1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
|
{-# LANGUAGE Haskell2010 #-}
{-
- Instant Insanity using Type Families.
-
- See: The Monad Read, Issue #8 - http://www.haskell.org/wikiupload/d/dd/TMR-Issue8.pdf
-}
{-# OPTIONS_GHC -freduction-depth=400 #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE UndecidableInstances #-}
import Prelude hiding (all, flip, map, filter )
data Proxy a = Proxy
main = print (Proxy :: Proxy (Solutions Cubes))
data R -- Red
data G -- Green
data B -- Blue
data W -- White
data Cube u f r b l d
data True
data False
type family And b1 b2 :: *
type instance And True True = True
type instance And True False = False
type instance And False False = False
type instance And False True = False
type family NE x y :: *
type instance NE R R = False
type instance NE R G = True
type instance NE R B = True
type instance NE R W = True
type instance NE G R = True
type instance NE G G = False
type instance NE G B = True
type instance NE G W = True
type instance NE B R = True
type instance NE B G = True
type instance NE B B = False
type instance NE B W = True
type instance NE W R = True
type instance NE W G = True
type instance NE W B = True
type instance NE W W = False
type family EQ x y :: *
type instance EQ R R = True
type instance EQ R G = False
type instance EQ R B = False
type instance EQ R W = False
type instance EQ G R = False
type instance EQ G G = True
type instance EQ G B = False
type instance EQ G W = False
type instance EQ B R = False
type instance EQ B G = False
type instance EQ B B = True
type instance EQ B W = False
type instance EQ W R = False
type instance EQ W G = False
type instance EQ W B = False
type instance EQ W W = True
data Nil = Nil
data Cons x xs = Cons x xs
type family All l :: *
type instance All Nil = True
type instance All (Cons False xs) = False
type instance All (Cons True xs) = All xs
type family ListConcat xs ys :: *
type instance ListConcat Nil ys = ys
type instance ListConcat (Cons x xs) ys = Cons x (ListConcat xs ys)
type family AppendIf b a as :: *
type instance AppendIf False a as = as
type instance AppendIf True a as = Cons a as
data Rotate
data Twist
data Flip
type family Apply f a :: *
type instance Apply Rotate (Cube u f r b l d) = (Cube u r b l f d)
type instance Apply Twist (Cube u f r b l d) = (Cube f r u l d b)
type instance Apply Flip (Cube u f r b l d) = (Cube d l b r f u)
-- orientations c = [ z | x <- [ c, flip c ], y <- [ x, twist x, twist (twist x) ], z <- [y, rot y, rot(rot y), rot(rot(rot(y))) ] ]
type family Map f as :: *
type instance Map f Nil = Nil
type instance Map f (Cons a as) = Cons (Apply f a) (Map f as)
type family MapAppend f as :: *
type instance MapAppend f xs = ListConcat xs (Map f xs)
type family MapAppend2 f as :: *
type instance MapAppend2 f xs = ListConcat xs (MapAppend f (Map f xs))
type family MapAppend3 f as :: *
type instance MapAppend3 f xs = ListConcat xs (MapAppend2 f (Map f xs))
type family Iterate2 f as :: *
type instance Iterate2 f Nil = Nil
type instance Iterate2 f (Cons a as) = ListConcat (Cons (Apply f a) (Cons a Nil)) (Iterate2 f as)
type family Iterate3 f as :: *
type instance Iterate3 f (Cons a as) =
ListConcat (Cons a
(Cons (Apply f a)
(Cons (Apply f (Apply f a))
Nil)))
(Iterate3 f as)
type family Iterate4 f as :: *
type instance Iterate4 f Nil = Nil
type instance Iterate4 f (Cons a as) =
ListConcat (Cons a
(Cons (Apply f a)
(Cons (Apply f (Apply f a))
(Cons (Apply f (Apply f (Apply f a)))
Nil))))
(Iterate4 f as)
type family Orientations c :: *
-- type instance Orientations c = Iterate4 Rotate (Iterate3 Twist (Iterate2 Flip (Cons c Nil)))
type instance Orientations c = MapAppend3 Rotate (MapAppend2 Twist (MapAppend Flip (Cons c Nil)))
type Cube1 = Cube B G W G B R
type Cube2 = Cube W G B W R R
type Cube3 = Cube G W R B R R
type Cube4 = Cube B R G G W W
type Cubes = Cons Cube1 (Cons Cube2 (Cons Cube3 (Cons Cube4 Nil)))
type family Compatible c d :: *
type instance Compatible (Cube u1 f1 r1 b1 l1 d1) (Cube u2 f2 r2 b2 l2 d2) =
All (Cons (NE f1 f2) (Cons (NE r1 r2) (Cons (NE b1 b2) (Cons (NE l1 l2) Nil))))
type family Allowed c cs :: *
type instance Allowed c Nil = True
type instance Allowed c (Cons s ss) = And (Compatible c s) (Allowed c ss)
type family MatchingOrientations as sol :: *
type instance MatchingOrientations Nil sol = Nil
type instance MatchingOrientations (Cons o os) sol = AppendIf (Allowed o sol) (Cons o sol) (MatchingOrientations os sol)
type family AllowedCombinations os sols :: *
type instance AllowedCombinations os Nil = Nil
type instance AllowedCombinations os (Cons sol sols) = ListConcat (MatchingOrientations os sol) (AllowedCombinations os sols)
type family Solutions c :: *
type instance Solutions Nil = Cons Nil Nil
type instance Solutions (Cons c cs) = AllowedCombinations (Orientations c) (Solutions cs)
{-
- solutions [] = [ [] ]
- solutions (c:cs) = [ (o:sol) | sol <- solutions cs, o <- orientations c, allowed o
-}
|