diff options
author | gabor@google.com <gabor@google.com@62dab493-f737-651d-591e-8d6aee1b9529> | 2011-07-27 04:39:46 +0000 |
---|---|---|
committer | gabor@google.com <gabor@google.com@62dab493-f737-651d-591e-8d6aee1b9529> | 2011-07-27 04:39:46 +0000 |
commit | e8dee348b69111c7bbdfb176eb3484a0e9f5cc73 (patch) | |
tree | ba593411bdbccf21d9e511757438346dfb50df2d | |
parent | 3cc27381f7ed346b6edf0dd15749b699881d2327 (diff) | |
download | leveldb-e8dee348b69111c7bbdfb176eb3484a0e9f5cc73.tar.gz |
Minor edit in benchmark page.
(Baseline comparison does not make sense for large values.)
git-svn-id: https://leveldb.googlecode.com/svn/trunk@43 62dab493-f737-651d-591e-8d6aee1b9529
-rw-r--r-- | doc/benchmark.html | 22 |
1 files changed, 8 insertions, 14 deletions
diff --git a/doc/benchmark.html b/doc/benchmark.html index b84f171..6a79bc7 100644 --- a/doc/benchmark.html +++ b/doc/benchmark.html @@ -176,34 +176,28 @@ parameters are varied. For the baseline:</p> <h3>A. Large Values </h3> <p>For this benchmark, we start with an empty database, and write 100,000 byte values (~50% compressible). To keep the benchmark running time reasonable, we stop after writing 1000 values.</p> <h4>Sequential Writes</h4> -<table class="bn"> +<table class="bn bnbase"> <tr><td class="c1">LevelDB</td> <td class="c2">1,060 ops/sec</td> - <td class="c3"><div class="bldb" style="width:127px"> </div> - <td class="c4">(1.17x baseline)</td></tr> + <td class="c3"><div class="bldb" style="width:127px"> </div></td></tr> <tr><td class="c1">Kyoto TreeDB</td> <td class="c2">1,020 ops/sec</td> - <td class="c3"><div class="bkct" style="width:122px"> </div></td> - <td class="c4">(2.57x baseline)</td></tr> + <td class="c3"><div class="bkct" style="width:122px"> </div></td></tr> <tr><td class="c1">SQLite3</td> <td class="c2">2,910 ops/sec</td> - <td class="c3"><div class="bsql" style="width:350px"> </div></td> - <td class="c4">(93.3x baseline)</td></tr> + <td class="c3"><div class="bsql" style="width:350px"> </div></td></tr> </table> <h4>Random Writes</h4> -<table class="bn"> +<table class="bn bnbase"> <tr><td class="c1">LevelDB</td> <td class="c2">480 ops/sec</td> - <td class="c3"><div class="bldb" style="width:77px"> </div></td> - <td class="c4">(2.52x baseline)</td></tr> + <td class="c3"><div class="bldb" style="width:77px"> </div></td></tr> <tr><td class="c1">Kyoto TreeDB</td> <td class="c2">1,100 ops/sec</td> - <td class="c3"><div class="bkct" style="width:350px"> </div></td> - <td class="c4">(10.72x baseline)</td></tr> + <td class="c3"><div class="bkct" style="width:350px"> </div></td></tr> <tr><td class="c1">SQLite3</td> <td class="c2">2,200 ops/sec</td> - <td class="c3"><div class="bsql" style="width:175px"> </div></td> - <td class="c4">(4,516x baseline)</td></tr> + <td class="c3"><div class="bsql" style="width:175px"> </div></td></tr> </table> <p>LevelDB doesn't perform as well with large values of 100,000 bytes each. This is because LevelDB writes keys and values at least twice: first time to the transaction log, and second time (during a compaction) to a sorted file. With larger values, LevelDB's per-operation efficiency is swamped by the |