1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
|
{-# LANGUAGE ScopedTypeVariables, DatatypeContexts #-}
module Main where
{-
- This is a test framework for Arrays, using QuickCheck
-
-}
import qualified Data.Array as Array
import Data.List
import Control.Monad ( liftM2, liftM3, liftM4 )
import System.Random
import Data.Ix
import Data.List( (\\) )
infixl 9 !, //
infixr 0 ==>
infix 1 `classify`
prop_array =
forAll genBounds $ \ (b :: (Int,Int)) ->
forAll (genIVPs b 10) $ \ (vs :: [(Int,Int)]) ->
Array.array b vs
`same_arr`
array b vs
prop_listArray =
forAll genBounds $ \ (b :: (Int,Int)) ->
forAll (vector (length [fst b..snd b]))
$ \ (vs :: [Bool]) ->
Array.listArray b vs == Array.array b (zipWith (\ a b -> (a,b))
(Array.range b) vs)
prop_indices =
forAll genBounds $ \ (b :: (Int,Int)) ->
forAll (genIVPs b 10) $ \ (vs :: [(Int,Int)]) ->
let arr = Array.array b vs
in Array.indices arr == ((Array.range . Array.bounds) arr)
prop_elems =
forAll genBounds $ \ (b :: (Int,Int)) ->
forAll (genIVPs b 10) $ \ (vs :: [(Int,Int)]) ->
let arr = Array.array b vs
in Array.elems arr == [arr Array.! i | i <- Array.indices arr]
prop_assocs =
forAll genBounds $ \ (b :: (Int,Int)) ->
forAll (genIVPs b 10) $ \ (vs :: [(Int,Int)]) ->
let arr = Array.array b vs
in Array.assocs arr == [(i, arr Array.! i) | i <- Array.indices arr]
prop_slashslash =
forAll genBounds $ \ (b :: (Int,Int)) ->
forAll (genIVPs b 10) $ \ (vs :: [(Int,Int)]) ->
let arr = Array.array b vs
us = []
in arr Array.// us == Array.array (Array.bounds arr)
([(i,arr Array.! i)
| i <- Array.indices arr \\ [i | (i,_) <- us]]
++ us)
prop_accum =
forAll genBounds $ \ (b :: (Int,Int)) ->
forAll (genIVPs b 10) $ \ (vs :: [(Int,Int)]) ->
forAll (genIVPs b 10) $ \ (us :: [(Int,Int)]) ->
forAll (choose (0,length us))
$ \ n ->
let us' = take n us in
forAll arbitrary $ \ (fn :: Int -> Int -> Int) ->
let arr = Array.array b vs
in Array.accum fn arr us'
== foldl (\a (i,v) -> a Array.// [(i,fn (a Array.! i) v)]) arr us'
prop_accumArray =
forAll arbitrary $ \ (f :: Int -> Int -> Int) ->
forAll arbitrary $ \ (z :: Int) ->
forAll genBounds $ \ (b :: (Int,Int)) ->
forAll (genIVPs b 10) $ \ (vs :: [(Int,Int)]) ->
Array.accumArray f z b vs == Array.accum f
(Array.array b [(i,z) | i <- Array.range b]) vs
same_arr :: (Eq b) => Array.Array Int b -> Array Int b -> Bool
same_arr a1 a2 = a == c && b == d
&& all (\ n -> (a1 Array.! n) == (a2 ! n)) [a..b]
where (a,b) = Array.bounds a1 :: (Int,Int)
(c,d) = bounds a2 :: (Int,Int)
genBounds :: Gen (Int,Int)
genBounds = do m <- choose (0,20)
n <- choose (minBound,maxBound-m)
return (n,n+m-1)
genIVP :: Arbitrary a => (Int,Int) -> Gen (Int,a)
genIVP b = do { i <- choose b
; v <- arbitrary
; return (i,v)
}
genIVPs :: Arbitrary a => (Int,Int) -> Int -> Gen [(Int,a)]
genIVPs b@(low,high) s
= do { let is = [low..high]
; vs <- vector (length is)
; shuffle s (zip is vs)
}
prop_id = forAll genBounds $ \ (b :: (Int,Int)) ->
forAll (genIVPs b 10) $ \ (ivps :: [(Int,Int)]) ->
label (show (ivps :: [(Int,Int)])) True
-- rift takes a list, split it (using an Int argument),
-- and then rifts together the split lists into one.
-- Think: rifting a pack of cards.
rift :: Int -> [a] -> [a]
rift n xs = comb (drop n xs) (take n xs)
where
comb (a:as) (b:bs) = a : b : comb as bs
comb (a:as) [] = a : as
comb [] (b:bs) = b : bs
comb [] [] = []
-- suffle makes n random rifts. Typically after
-- log n rifts, the list is in a pretty random order.
-- (where n is the number of elements in the list)
shuffle :: Int -> [a] -> Gen [a]
shuffle 0 m = return m
shuffle n m = do { r <- choose (1,length m)
; shuffle (n-1) (rift r m)
}
prop_shuffle =
forAll (shuffle 10 [1..10::Int]) $ \ lst ->
label (show lst) True
------------------------------------------------------------------------------
main = do test prop_array
test prop_listArray
test prop_indices
test prop_elems
test prop_assocs
test prop_slashslash
test prop_accum
test prop_accumArray
instance Show (a -> b) where { show _ = "<FN>" }
------------------------------------------------------------------------------
data (Ix a) => Array a b = MkArray (a,a) (a -> b) deriving ()
array :: (Ix a) => (a,a) -> [(a,b)] -> Array a b
array b ivs =
if and [inRange b i | (i,_) <- ivs]
then MkArray b
(\j -> case [v | (i,v) <- ivs, i == j] of
[v] -> v
[] -> error "Array.!: \
\undefined array element"
_ -> error "Array.!: \
\multiply defined array element")
else error "Array.array: out-of-range array association"
listArray :: (Ix a) => (a,a) -> [b] -> Array a b
listArray b vs = array b (zipWith (\ a b -> (a,b)) (range b) vs)
(!) :: (Ix a) => Array a b -> a -> b
(!) (MkArray _ f) = f
bounds :: (Ix a) => Array a b -> (a,a)
bounds (MkArray b _) = b
indices :: (Ix a) => Array a b -> [a]
indices = range . bounds
elems :: (Ix a) => Array a b -> [b]
elems a = [a!i | i <- indices a]
assocs :: (Ix a) => Array a b -> [(a,b)]
assocs a = [(i, a!i) | i <- indices a]
(//) :: (Ix a) => Array a b -> [(a,b)] -> Array a b
a // us = array (bounds a)
([(i,a!i) | i <- indices a \\ [i | (i,_) <- us]]
++ us)
accum :: (Ix a) => (b -> c -> b) -> Array a b -> [(a,c)]
-> Array a b
accum f = foldl (\a (i,v) -> a // [(i,f (a!i) v)])
accumArray :: (Ix a) => (b -> c -> b) -> b -> (a,a) -> [(a,c)]
-> Array a b
accumArray f z b = accum f (array b [(i,z) | i <- range b])
ixmap :: (Ix a, Ix b) => (a,a) -> (a -> b) -> Array b c
-> Array a c
ixmap b f a = array b [(i, a ! f i) | i <- range b]
instance (Ix a) => Functor (Array a) where
fmap fn (MkArray b f) = MkArray b (fn . f)
instance (Ix a, Eq b) => Eq (Array a b) where
a == a' = assocs a == assocs a'
instance (Ix a, Ord b) => Ord (Array a b) where
a <= a' = assocs a <= assocs a'
instance (Ix a, Show a, Show b) => Show (Array a b) where
showsPrec p a = showParen (p > 9) (
showString "array " .
shows (bounds a) . showChar ' ' .
shows (assocs a) )
instance (Ix a, Read a, Read b) => Read (Array a b) where
readsPrec p = readParen (p > 9)
(\r -> [(array b as, u) | ("array",s) <- lex r,
(b,t) <- reads s,
(as,u) <- reads t ])
--------------------------------------------------------------------
-- QuickCheck v.0.2
-- DRAFT implementation; last update 000104.
-- Koen Claessen, John Hughes.
-- This file represents work in progress, and might change at a later date.
--------------------------------------------------------------------
-- Generator
newtype Gen a
= Gen (Int -> StdGen -> a)
sized :: (Int -> Gen a) -> Gen a
sized fgen = Gen (\n r -> let Gen m = fgen n in m n r)
resize :: Int -> Gen a -> Gen a
resize n (Gen m) = Gen (\_ r -> m n r)
rand :: Gen StdGen
rand = Gen (\n r -> r)
promote :: (a -> Gen b) -> Gen (a -> b)
promote f = Gen (\n r -> \a -> let Gen m = f a in m n r)
variant :: Int -> Gen a -> Gen a
variant v (Gen m) = Gen (\n r -> m n (rands r !! (v+1)))
where
rands r0 = r1 : rands r2 where (r1, r2) = split r0
generate :: Int -> StdGen -> Gen a -> a
generate n rnd (Gen m) = m size rnd'
where
(size, rnd') = randomR (0, n) rnd
instance Functor Gen where
fmap f m = m >>= return . f
instance Monad Gen where
return a = Gen (\n r -> a)
Gen m >>= k =
Gen (\n r0 -> let (r1,r2) = split r0
Gen m' = k (m n r1)
in m' n r2)
-- derived
--choose :: Random a => (a, a) -> Gen a
choose bounds = ((fst . randomR bounds) `fmap` rand)
elements :: [a] -> Gen a
elements xs = (xs !!) `fmap` choose (0, length xs - 1)
vector :: Arbitrary a => Int -> Gen [a]
vector n = sequence [ arbitrary | i <- [1..n] ]
oneof :: [Gen a] -> Gen a
oneof gens = elements gens >>= id
frequency :: [(Int, Gen a)] -> Gen a
frequency xs = choose (1, tot) >>= (`pick` xs)
where
tot = sum (map fst xs)
pick n ((k,x):xs)
| n <= k = x
| otherwise = pick (n-k) xs
-- general monadic
two :: Monad m => m a -> m (a, a)
two m = liftM2 (,) m m
three :: Monad m => m a -> m (a, a, a)
three m = liftM3 (,,) m m m
four :: Monad m => m a -> m (a, a, a, a)
four m = liftM4 (,,,) m m m m
--------------------------------------------------------------------
-- Arbitrary
class Arbitrary a where
arbitrary :: Gen a
coarbitrary :: a -> Gen b -> Gen b
instance Arbitrary () where
arbitrary = return ()
coarbitrary _ = variant 0
instance Arbitrary Bool where
arbitrary = elements [True, False]
coarbitrary b = if b then variant 0 else variant 1
instance Arbitrary Int where
arbitrary = sized $ \n -> choose (-n,n)
coarbitrary n = variant (if n >= 0 then 2*n else 2*(-n) + 1)
instance Arbitrary Integer where
arbitrary = sized $ \n -> choose (-fromIntegral n,fromIntegral n)
coarbitrary n = variant (fromInteger (if n >= 0 then 2*n else 2*(-n) + 1))
instance Arbitrary Float where
arbitrary = liftM3 fraction arbitrary arbitrary arbitrary
coarbitrary x = coarbitrary (decodeFloat x)
instance Arbitrary Double where
arbitrary = liftM3 fraction arbitrary arbitrary arbitrary
coarbitrary x = coarbitrary (decodeFloat x)
fraction a b c = fromInteger a + (fromInteger b / (abs (fromInteger c) + 1))
instance (Arbitrary a, Arbitrary b) => Arbitrary (a, b) where
arbitrary = liftM2 (,) arbitrary arbitrary
coarbitrary (a, b) = coarbitrary a . coarbitrary b
instance (Arbitrary a, Arbitrary b, Arbitrary c) => Arbitrary (a, b, c) where
arbitrary = liftM3 (,,) arbitrary arbitrary arbitrary
coarbitrary (a, b, c) = coarbitrary a . coarbitrary b . coarbitrary c
instance (Arbitrary a, Arbitrary b, Arbitrary c, Arbitrary d)
=> Arbitrary (a, b, c, d)
where
arbitrary = liftM4 (,,,) arbitrary arbitrary arbitrary arbitrary
coarbitrary (a, b, c, d) =
coarbitrary a . coarbitrary b . coarbitrary c . coarbitrary d
instance Arbitrary a => Arbitrary [a] where
arbitrary = sized (\n -> choose (0,n) >>= vector)
coarbitrary [] = variant 0
coarbitrary (a:as) = coarbitrary a . variant 1 . coarbitrary as
instance (Arbitrary a, Arbitrary b) => Arbitrary (a -> b) where
arbitrary = promote (`coarbitrary` arbitrary)
coarbitrary f gen = arbitrary >>= ((`coarbitrary` gen) . f)
--------------------------------------------------------------------
-- Testable
data Result
= Result { ok :: Maybe Bool, stamp :: [String], arguments :: [String] }
nothing :: Result
nothing = Result{ ok = Nothing, stamp = [], arguments = [] }
newtype Property
= Prop (Gen Result)
result :: Result -> Property
result res = Prop (return res)
evaluate :: Testable a => a -> Gen Result
evaluate a = gen where Prop gen = property a
class Testable a where
property :: a -> Property
instance Testable () where
property _ = result nothing
instance Testable Bool where
property b = result (nothing{ ok = Just b })
instance Testable Result where
property res = result res
instance Testable Property where
property prop = prop
instance (Arbitrary a, Show a, Testable b) => Testable (a -> b) where
property f = forAll arbitrary f
forAll :: (Show a, Testable b) => Gen a -> (a -> b) -> Property
forAll gen body = Prop $
do a <- gen
res <- evaluate (body a)
return (argument a res)
where
argument a res = res{ arguments = show a : arguments res }
(==>) :: Testable a => Bool -> a -> Property
True ==> a = property a
False ==> a = property ()
label :: Testable a => String -> a -> Property
label s a = Prop (add `fmap` evaluate a)
where
add res = res{ stamp = s : stamp res }
classify :: Testable a => Bool -> String -> a -> Property
classify True name = label name
classify False _ = property
trivial :: Testable a => Bool -> a -> Property
trivial = (`classify` "trivial")
collect :: (Show a, Testable b) => a -> b -> Property
collect v = label (show v)
--------------------------------------------------------------------
-- Testing
data Config = Config
{ configMaxTest :: Int
, configMaxFail :: Int
, configSize :: Int -> Int
, configEvery :: Int -> [String] -> String
}
quick :: Config
quick = Config
{ configMaxTest = 100
, configMaxFail = 1000
, configSize = (+ 3) . (`div` 2)
, configEvery = \n args -> let s = show n in s ++ ","
}
verbose :: Config
verbose = quick
{ configEvery = \n args -> show n ++ ":\n" ++ unlines args
}
test, quickCheck, verboseCheck :: Testable a => a -> IO ()
test = check quick
quickCheck = check quick
verboseCheck = check verbose
check :: Testable a => Config -> a -> IO ()
check config a =
do rnd <- newStdGen
tests config (evaluate a) rnd 0 0 []
tests :: Config -> Gen Result -> StdGen -> Int -> Int -> [[String]] -> IO ()
tests config gen rnd0 ntest nfail stamps
| ntest == configMaxTest config = do done "OK, passed" ntest stamps
| nfail == configMaxFail config = do done "Arguments exhausted after" ntest stamps
| otherwise =
do putStr (configEvery config ntest (arguments result))
case ok result of
Nothing ->
tests config gen rnd1 ntest (nfail+1) stamps
Just True ->
tests config gen rnd1 (ntest+1) nfail (stamp result:stamps)
Just False ->
putStr ( "Falsifiable, after "
++ show ntest
++ " tests:\n"
++ unlines (arguments result)
)
where
result = generate (configSize config ntest) rnd2 gen
(rnd1,rnd2) = split rnd0
done :: String -> Int -> [[String]] -> IO ()
done mesg ntest stamps =
do putStr ( mesg ++ " " ++ show ntest ++ " tests" ++ table )
where
table = display
. map entry
. reverse
. sort
. map pairLength
. group
. sort
. filter (not . null)
$ stamps
display [] = ".\n"
display [x] = " (" ++ x ++ ").\n"
display xs = ".\n" ++ unlines (map (++ ".") xs)
pairLength xss@(xs:_) = (length xss, xs)
entry (n, xs) = percentage n ntest
++ " "
++ concat (intersperse ", " xs)
percentage n m = show ((100 * n) `div` m) ++ "%"
--------------------------------------------------------------------
-- the end.
{-
instance Observable StdGen where { observer = observeBase }
instance Observable a => Observable (Gen a) where
observer (Gen a) = send "Gen" (return (Gen) << a)
-}
|