory (void)
{
VirtualFree(heap_base, 0, MEM_RELEASE);
}
#endif
|