summaryrefslogtreecommitdiff
path: root/testsuite/tests/gadt/while.hs
blob: c5bbcde9ffa988e113681e75f80de47ece1f4af6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
{-# LANGUAGE GADTs, ExistentialQuantification #-}

module Main where

succeed :: a -> Maybe a
succeed = return

data V s t where
  Z :: V (t,m) t
  S :: V m t -> V (x,m) t

data Exp s t where
  IntC  :: Int -> Exp s Int                     -- 5
  BoolC :: Bool -> Exp s Bool                   -- True
  Plus  :: Exp s Int -> Exp s Int -> Exp s Int  -- x + 3
  Lteq  :: Exp s Int -> Exp s Int -> Exp s Bool -- x <= 3
  Var   :: V s t -> Exp s t                     -- x

data Com s where
  Set :: V s t -> Exp s t -> Com s              -- x := e
  Seq :: Com s -> Com s -> Com s                -- { s1; s2; }
  If :: Exp s Bool -> Com s -> Com s -> Com s   -- if e then x else y
  While :: Exp s Bool -> Com s -> Com s         -- while e do s
  Declare :: Exp s t -> Com (t,s) -> Com s      -- { int x = 5; s }

update :: (V s t) -> t -> s -> s
update Z n (x,y) = (n,y)
update (S v) n (x,y) = (x,update v n y)

eval :: Exp s t -> s -> t
eval (IntC n) s = n
eval (BoolC b) s = b
eval (Plus x y) s = (eval x s) + (eval y s)
eval (Lteq x y) s = (eval x s) <= (eval y s)
eval (Var Z) (x,y) = x
eval (Var (S v)) (x,y) = eval (Var v) y


exec :: (Com st) -> st -> st
exec (Set v e) s = update v (eval e s) s
exec (Seq x y) s = exec y (exec x s)
exec (If test x1 x2) s =
  if (eval test s) then exec x1 s else exec x2 s
exec (While test body) s = loop s
  where loop s = if (eval test s)
                    then loop (exec body s)
                    else s
exec (Declare e body) s = store
  where (_,store) = (exec body (eval e s,s))

v0 = Z
v1 = S Z
v2 = S (S Z)
v3 = S (S (S Z))

e2 = Lteq (Plus (Var v0)(Var v1)) (Plus (Var v0) (IntC 1))

sum_var = Z
x = S Z

prog :: Com (Int,(Int,a))
prog =
 Seq (Set sum_var (IntC 0))
     (Seq (Set x (IntC 1))
     (While (Lteq (Var x) (IntC 5))
            (Seq (Set sum_var (Plus (Var sum_var)(Var x)))
                 (Set x (Plus (Var x) (IntC 1))))))

ans = exec prog (34,(12,1))
main = print ans
{-
{ sum = 0 ;
  x = 1;
  while (x <= 5)
  { sum = sum + x;
    x = x + 1;
  }
}
-}


---------------------------------------------------
-- Untyped Annotated AST

data TyAst = I | B | P TyAst TyAst

data TypeR t where
  IntR :: TypeR Int
  BoolR :: TypeR Bool
  PairR :: TypeR a -> TypeR b -> TypeR (a,b)

-- Judgments for Types
data TJudgment = forall t . TJ (TypeR t)

checkT :: TyAst -> TJudgment
checkT I = TJ IntR
checkT B = TJ BoolR
checkT (P x y) =
   case (checkT x,checkT y) of
     (TJ a, TJ b) -> TJ(PairR a b)

----------------------------------------------------
-- Equality Proofs and Type representations
data Equal a b where
  EqProof :: Equal a a

match :: TypeR a -> TypeR b -> Maybe (Equal a b)
match IntR IntR = succeed EqProof
match BoolR BoolR = succeed EqProof
match (PairR a b) (PairR c d) =
  do { EqProof <- match a c
     ; EqProof <- match b d
     ; succeed EqProof }
match _ _ = fail "match fails"


----------------------------------------------
-- checking Variables are consistent

checkV :: Int -> TypeR t -> TypeR s -> Maybe(V s t)
checkV 0 t1 (PairR t2 p) =
  do { EqProof <- match t1 t2
     ; return Z }
checkV n t1 (PairR ty p) =
  do { v <- checkV (n-1) t1 p; return(S v)}
checkV n t1 sr = Nothing


-----------------------------------------------------
data ExpAst
  = IntCA Int
  | BoolCA Bool
  | PlusA ExpAst ExpAst
  | LteqA ExpAst ExpAst
  | VarA Int TyAst

-- Judgments for Expressions
data EJudgment s = forall t . EJ (TypeR t) (Exp s t)

checkE :: ExpAst -> TypeR s -> Maybe (EJudgment s)
checkE (IntCA n) sr = succeed(EJ IntR (IntC n))
checkE (BoolCA b) sr = succeed(EJ BoolR (BoolC b))
checkE (PlusA x y) sr =
  do { EJ t1 e1 <- checkE x sr
     ; EqProof <- match t1 IntR
     ; EJ t2 e2 <- checkE y sr
     ; EqProof <- match t2 IntR
     ; succeed(EJ IntR (Plus e1 e2))}
checkE (VarA n ty) sr =
  do { TJ t <- succeed(checkT ty)
     ; v <- checkV n t sr
     ; return(EJ t (Var v)) }

-----------------------------------------------------
data ComAst
  = SetA Int TyAst ExpAst
  | SeqA ComAst ComAst
  | IfA ExpAst ComAst ComAst
  | WhileA ExpAst ComAst
  | DeclareA TyAst ExpAst ComAst

data CJudgment s = EC (Com s)

checkC :: ComAst -> TypeR s -> Maybe(CJudgment s)
checkC (SetA n ty e) sr =
  do { TJ t1 <- succeed(checkT ty)
     ; v <- checkV n t1 sr
     ; EJ t2 e1 <- checkE e sr
     ; EqProof <- match t1 t2
     ; return(EC (Set v e1))}
checkC (SeqA x y) sr =
  do { EC c1 <- checkC x sr
     ; EC c2 <- checkC y sr
     ; return(EC (Seq c1 c2)) }
checkC (IfA e x y) sr =
  do { EJ t1 e1 <- checkE e sr
     ; EqProof <- match t1 BoolR
     ; EC c1 <- checkC x sr
     ; EC c2 <- checkC y sr
     ; return(EC(If e1 c1 c2)) }
checkC (WhileA e x) sr =
  do { EJ t1 e1 <- checkE e sr
     ; EqProof <- match t1 BoolR
     ; EC c1 <- checkC x sr
     ; return(EC(While e1 c1)) }
checkC (DeclareA ty e c) sr =
  do { TJ t1 <- succeed(checkT ty)
     ; EJ t2 e2 <- checkE e sr
     ; EqProof <- match t1 t2
     ; EC c2 <- checkC c (PairR t1 sr)
     ; return(EC(Declare e2 c2)) }

--------------------------------------------------------------

e1 = Lteq (Plus (Var sum_var)(Var x)) (Plus (Var x) (IntC 1))

{-
data Store s
  = M (Code s)
  | forall a b . N (Code a) (Store b) where s = (a,b)

eval2 :: Exp s t -> Store s -> Code t
eval2 (IntC n) s = lift n
eval2 (BoolC b) s = lift b
eval2 (Plus x y) s = [| $(eval2 x s) + $(eval2 y s) |]
eval2 (Lteq x y) s = [| $(eval2 x s) <= $(eval2 y s) |]
eval2 (Var Z) (N a b) = a
eval2 (Var (S v)) (N a b) = eval2 (Var v) b
eval2 (Var Z) (M x) = [| fst $x |]
eval2 (Var (S v)) (M x) = eval2 (Var v) (M [| snd $x |])


test e = [| \ (x,(y,z)) -> $(eval2 e (N [|x|] (N [|y|] (M [|z|])))) |]

-- test e1 --->  [| \ (x,(y,z)) -> x + y <= y + 1 |]
-}