1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
|
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE UnboxedTuples #-}
module Main where
import Data.Int
import Data.List (findIndex)
import GHC.Exts
main :: IO ()
main = do
--
-- Check if passing Int16# on the stack works (16 parameter function will
-- need to use stack for some of the them)
--
let input =
[ ( (a + 0), (a + 1), (a + 2), (a + 3),
(a + 4), (a + 5), (a + 6), (a + 7),
(a + 8), (a + 9), (a + 10), (a + 11),
(a + 12), (a + 13), (a + 14), (a + 15) )
| a <- allInt16
]
expected =
[ toInt16
(a + b + c + d + e + f + g + h +
i + j + k + l + m + n + o + p)
| (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) <- input
]
actual =
[ addMany a b c d e f g h i j k l m n o p
| (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) <- input
]
checkResults "passing Int16# on the stack" input expected actual
--
-- negateInt16#
--
let input = allInt16
expected = [ toInt16 (negate a) | a <- input ]
actual = [ apply1 negateInt16# a | a <- input ]
checkResults "negateInt16#" input expected actual
--
-- plusInt16#
--
let input = [ (a, b) | a <- allInt16, b <- allInt16 ]
expected = [ toInt16 (a + b) | (a, b) <- input ]
actual = [ apply2 plusInt16# a b | (a, b) <- input ]
checkResults "plusInt16#" input expected actual
-- --
-- -- subInt16#
-- --
let input = [ (a, b) | a <- allInt16, b <- allInt16 ]
expected = [ toInt16 (a - b) | (a, b) <- input ]
actual = [ apply2 subInt16# a b | (a, b) <- input ]
checkResults "subInt16#" input expected actual
--
-- timesInt16#
--
let input = [ (a, b) | a <- allInt16, b <- allInt16 ]
expected = [ toInt16 (a * b) | (a, b) <- input ]
actual = [ apply2 timesInt16# a b | (a, b) <- input ]
checkResults "timesInt16#" input expected actual
--
-- remInt16#
--
let input =
[ (a, b) | a <- allInt16, b <- allInt16
-- Don't divide by 0 or cause overflow
, b /= 0, not (a == -32768 && b == -1)
]
expected = [ toInt16 (a `rem` b) | (a, b) <- input ]
actual = [ apply2 remInt16# a b | (a, b) <- input ]
checkResults "remInt16#" input expected actual
--
-- quotInt16#
--
let input =
[ (a, b) | a <- allInt16, b <- allInt16
, b /= 0, not (a == -32768 && b == -1)
]
expected = [ toInt16 (a `quot` b) | (a, b) <- input ]
actual = [ apply2 quotInt16# a b | (a, b) <- input ]
checkResults "quotInt16#" input expected actual
--
-- quotRemInt16#
--
let input =
[ (a, b) | a <- allInt16, b <- allInt16
, b /= 0, not (a == -32768 && b == -1)
]
expected =
[ (toInt16 q, toInt16 r) | (a, b) <- input
, let (q, r) = a `quotRem` b
]
actual = [ apply3 quotRemInt16# a b | (a, b) <- input ]
checkResults "quotRemInt16#" input expected actual
checkResults
:: (Eq a, Eq b, Show a, Show b) => String -> [a] -> [b] -> [b] -> IO ()
checkResults test inputs expected actual =
case findIndex (\(e, a) -> e /= a) (zip expected actual) of
Nothing -> putStrLn $ "Pass: " ++ test
Just i -> error $
"FAILED: " ++ test ++ " for input: " ++ show (inputs !! i)
++ " expected: " ++ show (expected !! i)
++ " but got: " ++ show (actual !! i)
-- testing across the entire Int16 range blows the memory,
-- hence choosing a smaller range
allInt16 :: [Int]
allInt16 = [ -50 .. 50 ]
toInt16 :: Int -> Int
toInt16 a = fromIntegral (fromIntegral a :: Int16)
addMany#
:: Int16# -> Int16# -> Int16# -> Int16#
-> Int16# -> Int16# -> Int16# -> Int16#
-> Int16# -> Int16# -> Int16# -> Int16#
-> Int16# -> Int16# -> Int16# -> Int16#
-> Int16#
addMany# a b c d e f g h i j k l m n o p =
a `plusInt16#` b `plusInt16#` c `plusInt16#` d `plusInt16#`
e `plusInt16#` f `plusInt16#` g `plusInt16#` h `plusInt16#`
i `plusInt16#` j `plusInt16#` k `plusInt16#` l `plusInt16#`
m `plusInt16#` n `plusInt16#` o `plusInt16#` p
{-# NOINLINE addMany# #-}
addMany
:: Int -> Int -> Int -> Int
-> Int -> Int -> Int -> Int
-> Int -> Int -> Int -> Int
-> Int -> Int -> Int -> Int
-> Int
addMany (I# a) (I# b) (I# c) (I# d)
(I# e) (I# f) (I# g) (I# h)
(I# i) (I# j) (I# k) (I# l)
(I# m) (I# n) (I# o) (I# p)
= I# (int16ToInt# int16)
where
!int16 = addMany#
(intToInt16# a) (intToInt16# b) (intToInt16# c) (intToInt16# d)
(intToInt16# e) (intToInt16# f) (intToInt16# g) (intToInt16# h)
(intToInt16# i) (intToInt16# j) (intToInt16# k) (intToInt16# l)
(intToInt16# m) (intToInt16# n) (intToInt16# o) (intToInt16# p)
{-# NOINLINE addMany #-}
-- Convenient and also tests higher order functions on Int16#
apply1 :: (Int16# -> Int16#) -> Int -> Int
apply1 opToTest (I# a) = I# (int16ToInt# (opToTest (intToInt16# a)))
{-# NOINLINE apply1 #-}
apply2 :: (Int16# -> Int16# -> Int16#) -> Int -> Int -> Int
apply2 opToTest (I# a) (I# b) =
let (# sa, sb #) = (# intToInt16# a, intToInt16# b #)
r = opToTest sa sb
in I# (int16ToInt# r)
{-# NOINLINE apply2 #-}
apply3 :: (Int16# -> Int16# -> (# Int16#, Int16# #)) -> Int -> Int -> (Int, Int)
apply3 opToTest (I# a) (I# b) =
let (# sa, sb #) = (# intToInt16# a, intToInt16# b #)
(# ra, rb #) = opToTest sa sb
in (I# (int16ToInt# ra), I# (int16ToInt# rb))
{-# NOINLINE apply3 #-}
instance
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h,
Eq i, Eq j, Eq k, Eq l, Eq m, Eq n, Eq o, Eq p)
=> Eq (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) where
(a1, b1, c1, d1, e1, f1, g1, h1, i1, j1, k1, l1, m1, n1, o1, p1) ==
(a2, b2, c2, d2, e2, f2, g2, h2, i2, j2, k2, l2, m2, n2, o2, p2) =
a1 == a2 && b1 == b2 && c1 == c2 && d1 == d2 &&
e1 == e2 && f1 == f2 && g1 == g2 && h1 == h2 &&
i1 == i2 && j1 == j2 && k1 == k2 && l1 == l2 &&
m1 == m2 && n1 == n2 && o1 == o2 && p1 == p2
instance
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h,
Show i, Show j, Show k, Show l, Show m, Show n, Show o, Show p)
=> Show (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) where
show (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) =
"(" ++ show a ++ "," ++ show b ++ "," ++ show c ++ "," ++ show d ++
"," ++ show e ++ "," ++ show f ++ "," ++ show g ++ "," ++ show h ++
"," ++ show i ++ "," ++ show j ++ "," ++ show k ++ "," ++ show l ++
"," ++ show m ++ "," ++ show n ++ "," ++ show o ++ "," ++ show p ++
")"
|