1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
|
{-# LANGUAGE TypeOperators #-}
module Generate
( genPointsUniform
, genPointsUniformWithSeed
, genPointsDisc
, genPointsCombo
, pointsPArrayOfUArray )
where
import Types
import Randomish
import qualified Data.Array.Parallel.Unlifted as U
import qualified Data.Array.Parallel as P
import qualified Data.Array.Parallel.PArray as P
import Data.Array.Parallel.PArray (PArray)
import Control.Exception
-- Random points generation
-- IMPORTANT: We use the same seed with the same random generator in all
-- quickhull codes. The asymptotic work complexity of quickhull
-- is between O (N) and O (N^2) depending on the input.
-- To compare benchmark results, they always need to use the same
-- input.
seed :: Int
seed = 42742
-- | Some uniformly distributed points
genPointsUniform
:: Int -- ^ number of points
-> Double -- ^ minimum coordinate
-> Double -- ^ maximum coordinate
-> U.Array (Double, Double)
genPointsUniform n pointMin pointMax
= let pts = randomishDoubles (n*2) pointMin pointMax seed
xs = U.extract pts 0 n
ys = U.extract pts n n
in U.zip xs ys
-- | Some uniformly distributed points
genPointsUniformWithSeed
:: Int -- ^ seed
-> Int -- ^ number of points
-> Double -- ^ minimum coordinate
-> Double -- ^ maximum coordinate
-> U.Array (Double, Double)
genPointsUniformWithSeed seed' n pointMin pointMax
= let pts = randomishDoubles (n*2) pointMin pointMax seed'
xs = U.extract pts 0 n
ys = U.extract pts n n
in U.zip xs ys
-- | Some points distributed as a disc
genPointsDisc
:: Int -- ^ number of points
-> (Double, Double) -- ^ center of disc
-> Double -- ^ radius of disc
-> U.Array (Double, Double)
genPointsDisc n (originX, originY) radiusMax
= let radius = randomishDoubles n 0 radiusMax seed
angle = randomishDoubles n (-pi) pi (seed + 1234)
makeXY r a
= ( originX + r * cos a
, originY + r * sin a)
in originX `seq` originY `seq` U.zipWith makeXY radius angle
-- | A point cloud with areas of high and low density
genPointsCombo
:: Int -- ^ number of points
-> U.Array (Double, Double)
genPointsCombo n
= genPointsDisc (n `div` 5) (250, 250) 200
U.+:+ genPointsDisc (n `div` 5) (100, 100) 80
U.+:+ genPointsDisc (n `div` 5) (150, 300) 30
U.+:+ genPointsDisc (n `div` 5) (500, 120) 30
U.+:+ genPointsDisc (n `div` 5) (300, 200) 150
-- | Convert a list of points to a PArray
pointsPArrayOfUArray
:: U.Array (Double, Double)
-> IO (PArray Point)
pointsPArrayOfUArray ps
= do
let pts = makePointsPA
(P.fromUArray (U.fsts ps))
(P.fromUArray (U.snds ps))
evaluate $ P.nf pts
return pts
|