1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
|
-- Copyright (c) 2000 Galois Connections, Inc.
-- All rights reserved. This software is distributed as
-- free software under the license in the file "LICENSE",
-- which is included in the distribution.
module Eval where
import Control.Monad
import Data.Array
import Geometry
import CSG
import Surface
import Data
import Parse (rayParse, rayParseF)
class Monad m => MonadEval m where
doOp :: PrimOp -> GMLOp -> Stack -> m Stack
tick :: m ()
err :: String -> m a
tick = return ()
newtype Pure a = Pure a deriving Show
instance Functor Pure where
fmap = liftM
instance Applicative Pure where
pure = Pure
(<*>) = ap
instance Monad Pure where
Pure x >>= k = k x
return = pure
instance MonadEval Pure where
doOp = doPureOp
err s = error s
instance MonadEval IO where
doOp prim op stk = do { -- putStrLn ("Calling " ++ show op
-- ++ " << " ++ show stk ++ " >>")
doAllOp prim op stk
}
err s = error s
data State
= State { env :: Env
, stack :: Stack
, code :: Code
} deriving Show
callback :: Env -> Code -> Stack -> Stack
callback env code stk
= case eval (State { env = env, stack = stk, code = code}) of
Pure stk -> stk
{-# SPECIALIZE eval :: State -> Pure Stack #-}
{-# SPECIALIZE eval :: State -> IO Stack #-}
eval :: MonadEval m => State -> m Stack
eval st =
do { () <- return () -- $ unsafePerformIO (print st) -- Functional debugger
; if moreCode st then
do { tick -- tick first, so as to catch loops on new eval.
; st' <- step st
; eval st'
}
else return (stack st)
}
moreCode :: State -> Bool
moreCode (State {code = []}) = False
moreCode _ = True
-- Step has a precondition that there *is* code to run
{-# SPECIALIZE step :: State -> Pure State #-}
{-# SPECIALIZE step :: State -> IO State #-}
step :: MonadEval m => State -> m State
-- Rule 1: Pushing BaseValues
step st@(State{ stack = stack, code = (TBool b):cs })
= return (st { stack = (VBool b):stack, code = cs })
step st@(State{ stack = stack, code = (TInt i):cs })
= return (st { stack = (VInt i):stack, code = cs })
step st@(State{ stack = stack, code = (TReal r):cs })
= return (st { stack = (VReal r):stack, code = cs })
step st@(State{ stack = stack, code = (TString s):cs })
= return (st { stack = (VString s):stack, code = cs })
-- Rule 2: Name binding
step st@(State{ env = env, stack = (v:stack), code = (TBind id):cs }) =
return (State { env = extendEnv env id v, stack = stack, code = cs })
step st@(State{ env = env, stack = [], code = (TBind id):cs }) =
err "Attempt to bind the top of an empty stack"
-- Rule 3: Name lookup
step st@(State{ env = env, stack = stack, code = (TId id):cs }) =
case (lookupEnv env id) of
Just v -> return (st { stack = v:stack, code = cs })
Nothing -> err ("Cannot find value for identifier: " ++ id)
-- Rule 4: Closure creation
step st@(State{ env = env, stack = stack, code = (TBody body):cs }) =
return (st { stack = (VClosure env body):stack, code = cs })
-- Rule 5: Application
step st@(State{ env = env, stack = (VClosure env' code'):stack, code = TApply:cs }) =
do { stk <- eval (State {env = env', stack = stack, code = code'})
; return (st { stack = stk, code = cs })
}
step st@(State{ env = env, stack = [], code = TApply:cs }) =
err "Application with an empty stack"
step st@(State{ env = env, stack = _:_, code = TApply:cs }) =
err "Application of a non-closure"
-- Rule 6: Arrays
step st@(State{ env = env, stack = stack, code = TArray code':cs }) =
do { stk <- eval (State {env = env, stack = [], code = code'})
; let last = length stk-1
; let arr = array (0,last) (zip [last,last-1..] stk)
; return (st { stack = (VArray arr):stack, code = cs })
}
-- Rule 7 & 8: If statement
step st@(State{ env = env, stack = (VClosure e2 c2):(VClosure e1 c1):(VBool True):stack, code = TIf:cs }) =
do { stk <- eval (State {env = e1, stack = stack, code = c1})
; return (st { stack = stk, code = cs })
}
step st@(State{ env = env, stack = (VClosure e2 c2):(VClosure e1 c1):(VBool False):stack, code = TIf:cs }) =
do { stk <- eval (State {env = e2, stack = stack, code = c2})
; return (st { stack = stk, code = cs })
}
step st@(State{ env = env, stack = _, code = TIf:cs }) =
err "Incorrect use of if (bad and/or inappropriate values on the stack)"
-- Rule 9: Operators
step st@(State{ env = env, stack = stack, code = (TOp op):cs }) =
do { stk <- doOp (opFnTable ! op) op stack
; return (st { stack = stk, code = cs })
}
-- Rule Opps
step _ = err "Tripped on sidewalk while stepping."
--------------------------------------------------------------------------
-- Operator code
opFnTable :: Array GMLOp PrimOp
opFnTable = array (minBound,maxBound)
[ (op,prim) | (_,TOp op,prim) <- opcodes ]
doPureOp :: (MonadEval m) => PrimOp -> GMLOp -> Stack -> m Stack
doPureOp _ Op_render _ =
err ("\nAttempting to call render from inside a purely functional callback.")
doPureOp primOp op stk = doPrimOp primOp op stk -- call the purely functional operators
{-# SPECIALIZE doPrimOp :: PrimOp -> GMLOp -> Stack -> Pure Stack #-}
{-# SPECIALIZE doPrimOp :: PrimOp -> GMLOp -> Stack -> IO Stack #-}
{-# SPECIALIZE doPrimOp :: PrimOp -> GMLOp -> Stack -> Abs Stack #-}
doPrimOp :: (MonadEval m) => PrimOp -> GMLOp -> Stack -> m Stack
-- 1 argument.
doPrimOp (Int_Int fn) _ (VInt i1:stk)
= return ((VInt (fn i1)) : stk)
doPrimOp (Real_Real fn) _ (VReal r1:stk)
= return ((VReal (fn r1)) : stk)
doPrimOp (Point_Real fn) _ (VPoint x y z:stk)
= return ((VReal (fn x y z)) : stk)
-- This is where the callbacks happen from...
doPrimOp (Surface_Obj fn) _ (VClosure env code:stk)
= case absapply env code [VAbsObj AbsFACE,VAbsObj AbsU,VAbsObj AbsV] of
Just [VReal r3,VReal r2,VReal r1,VPoint c1 c2 c3] ->
let
res = prop (color c1 c2 c3) r1 r2 r3
in
return ((VObject (fn (SConst res))) : stk)
_ -> return ((VObject (fn (SFun call))) : stk)
where
-- The most general case
call i r1 r2 =
case callback env code [VReal r2,VReal r1,VInt i] of
[VReal r3,VReal r2,VReal r1,VPoint c1 c2 c3]
-> prop (color c1 c2 c3) r1 r2 r3
stk -> error ("callback failed: incorrectly typed return arguments"
++ show stk)
doPrimOp (Real_Int fn) _ (VReal r1:stk)
= return ((VInt (fn r1)) : stk)
doPrimOp (Int_Real fn) _ (VInt r1:stk)
= return ((VReal (fn r1)) : stk)
doPrimOp (Arr_Int fn) _ (VArray arr:stk)
= return ((VInt (fn arr)) : stk)
-- 2 arguments.
doPrimOp (Int_Int_Int fn) _ (VInt i2:VInt i1:stk)
= return ((VInt (fn i1 i2)) : stk)
doPrimOp (Int_Int_Bool fn) _ (VInt i2:VInt i1:stk)
= return ((VBool (fn i1 i2)) : stk)
doPrimOp (Real_Real_Real fn) _ (VReal r2:VReal r1:stk)
= return ((VReal (fn r1 r2)) : stk)
doPrimOp (Real_Real_Bool fn) _ (VReal r2:VReal r1:stk)
= return ((VBool (fn r1 r2)) : stk)
doPrimOp (Arr_Int_Value fn) _ (VInt i:VArray arr:stk)
= return ((fn arr i) : stk)
-- Many arguments, typically image mangling
doPrimOp (Obj_Obj_Obj fn) _ (VObject o2:VObject o1:stk)
= return ((VObject (fn o1 o2)) : stk)
doPrimOp (Point_Color_Light fn) _ (VPoint r g b:VPoint x y z : stk)
= return (VLight (fn (x,y,z) (color r g b)) : stk)
doPrimOp (Point_Point_Color_Real_Real_Light fn) _
(VReal r2:VReal r1:VPoint r g b:VPoint x2 y2 z2:VPoint x1 y1 z1 : stk)
= return (VLight (fn (x1,y1,z1) (x2,y2,z2) (color r g b) r1 r2) : stk)
doPrimOp (Real_Real_Real_Point fn) _ (VReal r3:VReal r2:VReal r1:stk)
= return ((fn r1 r2 r3) : stk)
doPrimOp (Obj_Real_Obj fn) _ (VReal r:VObject o:stk)
= return (VObject (fn o r) : stk)
doPrimOp (Obj_Real_Real_Real_Obj fn) _ (VReal r3:VReal r2:VReal r1:VObject o:stk)
= return (VObject (fn o r1 r2 r3) : stk)
-- This one is our testing harness
doPrimOp (Value_String_Value fn) _ (VString s:o:stk)
= res `seq` return (res : stk)
where
res = fn o s
doPrimOp primOp op args
= err ("\n\ntype error when attempting to execute builtin primitive \"" ++
show op ++ "\"\n\n| " ++
show op ++ " takes " ++ show (length types) ++ " argument" ++ s
++ " with" ++ the ++ " type" ++ s ++ "\n|\n|" ++
" " ++ unwords [ show ty | ty <- types ] ++ "\n|\n|" ++
" currently, the relevant argument" ++ s ++ " on the stack " ++
are ++ "\n|\n| " ++
unwords [ "(" ++ show arg ++ ")"
| arg <- reverse (take (length types) args) ] ++ "\n|\n| "
++ " (top of stack is on the right hand side)\n\n")
where
len = length types
s = (if len /= 1 then "s" else "")
are = (if len /= 1 then "are" else "is")
the = (if len /= 1 then "" else " the")
types = getPrimOpType primOp
-- Render is somewhat funny, because it can only get called at top level.
-- All other operations are purely functional.
doAllOp :: PrimOp -> GMLOp -> Stack -> IO Stack
doAllOp (Render render) Op_render
(VString str:VInt ht:VInt wid:VReal fov
:VInt dep:VObject obj:VArray arr
:VPoint r g b : stk)
= do { render (color r g b) lights obj dep (fov * (pi / 180.0)) wid ht str
; return stk
}
where
lights = [ light | (VLight light) <- elems arr ]
doAllOp primOp op stk = doPrimOp primOp op stk -- call the purely functional operators
------------------------------------------------------------------------------
{-
- Abstract evaluation.
-
- The idea is you check for constant code that
- (1) does not look at its arguments
- (2) gives a fixed result
-
- We run for 100 steps.
-
-}
absapply :: Env -> Code -> Stack -> Maybe Stack
absapply env code stk =
case runAbs (eval (State env stk code)) 100 of
AbsState stk _ -> Just stk
AbsFail m -> Nothing
newtype Abs a = Abs { runAbs :: Int -> AbsState a }
data AbsState a = AbsState a !Int
| AbsFail String
instance Functor Abs where
fmap = liftM
instance Applicative Abs where
pure x = Abs (\ n -> AbsState x n)
(<*>) = ap
instance Monad Abs where
(Abs fn) >>= k = Abs (\ s -> case fn s of
AbsState r s' -> runAbs (k r) s'
AbsFail m -> AbsFail m)
return = pure
instance MonadFail Abs where
fail s = Abs (\ n -> AbsFail s)
instance MonadEval Abs where
doOp = doAbsOp
err = fail
tick = Abs (\ n -> if n <= 0
then AbsFail "run out of time"
else AbsState () (n-1))
doAbsOp :: PrimOp -> GMLOp -> Stack -> Abs Stack
doAbsOp _ Op_point (VReal r3:VReal r2:VReal r1:stk)
= return ((VPoint r1 r2 r3) : stk)
-- here, you could have an (AbsPoint :: AbsObj) which you put on the
-- stack, with any object in the three fields.
doAbsOp _ op _ = err ("operator not understood (" ++ show op ++ ")")
------------------------------------------------------------------------------
-- Driver
mainEval :: Code -> IO ()
mainEval prog = do { stk <- eval (State emptyEnv [] prog)
; return ()
}
{-
* Oops, one of the example actually has something
* on the stack at the end.
* Oh well...
; if null stk
then return ()
else do { putStrLn done
; print stk
}
-}
done = "Items still on stack at (successful) termination of program"
------------------------------------------------------------------------------
-- testing
test :: String -> Pure Stack
test is = eval (State emptyEnv [] (rayParse is))
testF :: String -> IO Stack
testF is = do prog <- rayParseF is
eval (State emptyEnv [] prog)
testA :: String -> Either String (Stack,Int)
testA is = case runAbs (eval (State emptyEnv
[VAbsObj AbsFACE,VAbsObj AbsU,VAbsObj AbsV]
(rayParse is))) 100 of
AbsState a n -> Right (a,n)
AbsFail m -> Left m
abstest1 = "1.0 0.0 0.0 point /red { /v /u /face red 1.0 0.0 1.0 } apply"
-- should be [3:: Int]
et1 = test "1 /x { x } /f 2 /x f apply x addi"
|