1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
|
module Main (main) where
import Control.Monad
import System.IO
import System.Random
main :: IO ()
main = do
hSetBuffering stdout NoBuffering
let q = fold $ zip [1..] (take 200 [500.0,400.0..])
print q
putStrLn "Before atMost"
let (xs,q') = atMost 0.5 q -- this causes seqfault with -O2
print xs
print q'
putStrLn "After atMost"
fold :: [(Key, Prio)] -> PSQ
fold [] = Void
fold ((u,r):xs) = insert u r $ fold xs
data Elem = E
{ _key :: Key
, prio :: Prio
} deriving (Eq, Show)
type Prio = Double
type Key = Int
data PSQ = Void
| Winner Elem Tree
deriving (Eq, Show)
singleton :: Key -> Prio -> PSQ
singleton k p = Winner (E k p) Start
insert :: Key -> Prio -> PSQ -> PSQ
insert k p q = case q of
Void -> singleton k p
Winner e t -> Winner (E k p) (Fork e Start t)
atMost :: Prio -> PSQ -> ([Elem], PSQ)
atMost pt q = case q of
(Winner e _)
| prio e > pt -> ([], q)
Void -> ([], Void)
Winner e Start -> ([e], Void)
Winner e (Fork e' tl tr) ->
let (sequ, q') = atMost pt (Winner e' tl)
(sequ', q'') = atMost pt (Winner e tr)
in (sequ ++ sequ', q' `play` q'')
data Tree = Start
| Fork Elem Tree Tree
deriving (Eq, Show)
lloser :: Key -> Prio -> Tree -> Tree -> Tree
lloser k p tl tr = Fork (E k p) tl tr
play :: PSQ -> PSQ -> PSQ
Void `play` t' = t'
t `play` Void = t
Winner e@(E k p) t `play` Winner e'@(E k' p') t'
| p <= p' = Winner e (lloser k' p' t t')
| otherwise = Winner e' (lloser k p t t')
|