/* * * Copyright (c) 2014, James S. Plank and Kevin Greenan * All rights reserved. * * Jerasure - A C/C++ Library for a Variety of Reed-Solomon and RAID-6 Erasure * Coding Techniques * * Revision 2.0: Galois Field backend now links to GF-Complete * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * - Neither the name of the University of Tennessee nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* Jerasure's authors: Revision 2.x - 2014: James S. Plank and Kevin M. Greenan. Revision 1.2 - 2008: James S. Plank, Scott Simmerman and Catherine D. Schuman. Revision 1.0 - 2007: James S. Plank. */ #include #include #include #include #include #include #include #include #include "jerasure.h" #include "reed_sol.h" #define BUFSIZE 4096 static void *malloc16(int size) { void *mem = malloc(size+16+sizeof(void*)); void **ptr = (void**)((long)(mem+16+sizeof(void*)) & ~(15)); ptr[-1] = mem; return ptr; } #if 0 // Unused for now. static void free16(void *ptr) { free(((void**)ptr)[-1]); } #endif #define talloc(type, num) (type *) malloc16(sizeof(type)*(num)) static void usage(char *s) { fprintf(stderr, "usage: reed_sol_test_gf k m w seed (additional GF args) - Tests Reed-Solomon in GF(2^w).\n"); fprintf(stderr, " \n"); fprintf(stderr, " w must be 8, 16 or 32. k+m must be <= 2^w.\n"); fprintf(stderr, " See the README for information on the additional GF args.\n"); fprintf(stderr, " Set up a Vandermonde-based distribution matrix and encodes k devices of\n"); fprintf(stderr, " %d bytes each with it. Then it decodes.\n", BUFSIZE); fprintf(stderr, " \n"); fprintf(stderr, "This tests: jerasure_matrix_encode()\n"); fprintf(stderr, " jerasure_matrix_decode()\n"); fprintf(stderr, " jerasure_print_matrix()\n"); fprintf(stderr, " galois_change_technique()\n"); fprintf(stderr, " reed_sol_vandermonde_coding_matrix()\n"); if (s != NULL) fprintf(stderr, "%s\n", s); exit(1); } gf_t* get_gf(int w, int argc, char **argv, int starting) { gf_t *gf = (gf_t*)malloc(sizeof(gf_t)); if (create_gf_from_argv(gf, w, argc, argv, starting) == 0) { free(gf); gf = NULL; } return gf; } int main(int argc, char **argv) { int k, w, i, m; int *matrix; char **data, **coding, **old_values; int *erasures, *erased; gf_t *gf = NULL; uint32_t seed; if (argc < 6) usage("Not enough command line arguments"); if (sscanf(argv[1], "%d", &k) == 0 || k <= 0) usage("Bad k"); if (sscanf(argv[2], "%d", &m) == 0 || m <= 0) usage("Bad m"); if (sscanf(argv[3], "%d", &w) == 0 || (w != 8 && w != 16 && w != 32)) usage("Bad w"); if (sscanf(argv[4], "%d", &seed) == 0) usage("Bad seed"); if (w <= 16 && k + m > (1 << w)) usage("k + m is too big"); MOA_Seed(seed); gf = get_gf(w, argc, argv, 5); if (gf == NULL) { usage("Invalid arguments given for GF!\n"); } galois_change_technique(gf, w); matrix = reed_sol_vandermonde_coding_matrix(k, m, w); printf("reed_sol_test_gf"); for (i = 1; i < argc; i++) printf(" %s", argv[i]); printf("\n"); printf("

reed_sol_test_gf"); for (i = 1; i < argc; i++) printf(" %s", argv[i]); printf("

\n"); printf("
\n");

  printf("Last m rows of the generator matrix (G^T):\n\n");
  jerasure_print_matrix(matrix, m, k, w);
  printf("\n");

  data = talloc(char *, k);
  for (i = 0; i < k; i++) {
    data[i] = talloc(char, BUFSIZE);
    MOA_Fill_Random_Region(data[i], BUFSIZE);
  }

  coding = talloc(char *, m);
  old_values = talloc(char *, m);
  for (i = 0; i < m; i++) {
    coding[i] = talloc(char, BUFSIZE);
    old_values[i] = talloc(char, BUFSIZE);
  }

  jerasure_matrix_encode(k, m, w, matrix, data, coding, BUFSIZE);
  
  erasures = talloc(int, (m+1));
  erased = talloc(int, (k+m));
  for (i = 0; i < m+k; i++) erased[i] = 0;
  for (i = 0; i < m; ) {
    erasures[i] = ((unsigned int)MOA_Random_W(w,1))%(k+m);
    if (erased[erasures[i]] == 0) {
      erased[erasures[i]] = 1;
      memcpy(old_values[i], (erasures[i] < k) ? data[erasures[i]] : coding[erasures[i]-k], BUFSIZE);
      bzero((erasures[i] < k) ? data[erasures[i]] : coding[erasures[i]-k], BUFSIZE);
      i++;
    }
  }
  erasures[i] = -1;

  i = jerasure_matrix_decode(k, m, w, matrix, 1, erasures, data, coding, BUFSIZE);

  for (i = 0; i < m; i++) {
    if (erasures[i] < k) {
      if (memcmp(data[erasures[i]], old_values[i], BUFSIZE)) {
        fprintf(stderr, "Decoding failed for %d!\n", erasures[i]);
        exit(1);
      }
    } else {
      if (memcmp(coding[erasures[i]-k], old_values[i], BUFSIZE)) {
        fprintf(stderr, "Decoding failed for %d!\n", erasures[i]);
        exit(1);
      }
    }
  }
  
  printf("Encoding and decoding were both successful.\n");
  return 0;
}