summaryrefslogtreecommitdiff
path: root/testsuite/tests/codeGen/should_run/cgrun068.hs
blob: f5096ad998fd3f9d83f4c0269f35b69ae0f505c6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
{-# LANGUAGE BangPatterns, GeneralizedNewtypeDeriving, MagicHash,
             UnboxedTuples #-}

-- !!! stress tests of copying/cloning primitive arrays

-- Note: You can run this test manually with an argument
-- (i.e. ./cgrun068 10000) if you want to run the stress test for
-- longer.

{-
Test strategy
=============

We create an array of arrays of integers. Repeatedly we then either

* allocate a new array in place of an old, or

* copy a random segment of an array into another array (which might be
  the source array).

By running this process long enough we hope to trigger any bugs
related to garbage collection or edge cases.

We only test copyMutableArray# and cloneArray# as they are
representative of all the primops.
-}

module Main ( main ) where

import Debug.Trace (trace)

import Control.Exception (assert)
import Control.Monad
import Control.Monad.State.Strict
import GHC.Exts
import GHC.ST hiding (liftST)
import Prelude hiding (length, read)
import qualified Prelude as P
import qualified Prelude as P
import System.Environment
import System.Random

main :: IO ()
main = do
    args <- getArgs
    -- Number of copies to perform
    let numMods = case args of
            [] -> 100
            [n] -> P.read n :: Int
    putStr (test_copyMutableArray numMods ++ "\n" ++
            test_cloneMutableArray numMods ++ "\n"
           )

-- Number of arrays
numArrays :: Int
numArrays = 100

-- Maxmimum length of a sub-array
maxLen :: Int
maxLen = 1024

-- Create an array of arrays, with each sub-array having random length
-- and content.
setup :: Rng s (MArray s (MArray s Int))
setup = do
    len <- rnd (1, numArrays)
    marr <- liftST $ new_ len
    let go i
            | i >= len = return ()
            | otherwise = do
                n <- rnd (1, maxLen)
                subarr <- liftST $ fromList [j*j | j <- [(0::Int)..n-1]]
                liftST $ write marr i subarr
                go (i+1)
    go 0
    return marr

-- Replace one of the sub-arrays with a newly allocated array.
allocate :: MArray s (MArray s Int) -> Rng s ()
allocate marr = do
    ix <- rnd (0, length marr - 1)
    n <- rnd (1, maxLen)
    subarr <- liftST $ fromList [j*j | j <- [(0::Int)..n-1]]
    liftST $ write marr ix subarr

type CopyFunction s a =
    MArray s a -> Int -> MArray s a -> Int -> Int -> ST s ()

-- Copy a random segment of an array onto another array, using the
-- supplied copy function.
copy :: MArray s (MArray s a) -> CopyFunction s a
     -> Rng s (Int, Int, Int, Int, Int)
copy marr f = do
    six <- rnd (0, length marr - 1)
    dix <- rnd (0, length marr - 1)
    src <- liftST $ read marr six
    dst <- liftST $ read marr dix
    let srcLen = length src
    srcOff <- rnd (0, srcLen - 1)
    let dstLen = length dst
    dstOff <- rnd (0, dstLen - 1)
    n <- rnd (0, min (srcLen - srcOff) (dstLen - dstOff))
    liftST $ f src srcOff dst dstOff n
    return (six, dix, srcOff, dstOff, n)

type CloneFunction s a = MArray s a -> Int -> Int -> ST s (MArray s a)

-- Clone a random segment of an array, replacing another array, using
-- the supplied clone function.
clone :: MArray s (MArray s a) -> CloneFunction s a
      -> Rng s (Int, Int, Int, Int)
clone marr f = do
    six <- rnd (0, length marr - 1)
    dix <- rnd (0, length marr - 1)
    src <- liftST $ read marr six
    let srcLen = length src
    -- N.B. The array length might be zero if we previously cloned
    -- zero elements from some array.
    srcOff <- rnd (0, max 0 (srcLen - 1))
    n <- rnd (0, srcLen - srcOff)
    dst <- liftST $ f src srcOff n
    liftST $ write marr dix dst
    return (six, dix, srcOff, n)

------------------------------------------------------------------------
-- copyMutableArray#

-- Copy a slice of the source array into a destination array and check
-- that the copy succeeded.
test_copyMutableArray :: Int -> String
test_copyMutableArray numMods = runST $ run $ do
    marr <- local setup
    marrRef <- setup
    let go i
            | i >= numMods = return "test_copyMutableArray: OK"
            | otherwise = do
                -- Either allocate or copy
                alloc <- rnd (True, False)
                if alloc then doAlloc else doCopy
                go (i+1)

        doAlloc = do
            local $ allocate marr
            allocate marrRef

        doCopy = do
            inp <- liftST $ asList marr
            _ <- local $ copy marr copyMArray
            (six, dix, srcOff, dstOff, n) <- copy marrRef copyMArraySlow
            el <- liftST $ asList marr
            elRef <- liftST $ asList marrRef
            when (el /= elRef) $
                fail inp el elRef six dix srcOff dstOff n
    go 0
  where
    fail inp el elRef six dix srcOff dstOff n =
        error $ "test_copyMutableArray: FAIL\n"
        ++ "   Input: " ++ unlinesShow inp
        ++ "    Copy: six: " ++ show six ++ " dix: " ++ show dix ++ " srcOff: "
        ++ show srcOff ++ " dstOff: " ++ show dstOff ++ " n: " ++ show n ++ "\n"
        ++ "Expected: " ++ unlinesShow elRef
        ++ "  Actual: " ++ unlinesShow el

asList :: MArray s (MArray s a) -> ST s [[a]]
asList marr = toListM =<< mapArrayM toListM marr

unlinesShow :: Show a => [a] -> String
unlinesShow =  concatMap (\ x -> show x ++ "\n")

------------------------------------------------------------------------
-- cloneMutableArray#

-- Copy a slice of the source array into a destination array and check
-- that the copy succeeded.
test_cloneMutableArray :: Int -> String
test_cloneMutableArray numMods = runST $ run $ do
    marr <- local setup
    marrRef <- setup
    let go i
            | i >= numMods = return "test_cloneMutableArray: OK"
            | otherwise = do
                -- Either allocate or clone
                alloc <- rnd (True, False)
                if alloc then doAlloc else doClone
                go (i+1)

        doAlloc = do
            local $ allocate marr
            allocate marrRef

        doClone = do
            inp <- liftST $ asList marr
            _ <- local $ clone marr cloneMArray
            (six, dix, srcOff, n) <- clone marrRef cloneMArraySlow
            el <- liftST $ asList marr
            elRef <- liftST $ asList marrRef
            when (el /= elRef) $
                fail inp el elRef six dix srcOff n
    go 0
  where
    fail inp el elRef six dix srcOff n =
        error $ "test_cloneMutableArray: FAIL\n"
        ++ "   Input: " ++ unlinesShow inp
        ++ "   Clone: six: " ++ show six ++ " dix: " ++ show dix ++ " srcOff: "
        ++ show srcOff ++ " n: " ++ show n ++ "\n"
        ++ "Expected: " ++ unlinesShow elRef
        ++ "  Actual: " ++ unlinesShow el

------------------------------------------------------------------------
-- Convenience wrappers for Array# and MutableArray#

data Array a = Array
    { unArray :: Array# a
    , lengthA :: {-# UNPACK #-} !Int}

data MArray s a = MArray
    { unMArray :: MutableArray# s a
    , lengthM :: {-# UNPACK #-} !Int}

class IArray a where
    length :: a -> Int
instance IArray (Array a) where
    length = lengthA
instance IArray (MArray s a) where
    length = lengthM

instance Eq a => Eq (Array a) where
    arr1 == arr2 = toList arr1 == toList arr2

new :: Int -> a -> ST s (MArray s a)
new n@(I# n#) a =
    assert (n >= 0) $
    ST $ \s# -> case newArray# n# a s# of
        (# s2#, marr# #) -> (# s2#, MArray marr# n #)

new_ :: Int -> ST s (MArray s a)
new_ n = new n (error "Undefined element")

write :: MArray s a -> Int -> a -> ST s ()
write marr i@(I# i#) a =
    assert (i >= 0) $
    assert (i < length marr) $
    ST $ \ s# ->
    case writeArray# (unMArray marr) i# a s# of
        s2# -> (# s2#, () #)

read :: MArray s a -> Int -> ST s a
read marr i@(I# i#) =
    assert (i >= 0) $
    assert (i < length marr) $
    ST $ \ s# ->
    readArray# (unMArray marr) i# s#

index :: Array a -> Int -> a
index arr i@(I# i#) =
    assert (i >= 0) $
    assert (i < length arr) $
    case indexArray# (unArray arr) i# of
        (# a #) -> a

unsafeFreeze :: MArray s a -> ST s (Array a)
unsafeFreeze marr = ST $ \ s# ->
    case unsafeFreezeArray# (unMArray marr) s# of
        (# s2#, arr# #) -> (# s2#, Array arr# (length marr) #)

toList :: Array a -> [a]
toList arr = go 0
  where
    go i | i >= length arr = []
         | otherwise = index arr i : go (i+1)

fromList :: [e] -> ST s (MArray s e)
fromList es = do
    marr <- new_ n
    let go !_ [] = return ()
        go i (x:xs) = write marr i x >> go (i+1) xs
    go 0 es
    return marr
  where
    n = P.length es

mapArrayM :: (a -> ST s b) -> MArray s a -> ST s (MArray s b)
mapArrayM f src = do
    dst <- new_ n
    let go i
            | i >= n = return dst
            | otherwise = do
                el <- read src i
                el' <- f el
                write dst i el'
                go (i+1)
    go 0
  where
    n = length src

toListM :: MArray s e -> ST s [e]
toListM marr =
    sequence [read marr i | i <- [0..(length marr)-1]]

------------------------------------------------------------------------
-- Wrappers around copy/clone primops

copyMArray :: MArray s a -> Int -> MArray s a -> Int -> Int -> ST s ()
copyMArray src six@(I# six#) dst dix@(I# dix#) n@(I# n#) =
    assert (six >= 0) $
    assert (six + n <= length src) $
    assert (dix >= 0) $
    assert (dix + n <= length dst) $
    ST $ \ s# ->
    case copyMutableArray# (unMArray src) six# (unMArray dst) dix# n# s# of
        s2# -> (# s2#, () #)

cloneMArray :: MArray s a -> Int -> Int -> ST s (MArray s a)
cloneMArray marr off@(I# off#) n@(I# n#) =
    assert (off >= 0) $
    assert (off + n <= length marr) $
    ST $ \ s# ->
    case cloneMutableArray# (unMArray marr) off# n# s# of
        (# s2#, marr2 #) -> (# s2#, MArray marr2 n #)

------------------------------------------------------------------------
-- Manual versions of copy/clone primops.  Used to validate the
-- primops

copyMArraySlow :: MArray s e -> Int -> MArray s e -> Int -> Int -> ST s ()
copyMArraySlow !src !six !dst !dix n =
    assert (six >= 0) $
    assert (six + n <= length src) $
    assert (dix >= 0) $
    assert (dix + n <= length dst) $
       if six < dix
       then goB (six+n-1) (dix+n-1) 0  -- Copy backwards
       else goF six dix 0  -- Copy forwards
  where
    goF !i !j c
        | c >= n = return ()
        | otherwise = do b <- read src i
                         write dst j b
                         goF (i+1) (j+1) (c+1)
    goB !i !j c
        | c >= n = return ()
        | otherwise = do b <- read src i
                         write dst j b
                         goB (i-1) (j-1) (c+1)

cloneMArraySlow :: MArray s a -> Int -> Int -> ST s (MArray s a)
cloneMArraySlow !marr !off n =
    assert (off >= 0) $
    assert (off + n <= length marr) $ do
        marr2 <- new_ n
        let go !i !j c
                | c >= n = return marr2
                | otherwise = do
                    b <- read marr i
                    write marr2 j b
                    go (i+1) (j+1) (c+1)
        go off 0 0

------------------------------------------------------------------------
-- Utilities for simplifying RNG passing

newtype Rng s a = Rng { unRng :: StateT StdGen (ST s) a }
                deriving Monad

-- Same as 'randomR', but using the RNG state kept in the 'Rng' monad.
rnd :: Random a => (a, a) -> Rng s a
rnd r = Rng $ do
    g <- get
    let (x, g') = randomR r g
    put g'
    return x

-- Run a sub-computation without affecting the RNG state.
local :: Rng s a -> Rng s a
local m = Rng $ do
    g <- get
    x <- unRng m
    put g
    return x

liftST :: ST s a -> Rng s a
liftST m = Rng $ lift m

run :: Rng s a -> ST s a
run = flip evalStateT (mkStdGen 13) . unRng