1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
|
{-# LANGUAGE CPP, MagicHash, BangPatterns #-}
import Data.Char
import Data.Array
import GHC.Exts
import System.IO
import System.IO.Unsafe
import Debug.Trace
import Control.Applicative (Applicative(..))
import Control.Monad (liftM, ap)
-- parser produced by Happy Version 1.16
data HappyAbsSyn
= HappyTerminal Token
| HappyErrorToken Int
| HappyAbsSyn4 (Exp)
| HappyAbsSyn5 (Exp1)
| HappyAbsSyn6 (Term)
| HappyAbsSyn7 (Factor)
happyActOffsets :: HappyAddr
happyActOffsets = HappyA# "\x01\x00\x25\x00\x1e\x00\x1b\x00\x1d\x00\x18\x00\x00\x00\x00\x00\x00\x00\x01\x00\xf8\xff\x03\x00\x03\x00\x03\x00\x03\x00\x20\x00\x01\x00\x18\x00\x18\x00\x00\x00\x00\x00\x00\x00\x0a\x00\x01\x00\x00\x00\x00\x00"#
happyGotoOffsets :: HappyAddr
happyGotoOffsets = HappyA# "\x1a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x16\x00\x00\x00\x07\x00\xfe\xff\x1c\x00\x06\x00\x00\x00\x12\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0e\x00\x00\x00\x00\x00"#
happyDefActions :: HappyAddr
happyDefActions = HappyA# "\x00\x00\x00\x00\x00\x00\x00\x00\xfd\xff\xfa\xff\xf7\xff\xf6\xff\xf5\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xfb\xff\xfc\xff\xf8\xff\xf9\xff\xf4\xff\x00\x00\x00\x00\xfe\xff"#
happyCheck :: HappyAddr
happyCheck = HappyA# "\xff\xff\x03\x00\x01\x00\x0b\x00\x03\x00\x04\x00\x03\x00\x04\x00\x02\x00\x03\x00\x03\x00\x0a\x00\x02\x00\x0a\x00\x00\x00\x01\x00\x02\x00\x03\x00\x00\x00\x01\x00\x02\x00\x03\x00\x00\x00\x01\x00\x02\x00\x03\x00\x00\x00\x01\x00\x02\x00\x03\x00\x02\x00\x03\x00\x08\x00\x09\x00\x04\x00\x06\x00\x07\x00\x05\x00\x01\x00\x0c\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff"#
happyTable :: HappyAddr
happyTable = HappyA# "\x00\x00\x13\x00\x03\x00\x16\x00\x08\x00\x09\x00\x08\x00\x09\x00\x11\x00\x06\x00\x14\x00\x0a\x00\x18\x00\x0a\x00\x18\x00\x04\x00\x05\x00\x06\x00\x16\x00\x04\x00\x05\x00\x06\x00\x0a\x00\x04\x00\x05\x00\x06\x00\x03\x00\x04\x00\x05\x00\x06\x00\x12\x00\x06\x00\x0c\x00\x0d\x00\x10\x00\x0e\x00\x0f\x00\x11\x00\x03\x00\xff\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"#
happyReduceArr = array (1, 11) [
(1 , happyReduce_1),
(2 , happyReduce_2),
(3 , happyReduce_3),
(4 , happyReduce_4),
(5 , happyReduce_5),
(6 , happyReduce_6),
(7 , happyReduce_7),
(8 , happyReduce_8),
(9 , happyReduce_9),
(10 , happyReduce_10),
(11 , happyReduce_11)
]
happy_n_terms = 13 :: Int
happy_n_nonterms = 4 :: Int
happyReduce_1 = happyReduce 6# 0# happyReduction_1
happyReduction_1 ((HappyAbsSyn4 happy_var_6) `HappyStk`
_ `HappyStk`
(HappyAbsSyn4 happy_var_4) `HappyStk`
_ `HappyStk`
(HappyTerminal (TokenVar happy_var_2)) `HappyStk`
_ `HappyStk`
happyRest)
= HappyAbsSyn4
(Let happy_var_2 happy_var_4 happy_var_6
) `HappyStk` happyRest
happyReduce_2 = happySpecReduce_1 0# happyReduction_2
happyReduction_2 (HappyAbsSyn5 happy_var_1)
= HappyAbsSyn4
(Exp1 happy_var_1
)
happyReduction_2 _ = notHappyAtAll
happyReduce_3 = happySpecReduce_3 1# happyReduction_3
happyReduction_3 (HappyAbsSyn6 happy_var_3)
_
(HappyAbsSyn5 happy_var_1)
= HappyAbsSyn5
(Plus happy_var_1 happy_var_3
)
happyReduction_3 _ _ _ = notHappyAtAll
happyReduce_4 = happySpecReduce_3 1# happyReduction_4
happyReduction_4 (HappyAbsSyn6 happy_var_3)
_
(HappyAbsSyn5 happy_var_1)
= HappyAbsSyn5
(Minus happy_var_1 happy_var_3
)
happyReduction_4 _ _ _ = notHappyAtAll
happyReduce_5 = happySpecReduce_1 1# happyReduction_5
happyReduction_5 (HappyAbsSyn6 happy_var_1)
= HappyAbsSyn5
(Term happy_var_1
)
happyReduction_5 _ = notHappyAtAll
happyReduce_6 = happySpecReduce_3 2# happyReduction_6
happyReduction_6 (HappyAbsSyn7 happy_var_3)
_
(HappyAbsSyn6 happy_var_1)
= HappyAbsSyn6
(Times happy_var_1 happy_var_3
)
happyReduction_6 _ _ _ = notHappyAtAll
happyReduce_7 = happySpecReduce_3 2# happyReduction_7
happyReduction_7 (HappyAbsSyn7 happy_var_3)
_
(HappyAbsSyn6 happy_var_1)
= HappyAbsSyn6
(Div happy_var_1 happy_var_3
)
happyReduction_7 _ _ _ = notHappyAtAll
happyReduce_8 = happySpecReduce_1 2# happyReduction_8
happyReduction_8 (HappyAbsSyn7 happy_var_1)
= HappyAbsSyn6
(Factor happy_var_1
)
happyReduction_8 _ = notHappyAtAll
happyReduce_9 = happySpecReduce_1 3# happyReduction_9
happyReduction_9 (HappyTerminal (TokenInt happy_var_1))
= HappyAbsSyn7
(Int happy_var_1
)
happyReduction_9 _ = notHappyAtAll
happyReduce_10 = happySpecReduce_1 3# happyReduction_10
happyReduction_10 (HappyTerminal (TokenVar happy_var_1))
= HappyAbsSyn7
(Var happy_var_1
)
happyReduction_10 _ = notHappyAtAll
happyReduce_11 = happySpecReduce_3 3# happyReduction_11
happyReduction_11 _
(HappyAbsSyn4 happy_var_2)
_
= HappyAbsSyn7
(Brack happy_var_2
)
happyReduction_11 _ _ _ = notHappyAtAll
happyNewToken action sts stk [] =
happyDoAction 12# notHappyAtAll action sts stk []
happyNewToken action sts stk (tk:tks) =
let cont i = happyDoAction i tk action sts stk tks in
case tk of {
TokenLet -> cont 1#;
TokenIn -> cont 2#;
TokenInt happy_dollar_dollar -> cont 3#;
TokenVar happy_dollar_dollar -> cont 4#;
TokenEq -> cont 5#;
TokenPlus -> cont 6#;
TokenMinus -> cont 7#;
TokenTimes -> cont 8#;
TokenDiv -> cont 9#;
TokenOB -> cont 10#;
TokenCB -> cont 11#;
_ -> happyError' (tk:tks)
}
happyError_ tk tks = happyError' (tk:tks)
newtype HappyIdentity a = HappyIdentity a
happyIdentity = HappyIdentity
happyRunIdentity (HappyIdentity a) = a
instance Functor HappyIdentity where
fmap = liftM
instance Applicative HappyIdentity where
pure = return
(<*>) = ap
instance Monad HappyIdentity where
return = HappyIdentity
(HappyIdentity p) >>= q = q p
happyThen :: () => HappyIdentity a -> (a -> HappyIdentity b) -> HappyIdentity b
happyThen = (>>=)
happyReturn :: () => a -> HappyIdentity a
happyReturn = (return)
happyThen1 m k tks = (>>=) m (\a -> k a tks)
happyReturn1 :: () => a -> b -> HappyIdentity a
happyReturn1 = \a tks -> (return) a
happyError' :: () => [Token] -> HappyIdentity a
happyError' = HappyIdentity . happyError
calc tks = happyRunIdentity happySomeParser where
happySomeParser = happyThen (happyParse 0# tks) (\x -> case x of {HappyAbsSyn4 z -> happyReturn z; _other -> notHappyAtAll })
happySeq = happyDontSeq
happyError tks = error "Parse error"
data Exp = Let String Exp Exp | Exp1 Exp1
data Exp1 = Plus Exp1 Term | Minus Exp1 Term | Term Term
data Term = Times Term Factor | Div Term Factor | Factor Factor
data Factor = Int Int | Var String | Brack Exp
data Token
= TokenLet
| TokenIn
| TokenInt Int
| TokenVar String
| TokenEq
| TokenPlus
| TokenMinus
| TokenTimes
| TokenDiv
| TokenOB
| TokenCB
lexer :: String -> [Token]
lexer [] = []
lexer (c:cs)
| isSpace c = lexer cs
| isAlpha c = lexVar (c:cs)
| isDigit c = lexNum (c:cs)
lexer ('=':cs) = TokenEq : lexer cs
lexer ('+':cs) = TokenPlus : lexer cs
lexer ('-':cs) = TokenMinus : lexer cs
lexer ('*':cs) = TokenTimes : lexer cs
lexer ('/':cs) = TokenDiv : lexer cs
lexer ('(':cs) = TokenOB : lexer cs
lexer (')':cs) = TokenCB : lexer cs
lexNum cs = TokenInt (read num) : lexer rest
where (num,rest) = span isDigit cs
lexVar cs =
case span isAlpha cs of
("let",rest) -> TokenLet : lexer rest
("in",rest) -> TokenIn : lexer rest
(var,rest) -> TokenVar var : lexer rest
runCalc :: String -> Exp
runCalc = calc . lexer
main = case runCalc "1 + 2 + 3" of {
(Exp1 (Plus (Plus (Term (Factor (Int 1))) (Factor (Int 2))) (Factor (Int 3)))) ->
case runCalc "1 * 2 + 3" of {
(Exp1 (Plus (Term (Times (Factor (Int 1)) (Int 2))) (Factor (Int 3)))) ->
case runCalc "1 + 2 * 3" of {
(Exp1 (Plus (Term (Factor (Int 1))) (Times (Factor (Int 2)) (Int 3)))) ->
case runCalc "let x = 2 in x * (x - 2)" of {
(Let "x" (Exp1 (Term (Factor (Int 2)))) (Exp1 (Term (Times (Factor (Var "x")) (Brack (Exp1 (Minus (Term (Factor (Var "x"))) (Factor (Int 2))))))))) -> print "Test works\n";
_ -> quit } ; _ -> quit } ; _ -> quit } ; _ -> quit }
quit = print "Test failed\n"
{-# LINE 1 "GenericTemplate.hs" #-}
{-# LINE 1 "<built-in>" #-}
{-# LINE 1 "<command line>" #-}
{-# LINE 1 "GenericTemplate.hs" #-}
-- Id: GenericTemplate.hs,v 1.26 2005/01/14 14:47:22 simonmar Exp
{-# LINE 28 "GenericTemplate.hs" #-}
data Happy_IntList = HappyCons Int# Happy_IntList
{-# LINE 49 "GenericTemplate.hs" #-}
{-# LINE 59 "GenericTemplate.hs" #-}
happyTrace string expr = unsafePerformIO $ do
hPutStr stderr string
return expr
infixr 9 `HappyStk`
data HappyStk a = HappyStk a (HappyStk a)
-----------------------------------------------------------------------------
-- starting the parse
happyParse start_state = happyNewToken start_state notHappyAtAll notHappyAtAll
-----------------------------------------------------------------------------
-- Accepting the parse
-- If the current token is 0#, it means we've just accepted a partial
-- parse (a %partial parser). We must ignore the saved token on the top of
-- the stack in this case.
happyAccept 0# tk st sts (_ `HappyStk` ans `HappyStk` _) =
happyReturn1 ans
happyAccept j tk st sts (HappyStk ans _) =
(happyTcHack j (happyTcHack st)) (happyReturn1 ans)
-----------------------------------------------------------------------------
-- Arrays only: do the next action
happyDoAction i tk st
= (happyTrace ("state: " ++ show (I# (st)) ++ ",\ttoken: " ++ show (I# (i)) ++ ",\taction: ")) $
case action of
0# -> (happyTrace ("fail.\n")) $
happyFail i tk st
-1# -> (happyTrace ("accept.\n")) $
happyAccept i tk st
n | isTrue# (n <# (0# :: Int#)) -> (happyTrace ("reduce (rule " ++ show rule ++ ")")) $
(happyReduceArr ! rule) i tk st
where rule = (I# ((negateInt# ((n +# (1# :: Int#))))))
n -> (happyTrace ("shift, enter state " ++ show (I# (new_state)) ++ "\n")) $
happyShift new_state i tk st
where new_state = (n -# (1# :: Int#))
where off = indexShortOffAddr happyActOffsets st
off_i = (off +# i)
check = if isTrue# (off_i >=# (0# :: Int#))
then isTrue# (indexShortOffAddr happyCheck off_i ==# i)
else False
action | check = indexShortOffAddr happyTable off_i
| otherwise = indexShortOffAddr happyDefActions st
{-# LINE 127 "GenericTemplate.hs" #-}
indexShortOffAddr (HappyA# arr) off =
narrow16Int# i
where
i = word2Int# ((high `uncheckedShiftL#` 8#) `or#` low)
high = int2Word# (ord# (indexCharOffAddr# arr (off' +# 1#)))
low = int2Word# (ord# (indexCharOffAddr# arr off'))
off' = off *# 2#
data HappyAddr = HappyA# Addr#
-----------------------------------------------------------------------------
-- HappyState data type (not arrays)
{-# LINE 170 "GenericTemplate.hs" #-}
-----------------------------------------------------------------------------
-- Shifting a token
happyShift new_state 0# tk st sts stk@(x `HappyStk` _) =
let i = (case x of { HappyErrorToken (I# (i)) -> i }) in
-- trace "shifting the error token" $
happyDoAction i tk new_state (HappyCons (st) (sts)) (stk)
happyShift new_state i tk st sts stk =
happyNewToken new_state (HappyCons (st) (sts)) ((HappyTerminal (tk))`HappyStk`stk)
-- happyReduce is specialised for the common cases.
happySpecReduce_0 i fn 0# tk st sts stk
= happyFail 0# tk st sts stk
happySpecReduce_0 nt fn j tk st@((action)) sts stk
= happyGoto nt j tk st (HappyCons (st) (sts)) (fn `HappyStk` stk)
happySpecReduce_1 i fn 0# tk st sts stk
= happyFail 0# tk st sts stk
happySpecReduce_1 nt fn j tk _ sts@((HappyCons (st@(action)) (_))) (v1`HappyStk`stk')
= let r = fn v1 in
happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))
happySpecReduce_2 i fn 0# tk st sts stk
= happyFail 0# tk st sts stk
happySpecReduce_2 nt fn j tk _ (HappyCons (_) (sts@((HappyCons (st@(action)) (_))))) (v1`HappyStk`v2`HappyStk`stk')
= let r = fn v1 v2 in
happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))
happySpecReduce_3 i fn 0# tk st sts stk
= happyFail 0# tk st sts stk
happySpecReduce_3 nt fn j tk _ (HappyCons (_) ((HappyCons (_) (sts@((HappyCons (st@(action)) (_))))))) (v1`HappyStk`v2`HappyStk`v3`HappyStk`stk')
= let r = fn v1 v2 v3 in
happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))
happyReduce k i fn 0# tk st sts stk
= happyFail 0# tk st sts stk
happyReduce k nt fn j tk st sts stk
= case happyDrop (k -# (1# :: Int#)) sts of
!sts1@((HappyCons (st1@(action)) (_))) ->
let r = fn stk in -- it doesn't hurt to always seq here...
happyDoSeq r (happyGoto nt j tk st1 sts1 r)
happyMonadReduce k nt fn 0# tk st sts stk
= happyFail 0# tk st sts stk
happyMonadReduce k nt fn j tk st sts stk =
happyThen1 (fn stk tk) (\r -> happyGoto nt j tk st1 sts1 (r `HappyStk` drop_stk))
where !sts1@((HappyCons (st1@(action)) (_))) = happyDrop k (HappyCons (st) (sts))
drop_stk = happyDropStk k stk
happyMonad2Reduce k nt fn 0# tk st sts stk
= happyFail 0# tk st sts stk
happyMonad2Reduce k nt fn j tk st sts stk =
happyThen1 (fn stk tk) (\r -> happyNewToken new_state sts1 (r `HappyStk` drop_stk))
where !sts1@((HappyCons (st1@(action)) (_))) = happyDrop k (HappyCons (st) (sts))
drop_stk = happyDropStk k stk
off = indexShortOffAddr happyGotoOffsets st1
off_i = (off +# nt)
new_state = indexShortOffAddr happyTable off_i
happyDrop 0# l = l
happyDrop n (HappyCons (_) (t)) = happyDrop (n -# (1# :: Int#)) t
happyDropStk 0# l = l
happyDropStk n (x `HappyStk` xs) = happyDropStk (n -# (1#::Int#)) xs
-----------------------------------------------------------------------------
-- Moving to a new state after a reduction
happyGoto nt j tk st =
(happyTrace (", goto state " ++ show (I# (new_state)) ++ "\n")) $
happyDoAction j tk new_state
where off = indexShortOffAddr happyGotoOffsets st
off_i = (off +# nt)
new_state = indexShortOffAddr happyTable off_i
-----------------------------------------------------------------------------
-- Error recovery (0# is the error token)
-- parse error if we are in recovery and we fail again
happyFail 0# tk old_st _ stk =
-- trace "failing" $
happyError_ tk
{- We don't need state discarding for our restricted implementation of
"error". In fact, it can cause some bogus parses, so I've disabled it
for now --SDM
-- discard a state
happyFail 0# tk old_st (HappyCons ((action)) (sts))
(saved_tok `HappyStk` _ `HappyStk` stk) =
-- trace ("discarding state, depth " ++ show (length stk)) $
happyDoAction 0# tk action sts ((saved_tok`HappyStk`stk))
-}
-- Enter error recovery: generate an error token,
-- save the old token and carry on.
happyFail i tk (action) sts stk =
-- trace "entering error recovery" $
happyDoAction 0# tk action sts ( (HappyErrorToken (I# (i))) `HappyStk` stk)
-- Internal happy errors:
notHappyAtAll = error "Internal Happy error\n"
-----------------------------------------------------------------------------
-- Hack to get the typechecker to accept our action functions
happyTcHack :: Int# -> a -> a
happyTcHack x y = y
{-# INLINE happyTcHack #-}
-----------------------------------------------------------------------------
-- Seq-ing. If the --strict flag is given, then Happy emits
-- happySeq = happyDoSeq
-- otherwise it emits
-- happySeq = happyDontSeq
happyDoSeq, happyDontSeq :: a -> b -> b
happyDoSeq a b = a `seq` b
happyDontSeq a b = b
-----------------------------------------------------------------------------
-- Don't inline any functions from the template. GHC has a nasty habit
-- of deciding to inline happyGoto everywhere, which increases the size of
-- the generated parser quite a bit.
{-# NOINLINE happyDoAction #-}
{-# NOINLINE happyTable #-}
{-# NOINLINE happyCheck #-}
{-# NOINLINE happyActOffsets #-}
{-# NOINLINE happyGotoOffsets #-}
{-# NOINLINE happyDefActions #-}
{-# NOINLINE happyShift #-}
{-# NOINLINE happySpecReduce_0 #-}
{-# NOINLINE happySpecReduce_1 #-}
{-# NOINLINE happySpecReduce_2 #-}
{-# NOINLINE happySpecReduce_3 #-}
{-# NOINLINE happyReduce #-}
{-# NOINLINE happyMonadReduce #-}
{-# NOINLINE happyGoto #-}
{-# NOINLINE happyFail #-}
-- end of Happy Template.
|