1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
|
{-# OPTIONS -cpp #-}
-- !!! Testing IEEE Float and Double extremity predicates.
module Main(main) where
import Data.Char
import Control.Monad.ST
import Data.Word
import Data.Array.ST
#include "ghcconfig.h"
reverse_if_bigendian :: [a] -> [a]
#ifdef WORDS_BIGENDIAN
reverse_if_bigendian = reverse
#else
reverse_if_bigendian = id
#endif
main :: IO ()
main = do
sequence_ (map putStrLn double_tests)
sequence_ (map putStrLn float_tests)
where
double_tests = run_tests double_numbers
float_tests = run_tests float_numbers
run_tests nums =
map ($ nums)
[ denorm
, pos_inf
, neg_inf
, nan
, neg_zero
, pos_zero
]
-------------
double_numbers :: [Double]
double_numbers =
[ 0
, encodeFloat 0 0 -- 0 using encodeFloat method
, mkDouble (reverse_if_bigendian [0,0,0,0,0,0, 0xf0, 0x7f]) -- +inf
, encodeFloat 1 2047 -- +Inf
, encodeFloat 1 2048
, encodeFloat 1 2047 -- signalling NaN
, encodeFloat 0xf000000000000 2047 -- quiet NaN
, 0/(0::Double)
-- misc
, 1.82173691287639817263897126389712638972163e-300
, 1.82173691287639817263897126389712638972163e+300
, 4.9406564558412465e-324 -- smallest possible denorm number
-- (as reported by enquire running
-- on a i686-pc-linux.)
, 2.2250738585072014e-308
, 0.11
, 0.100
, -3.4
-- smallest
, let (l, _) = floatRange x
x = encodeFloat 1 (l-1)
in x
-- largest
, let (_, u) = floatRange x
d = floatDigits x
x = encodeFloat (floatRadix x ^ d - 1) (u - d)
in x
]
float_numbers :: [Float]
float_numbers =
[ 0
, encodeFloat 0 0 -- 0 using encodeFloat method
, encodeFloat 1 255 -- +Inf
, encodeFloat 1 256
, encodeFloat 11 255 -- signalling NaN
, encodeFloat 0xf00000 255 -- quiet NaN
, 0/(0::Float)
-- misc
, 1.82173691287639817263897126389712638972163e-300
, 1.82173691287639817263897126389712638972163e+300
, 1.40129846e-45
, 1.17549435e-38
, 2.98023259e-08
, 0.11
, 0.100
, -3.4
-- smallest
, let (l, _) = floatRange x
x = encodeFloat 1 (l-1)
in x
-- largest
, let (_, u) = floatRange x
d = floatDigits x
x = encodeFloat (floatRadix x ^ d - 1) (u - d)
in x
]
-------------
denorm :: RealFloat a => [a] -> String
denorm numbers =
unlines
( ""
: "*********************************"
: ("Denormalised numbers: " ++ doubleOrFloat numbers)
: ""
: map showPerform numbers)
where
showPerform = showAndPerform (isDenormalized) "isDenormalised"
pos_inf :: RealFloat a => [a] -> String
pos_inf numbers =
unlines
( ""
: "*********************************"
: ("Positive Infinity: " ++ doubleOrFloat numbers)
: ""
: map showPerform numbers)
where
showPerform = showAndPerform (isInfinite) "isInfinite"
neg_inf :: RealFloat a => [a] -> String
neg_inf numbers =
unlines
( ""
: "*********************************"
: ("Negative Infinity: " ++ doubleOrFloat numbers)
: ""
: map showPerform numbers)
where
showPerform = showAndPerform (\ x -> isInfinite x && x < 0) "isNegInfinite"
nan :: RealFloat a => [a] -> String
nan numbers =
unlines
( ""
: "*********************************"
: ("NaN: " ++ doubleOrFloat numbers)
: ""
: map showPerform numbers)
where
showPerform = showAndPerform (isNaN) "isNaN"
pos_zero :: RealFloat a => [a] -> String
pos_zero numbers =
unlines
( ""
: "*********************************"
: ("Positive zero: " ++ doubleOrFloat numbers)
: ""
: map showPerform numbers)
where
showPerform = showAndPerform (==0) "isPosZero"
neg_zero :: RealFloat a => [a] -> String
neg_zero numbers =
unlines
( ""
: "*********************************"
: ("Negative zero: " ++ doubleOrFloat numbers)
: ""
: map showPerform numbers)
where
showPerform = showAndPerform (isNegativeZero) "isNegativeZero"
-- what a hack.
doubleOrFloat :: RealFloat a => [a] -> String
doubleOrFloat ls
| (floatDigits atType) == (floatDigits (0::Double)) = "Double"
| (floatDigits atType) == (floatDigits (0::Float)) = "Float"
| otherwise = "unknown RealFloat type"
where
atType = undefined `asTypeOf` (head ls)
-- make a double from a list of 8 bytes
-- (caller deals with byte ordering.)
mkDouble :: [Word8] -> Double
mkDouble ls =
runST (( do
arr <- newArray_ (0,7)
sequence (zipWith (writeArray arr) [(0::Int)..] (take 8 ls))
arr' <- castSTUArray arr
readArray arr' 0
) :: ST s Double )
showAndPerform :: (Show a, Show b)
=> (a -> b)
-> String
-> a
-> String
showAndPerform fun name_fun val =
name_fun ++ ' ':show val ++ " = " ++ show (fun val)
|