summaryrefslogtreecommitdiff
path: root/testsuite/tests/ghc-regress/programs/galois_raytrace/Data.hs
blob: 11e12ab79f52854b546edb65f25e333a122e2ef0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
-- Copyright (c) 2000 Galois Connections, Inc.
-- All rights reserved.  This software is distributed as
-- free software under the license in the file "LICENSE",
-- which is included in the distribution.

module Data where

import Array

import CSG      
import Geometry
import Illumination
import Primitives
import Surface

import Debug.Trace

-- Now the parsed (expresssion) language

type Name = String

type Code = [GMLToken]

data GMLToken
    -- All these can occur in parsed code
	= TOp     GMLOp
	| TId     Name
	| TBind   Name
	| TBool   Bool
	| TInt    Int
	| TReal   Double
	| TString String
	| TBody   Code
	| TArray  Code
	| TApply
	| TIf
	 -- These can occur in optimized/transformed code
	 -- NONE (yet!)


instance Show GMLToken where
   showsPrec p (TOp op)     = shows op
   showsPrec p (TId id)     = showString id
   showsPrec p (TBind id)   = showString ('/' : id)
   showsPrec p (TBool bool) = shows bool
   showsPrec p (TInt i)     = shows i
   showsPrec p (TReal d)    = shows d
   showsPrec p (TString s)  = shows s
   showsPrec p (TBody code) = shows code
   showsPrec p (TArray code) = showString "[ " 
                            . foldr (\ a b -> a . showChar ' ' . b) id (map shows code) 
                            . showString "]"
   showsPrec p (TApply)     = showString "apply" 
   showsPrec p (TIf)        = showString "if" 

   showList  code = showString "{ " 
                  . foldr (\ a b -> a . showChar ' ' . b) id (map shows code) 
                  . showString "}"


-- Now the value language, used inside the interpreter

type Stack = [GMLValue]

data GMLValue
	= VBool    !Bool
	| VInt     !Int
	| VReal    !Double
	| VString  String
	| VClosure Env Code
	| VArray   (Array Int GMLValue)		-- FIXME: Haskell array
        -- uses the interpreter version of point
	| VPoint   { xPoint :: !Double
                   , yPoint :: !Double 
                   , zPoint :: !Double 
                   } 
        -- these are abstract to the interpreter
	| VObject  Object
	| VLight   Light 
	-- This is an abstract object, used by the abstract interpreter
	| VAbsObj  AbsObj


-- There are only *3* basic abstract values,
-- and the combinators also.

data AbsObj 
    = AbsFACE 
    | AbsU 
    | AbsV
      deriving (Show)

instance Show GMLValue where
   showsPrec p value = showString (showStkEle value)

showStkEle :: GMLValue -> String
showStkEle (VBool b)      = show b ++ " :: Bool"
showStkEle (VInt i)       = show i ++ " :: Int"
showStkEle (VReal r)      = show r ++ " :: Real"
showStkEle (VString s)    = show s ++ " :: String"
showStkEle (VClosure {})  = "<closure> :: Closure"
showStkEle (VArray arr)   
     = "<array (" ++  show (succ (snd (bounds arr))) ++ " elements)> :: Array"
showStkEle (VPoint x y z) = "(" ++ show x 
                         ++ "," ++ show y
                         ++ "," ++ show z
                         ++ ") :: Point"
showStkEle (VObject {})   = "<Object> :: Object"
showStkEle (VLight {})    = "<Light> :: Object"
showStkEle (VAbsObj vobs) = "{{ " ++ show vobs ++ "}} :: AbsObj"

-- An abstract environment

newtype Env = Env [(Name, GMLValue)] deriving Show

emptyEnv :: Env
emptyEnv = Env []

extendEnv :: Env -> Name -> GMLValue -> Env
extendEnv (Env e) n v = Env ((n, v):e)

lookupEnv :: Env -> Name -> Maybe GMLValue
lookupEnv (Env e) n = lookup n e

-- All primitive operators
-- 
-- There is no Op_apply, Op_false, Op_true and Op_if
-- (because they appear explcitly in the rules).

data GMLOp
   = Op_acos
   | Op_addi
   | Op_addf
   | Op_asin
   | Op_clampf
   | Op_cone
   | Op_cos
   | Op_cube
   | Op_cylinder
   | Op_difference
   | Op_divi
   | Op_divf
   | Op_eqi
   | Op_eqf
   | Op_floor
   | Op_frac
   | Op_get
   | Op_getx
   | Op_gety
   | Op_getz
   | Op_intersect
   | Op_length
   | Op_lessi
   | Op_lessf
   | Op_light
   | Op_modi
   | Op_muli
   | Op_mulf
   | Op_negi
   | Op_negf
   | Op_plane
   | Op_point
   | Op_pointlight
   | Op_real
   | Op_render
   | Op_rotatex
   | Op_rotatey
   | Op_rotatez
   | Op_scale
   | Op_sin
   | Op_sphere
   | Op_spotlight
   | Op_sqrt
   | Op_subi
   | Op_subf
   | Op_trace       -- non standard, for debugging GML programs
   | Op_translate
   | Op_union
   | Op_uscale
    deriving (Eq,Ord,Ix,Bounded)

instance Show GMLOp where
   showsPrec _ op = showString (opNameTable ! op)


------------------------------------------------------------------------------

-- And how we use the op codes (there names, there interface)

-- These keywords include, "apply", "if", "true" and "false",
-- they are not parsed as operators, but are
-- captured by the parser as a special case.

keyWords :: [String]
keyWords = [ kwd | (kwd,_,_) <- opcodes ]

-- Lookup has to look from the start (or else...)
opTable :: [(Name,GMLToken)]
opTable = [ (kwd,op) | (kwd,op,_) <- opcodes ]

opNameTable :: Array GMLOp Name
opNameTable = array (minBound,maxBound) 
	          [ (op,name) | (name,TOp op,_) <- opcodes ]

undef = error "undefined function"
image = error "undefined function: talk to image group"

-- typically, its best to have *one* opcode table,
-- so that mis-alignments do not happen.

opcodes :: [(String,GMLToken,PrimOp)]
opcodes =
 [ ("apply",	  TApply,	 	error "incorrect use of apply")
 , ("if",	  TIf, 			error "incorrect use of if")
 , ("false",	  TBool False, 		error "incorrect use of false")
 , ("true",	  TBool True, 		error "incorrect use of true")
 ] ++ map (\ (a,b,c) -> (a,TOp b,c))
   -- These are just invocation, any coersions need to occur between here
   -- and before arriving at the application code (like deg -> rad).
 [ ("acos",	  Op_acos, 	 Real_Real (rad2deg . acos))
 , ("addi",	  Op_addi, 	 Int_Int_Int (+))
 , ("addf",	  Op_addf, 	 Real_Real_Real (+))
 , ("asin",	  Op_asin, 	 Real_Real (rad2deg . asin))
 , ("clampf",	  Op_clampf, 	 Real_Real clampf)
 , ("cone",	  Op_cone, 	 Surface_Obj cone)
 , ("cos",	  Op_cos, 	 Real_Real (cos . deg2rad))
 , ("cube",	  Op_cube, 	 Surface_Obj cube)
 , ("cylinder",	  Op_cylinder, 	 Surface_Obj cylinder)
 , ("difference", Op_difference, Obj_Obj_Obj difference)
 , ("divi",	  Op_divi, 	 Int_Int_Int (ourQuot))
 , ("divf",	  Op_divf, 	 Real_Real_Real (/))
 , ("eqi",	  Op_eqi, 	 Int_Int_Bool (==))
 , ("eqf",	  Op_eqf, 	 Real_Real_Bool (==))
 , ("floor",	  Op_floor, 	 Real_Int floor)
 , ("frac",	  Op_frac, 	 Real_Real (snd . properFraction))
 , ("get",	  Op_get, 	 Arr_Int_Value ixGet)
 , ("getx",	  Op_getx, 	 Point_Real (\ x y z -> x))
 , ("gety",	  Op_gety, 	 Point_Real (\ x y z -> y))
 , ("getz",	  Op_getz, 	 Point_Real (\ x y z -> z))
 , ("intersect",  Op_intersect,  Obj_Obj_Obj intersect)
 , ("length",	  Op_length, 	 Arr_Int (succ . snd . bounds))
 , ("lessi",	  Op_lessi, 	 Int_Int_Bool (<))
 , ("lessf",	  Op_lessf, 	 Real_Real_Bool (<))
 , ("light",	  Op_light, 	 Point_Color_Light light)
 , ("modi",	  Op_modi, 	 Int_Int_Int (ourRem))
 , ("muli",	  Op_muli, 	 Int_Int_Int (*))
 , ("mulf",	  Op_mulf, 	 Real_Real_Real (*))
 , ("negi",	  Op_negi, 	 Int_Int negate)
 , ("negf",	  Op_negf, 	 Real_Real negate)
 , ("plane",	  Op_plane, 	 Surface_Obj plane)
 , ("point",	  Op_point, 	 Real_Real_Real_Point VPoint)
 , ("pointlight", Op_pointlight, Point_Color_Light pointlight)
 , ("real",	  Op_real, 	 Int_Real fromIntegral)
 , ("render",	  Op_render, 	 Render $ render eye)
 , ("rotatex",	  Op_rotatex, 	 Obj_Real_Obj (\ o d -> rotateX (deg2rad d) o))
 , ("rotatey",	  Op_rotatey, 	 Obj_Real_Obj (\ o d -> rotateY (deg2rad d) o)) 
 , ("rotatez",	  Op_rotatez, 	 Obj_Real_Obj (\ o d -> rotateZ (deg2rad d) o))
 , ("scale",	  Op_scale, 	 Obj_Real_Real_Real_Obj (\ o x y z -> scale (x,y,z) o))
 , ("sin",	  Op_sin, 	 Real_Real (sin . deg2rad))
 , ("sphere",	  Op_sphere, 	 Surface_Obj sphere') -- see comment at end of file
 , ("spotlight",  Op_spotlight,  Point_Point_Color_Real_Real_Light mySpotlight)
 , ("sqrt",	  Op_sqrt, 	 Real_Real ourSqrt)
 , ("subi",	  Op_subi, 	 Int_Int_Int (-))
 , ("subf",	  Op_subf, 	 Real_Real_Real (-))
 , ("trace",      Op_trace,      Value_String_Value mytrace)
 , ("translate",  Op_translate,  Obj_Real_Real_Real_Obj (\ o x y z -> translate (x,y,z) o))
 , ("union",	  Op_union, 	 Obj_Obj_Obj union)
 , ("uscale",	  Op_uscale, 	 Obj_Real_Obj (\ o r -> uscale r o))
 ]

-- This enumerate all possible ways of calling the fixed primitives

-- The datatype captures the type at the *interp* level,
-- the type of the functional is mirrored on this (using Haskell types).

data PrimOp

    -- 1 argument 
    = Int_Int         (Int -> Int)
    | Real_Real       (Double -> Double)
    | Point_Real      (Double -> Double -> Double -> Double)
    | Surface_Obj     (SurfaceFn Color Double -> Object)
    | Real_Int        (Double -> Int)
    | Int_Real        (Int -> Double)
    | Arr_Int         (Array Int GMLValue -> Int)

    -- 2 arguments 
    | Int_Int_Int     (Int -> Int -> Int)
    | Int_Int_Bool    (Int -> Int -> Bool)
    | Real_Real_Real  (Double -> Double -> Double)
    | Real_Real_Bool  (Double -> Double -> Bool)
    | Arr_Int_Value   (Array Int GMLValue -> Int -> GMLValue)

    -- Many arguments, typically image mangling

    | Obj_Obj_Obj            (Object -> Object -> Object)
    | Point_Color_Light      (Coords -> Color -> Light)
    | Real_Real_Real_Point   (Double -> Double -> Double -> GMLValue)
    | Obj_Real_Obj           (Object -> Double -> Object)
    | Obj_Real_Real_Real_Obj (Object -> Double -> Double -> Double -> Object)
    | Value_String_Value     (GMLValue -> String -> GMLValue)

    | Point_Point_Color_Real_Real_Light 
                             (Coords -> Coords -> Color -> Radian -> Radian -> Light)
    -- And finally render
    | Render                 (Color -> [Light] -> Object -> Int -> Double -> Int -> Int -> String -> IO ())

data Type 
    = TyBool 
    | TyInt 
    | TyReal 
    | TyString 
    | TyCode 
    | TyArray 
    | TyPoint 
    | TyObject 
    | TyLight
    | TyAlpha
    | TyAbsObj
      deriving (Eq,Ord,Ix,Bounded)

typeTable = 
  [ ( TyBool,   "Bool")
  , ( TyInt,    "Int")
  , ( TyReal,   "Real")
  , ( TyString, "String")
  , ( TyCode,   "Code")
  , ( TyArray,  "Array")
  , ( TyPoint,  "Point")
  , ( TyObject, "Object")
  , ( TyLight,  "Light")
  , ( TyAlpha,  "<anything>")
  , ( TyAbsObj, "<abs>")
  ]

typeNames = array (minBound,maxBound) typeTable

instance Show Type where
   showsPrec _ op = showString (typeNames ! op)

getPrimOpType :: PrimOp -> [Type]
getPrimOpType (Int_Int         _) = [TyInt]
getPrimOpType (Real_Real       _) = [TyReal]
getPrimOpType (Point_Real      _) = [TyPoint]
getPrimOpType (Surface_Obj     _) = [TyCode]
getPrimOpType (Real_Int        _) = [TyReal]
getPrimOpType (Int_Real        _) = [TyInt]
getPrimOpType (Arr_Int         _) = [TyArray]
getPrimOpType (Int_Int_Int     _) = [TyInt,TyInt]
getPrimOpType (Int_Int_Bool    _) = [TyInt,TyInt]
getPrimOpType (Real_Real_Real  _) = [TyReal,TyReal]
getPrimOpType (Real_Real_Bool  _) = [TyReal,TyReal]
getPrimOpType (Arr_Int_Value   _) = [TyArray,TyInt]
getPrimOpType (Obj_Obj_Obj            _) = [TyObject,TyObject]
getPrimOpType (Point_Color_Light      _) = [TyPoint,TyPoint]
getPrimOpType (Real_Real_Real_Point   _) = [TyReal,TyReal,TyReal]
getPrimOpType (Obj_Real_Obj           _) = [TyObject,TyReal]
getPrimOpType (Obj_Real_Real_Real_Obj _) = [TyObject,TyReal,TyReal,TyReal]
getPrimOpType (Value_String_Value     _) = [TyAlpha,TyString]
getPrimOpType (Point_Point_Color_Real_Real_Light _) 
                                         = [TyPoint,TyPoint,TyPoint,TyReal,TyReal]
getPrimOpType (Render                 _) = [TyPoint,
                                            TyLight,
                                            TyObject,
                                            TyInt,
                                            TyReal,
                                            TyReal,
                                            TyReal,
                                            TyString]


-- Some primitives with better error message

mytrace v s = trace (s ++" : "++ show v ++ "\n") v


ixGet :: Array Int GMLValue -> Int -> GMLValue
ixGet arr i
   | inRange (bounds arr) i = arr ! i
   | otherwise = error ("failed access with index value " 
                     ++ show i 
                     ++ " (should be between 0 and " 
                     ++ show (snd (bounds arr)) ++ ")")

ourQuot :: Int -> Int -> Int
ourQuot _ 0 = error "attempt to use divi to divide by 0"
ourQuot a b = a `quot` b

ourRem :: Int -> Int -> Int
ourRem _ 0 = error "attempt to use remi to divide by 0"
ourRem a b = a `rem` b

ourSqrt :: Double -> Double
ourSqrt n | n < 0     = error "attempt to use sqrt on a negative number"
          | otherwise = sqrt n


mySpotlight p1 p2 col cutoff exp = spotlight p1 p2 col (deg2rad cutoff) exp

-- The problem specification gets the mapping for spheres backwards
-- (it maps the image from right to left).
-- We've fixed that in the raytracing library so that it goes from left
-- to right, but to keep the GML front compatible with the problem
-- statement, we reverse it here.

sphere' :: SurfaceFn Color Double -> CSG (SurfaceFn Color Double)
sphere' (SFun f) = sphere (SFun (\i u v -> f i (1 - u) v))
sphere' s = sphere s