summaryrefslogtreecommitdiff
path: root/testsuite/tests/lib/integer/integerGmpInternals.hs
blob: 3abb14031a768152692e151977702ad388dc5d6f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
{-# LANGUAGE MagicHash, UnboxedTuples #-}

module Main (main) where

import Data.List (group)
import Data.Bits
import Data.Word
import Control.Monad

import GHC.Word
import GHC.Base
import GHC.Integer.GMP.Internals (Integer(S#,J#))
import qualified GHC.Integer.GMP.Internals as I

gcdExtInteger :: Integer -> Integer -> (Integer, Integer)
gcdExtInteger a b = case I.gcdExtInteger a b of (# a, b #) -> (a,b)

powInteger :: Integer -> Word -> Integer
powInteger b (W# w#) = I.powInteger b w#

exportInteger :: Integer -> MutableByteArray# RealWorld -> Word# -> Int# -> IO Word
exportInteger i mba o e = IO $ \s -> case I.exportIntegerToMutableByteArray i mba o e s of
                                         (# s', l #) -> (# s', W# l #)

exportIntegerAddr :: Integer -> Addr# -> Int# -> IO Word
exportIntegerAddr i a e = IO $ \s -> case I.exportIntegerToAddr i a e s of
                                         (# s', l #) -> (# s', W# l #)

importInteger = I.importIntegerFromByteArray

importIntegerAddr :: Addr# -> Word# -> Int# -> IO Integer
importIntegerAddr a l e = IO $ \s -> case I.importIntegerFromAddr a l e s of
                                         (# s', i #) -> (# s', i #)

{- Reference implementation for 'powModInteger'

powModIntegerHs :: Integer -> Integer -> Integer -> Integer
powModIntegerHs b0 e0 m
  | e0 >= 0    = go b0 e0 1
  | otherwise  = error "non-neg exponent required"
  where
    go !b e !r
      | odd e     = go b' e' (r*b `mod` m)
      | e == 0    = r
      | otherwise = go b' e' r
      where
        b' = b*b `mod` m
        e' = e   `unsafeShiftR` 1 -- slightly faster than "e `div` 2"

-}

-- helpers
data MBA = MBA { unMBA :: !(MutableByteArray# RealWorld) }
data BA  = BA  { unBA  :: !ByteArray# }

newByteArray :: Word# -> IO MBA
newByteArray sz = IO $ \s -> case newPinnedByteArray# (word2Int# sz) s of (# s, arr #) -> (# s, MBA arr #)

indexByteArray :: ByteArray# -> Word# -> Word8
indexByteArray a# n# = W8# (indexWord8Array# a# (word2Int# n#))

-- indexMutableByteArray :: MutableByteArray# RealWorld -> Word# -> IO Word8
-- indexMutableByteArray a# n# = IO $ \s -> case readWord8Array# a# (word2Int# n#) s of (# s', v #) -> (# s', W# v #)

writeByteArray :: MutableByteArray# RealWorld -> Int# -> Word8 -> IO ()
writeByteArray arr i (W8# w) = IO $ \s -> case writeWord8Array# arr i w s of s -> (# s, () #)

lengthByteArray :: ByteArray# -> Word
lengthByteArray ba = W# (int2Word# (sizeofByteArray# ba))

unpackByteArray :: ByteArray# -> [Word8]
unpackByteArray ba | n == 0    = []
                   | otherwise = [ indexByteArray ba i | W# i <- [0 .. n-1] ]
  where
    n = lengthByteArray ba

freezeByteArray :: MutableByteArray# RealWorld -> IO BA
freezeByteArray arr = IO $ \s -> case unsafeFreezeByteArray# arr s of (# s, arr #) -> (# s, BA arr #)

----------------------------------------------------------------------------
main :: IO ()
main = do
    print $ I.powModInteger b e m
    print $ I.powModInteger b e (m-1)
    print $ I.powModSecInteger b e (m-1)
    print $ gcdExtInteger b e
    print $ gcdExtInteger e b
    print $ gcdExtInteger x y
    print $ gcdExtInteger y x
    print $ powInteger 12345 0
    print $ powInteger 12345 1
    print $ powInteger 12345 30
    print $ [ (x,i) | x <- [0..71], let i = I.recipModInteger x (2*3*11*11*17*17), i /= 0 ]
    print $ I.nextPrimeInteger b
    print $ I.nextPrimeInteger e
    print $ [ k | k <- [ 0 .. 200 ], S# (I.testPrimeInteger k 25#) `elem` [1,2] ]
    print $ rle [ S# (I.testPrimeInteger k 25#) | k <- [ x .. x + 1000 ] ]
    print $ rle [ S# (I.testPrimeInteger k 25#) | k <- [ e .. e + 1000 ] ]

    -- import/export primitives
    print $ [ W# (I.sizeInBaseInteger x 2#)   | x <- [b1024,b*e,b,e,m,x,y,-1,0,1] ]
    print $ [ W# (I.sizeInBaseInteger x 256#) | x <- [b1024,b*e,b,e,m,x,y,-1,0,1] ]

    BA ba <- do
        MBA mba <- newByteArray 128##
        forM_ (zip [0..127] [0x01..]) $ \(I# i, w) -> do
            writeByteArray mba i w

        let a = byteArrayContents# (unsafeCoerce# mba)

        print =<< importIntegerAddr a 0## 1#
        print =<< importIntegerAddr a 0## -1#

        print =<< importIntegerAddr (plusAddr# a 22#)  1## 1#
        print =<< importIntegerAddr (plusAddr# a 97#) 1## -1#

        print =<< importIntegerAddr a 23## 1#
        print =<< importIntegerAddr a 23## -1#

        -- no-op
        print =<< exportIntegerAddr 0 (plusAddr# a 0#) 1#

        -- write into array
        print =<< exportIntegerAddr b (plusAddr# a 5#) 1#
        print =<< exportIntegerAddr e (plusAddr# a 50#) -1#

        print =<< exportInteger m mba 85## 1#
        print =<< exportInteger m mba 105## -1#

        print =<< importIntegerAddr (plusAddr# a 85#)  17## 1#
        print =<< importIntegerAddr (plusAddr# a 105#) 17## -1#

        -- read back full array
        print =<< importIntegerAddr a 128## 1#
        print =<< importIntegerAddr a 128## -1#

        freezeByteArray mba

    print $ importInteger ba 0## 0## 1#
    print $ importInteger ba 0## 0## -1#

    print $ importInteger ba 5## 29## 1#
    print $ importInteger ba 50## 29## -1#

    print $ importInteger ba 0## 128## 1#
    print $ importInteger ba 0## 128## -1#

    return ()
  where
    b = 2988348162058574136915891421498819466320163312926952423791023078876139
    e = 2351399303373464486466122544523690094744975233415544072992656881240319
    m = 10^(40::Int)

    x = 5328841272400314897981163497728751426
    y = 32052182750761975518649228050096851724

    b1024 = roll (map fromIntegral (take 128 [0x80::Int .. ]))

    rle = map (\x -> (length x, head x)) . group


    roll :: [Word8] -> Integer
    roll = GHC.Base.foldr (\b a -> a `shiftL` 8 .|. fromIntegral b) 0