// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(LEVELDB_PLATFORM_ANDROID) #include #endif #include "leveldb/env.h" #include "leveldb/slice.h" #include "port/port.h" #include "util/logging.h" namespace leveldb { namespace { class PosixSequentialFile: public SequentialFile { private: std::string filename_; FILE* file_; public: PosixSequentialFile(const std::string& fname, FILE* f) : filename_(fname), file_(f) { } virtual ~PosixSequentialFile() { fclose(file_); } virtual Status Read(size_t n, Slice* result, char* scratch) { Status s; size_t r = fread_unlocked(scratch, 1, n, file_); *result = Slice(scratch, r); if (r < n) { if (feof(file_)) { // We leave status as ok if we hit the end of the file } else { // A partial read with an error: return a non-ok status s = Status::IOError(filename_, strerror(errno)); } } return s; } }; class PosixRandomAccessFile: public RandomAccessFile { private: std::string filename_; int fd_; public: PosixRandomAccessFile(const std::string& fname, int fd) : filename_(fname), fd_(fd) { } virtual ~PosixRandomAccessFile() { close(fd_); } virtual Status Read(uint64_t offset, size_t n, Slice* result, char* scratch) const { Status s; ssize_t r = pread(fd_, scratch, n, static_cast(offset)); *result = Slice(scratch, (r < 0) ? 0 : r); if (r < 0) { // An error: return a non-ok status s = Status::IOError(filename_, strerror(errno)); } return s; } }; // We preallocate up to an extra megabyte and use memcpy to append new // data to the file. This is safe since we either properly close the // file before reading from it, or for log files, the reading code // knows enough to skip zero suffixes. class PosixMmapFile : public WritableFile { private: std::string filename_; int fd_; size_t page_size_; size_t map_size_; // How much extra memory to map at a time char* base_; // The mapped region char* limit_; // Limit of the mapped region char* dst_; // Where to write next (in range [base_,limit_]) char* last_sync_; // Where have we synced up to uint64_t file_offset_; // Offset of base_ in file // Have we done an munmap of unsynced data? bool pending_sync_; // Roundup x to a multiple of y static size_t Roundup(size_t x, size_t y) { return ((x + y - 1) / y) * y; } size_t TruncateToPageBoundary(size_t s) { s -= (s & (page_size_ - 1)); assert((s % page_size_) == 0); return s; } void UnmapCurrentRegion() { if (base_ != NULL) { if (last_sync_ < limit_) { // Defer syncing this data until next Sync() call, if any pending_sync_ = true; } munmap(base_, limit_ - base_); file_offset_ += limit_ - base_; base_ = NULL; limit_ = NULL; last_sync_ = NULL; dst_ = NULL; // Increase the amount we map the next time, but capped at 1MB if (map_size_ < (1<<20)) { map_size_ *= 2; } } } bool MapNewRegion() { assert(base_ == NULL); if (ftruncate(fd_, file_offset_ + map_size_) < 0) { return false; } void* ptr = mmap(NULL, map_size_, PROT_READ | PROT_WRITE, MAP_SHARED, fd_, file_offset_); if (ptr == MAP_FAILED) { return false; } base_ = reinterpret_cast(ptr); limit_ = base_ + map_size_; dst_ = base_; last_sync_ = base_; return true; } public: PosixMmapFile(const std::string& fname, int fd, size_t page_size) : filename_(fname), fd_(fd), page_size_(page_size), map_size_(Roundup(65536, page_size)), base_(NULL), limit_(NULL), dst_(NULL), last_sync_(NULL), file_offset_(0), pending_sync_(false) { assert((page_size & (page_size - 1)) == 0); } ~PosixMmapFile() { if (fd_ >= 0) { PosixMmapFile::Close(); } } virtual Status Append(const Slice& data) { const char* src = data.data(); size_t left = data.size(); while (left > 0) { assert(base_ <= dst_); assert(dst_ <= limit_); size_t avail = limit_ - dst_; if (avail == 0) { UnmapCurrentRegion(); MapNewRegion(); } size_t n = (left <= avail) ? left : avail; memcpy(dst_, src, n); dst_ += n; src += n; left -= n; } return Status::OK(); } virtual Status Close() { Status s; size_t unused = limit_ - dst_; UnmapCurrentRegion(); if (unused > 0) { // Trim the extra space at the end of the file if (ftruncate(fd_, file_offset_ - unused) < 0) { s = Status::IOError(filename_, strerror(errno)); } } if (close(fd_) < 0) { if (s.ok()) { s = Status::IOError(filename_, strerror(errno)); } } fd_ = -1; base_ = NULL; limit_ = NULL; return s; } virtual Status Flush() { return Status::OK(); } virtual Status Sync() { Status s; if (pending_sync_) { // Some unmapped data was not synced pending_sync_ = false; if (fdatasync(fd_) < 0) { s = Status::IOError(filename_, strerror(errno)); } } if (dst_ > last_sync_) { // Find the beginnings of the pages that contain the first and last // bytes to be synced. size_t p1 = TruncateToPageBoundary(last_sync_ - base_); size_t p2 = TruncateToPageBoundary(dst_ - base_ - 1); last_sync_ = dst_; if (msync(base_ + p1, p2 - p1 + page_size_, MS_SYNC) < 0) { s = Status::IOError(filename_, strerror(errno)); } } return s; } }; static int LockOrUnlock(int fd, bool lock) { errno = 0; struct flock f; memset(&f, 0, sizeof(f)); f.l_type = (lock ? F_WRLCK : F_UNLCK); f.l_whence = SEEK_SET; f.l_start = 0; f.l_len = 0; // Lock/unlock entire file return fcntl(fd, F_SETLK, &f); } class PosixFileLock : public FileLock { public: int fd_; }; class PosixEnv : public Env { public: PosixEnv(); virtual ~PosixEnv() { fprintf(stderr, "Destroying Env::Default()\n"); exit(1); } virtual Status NewSequentialFile(const std::string& fname, SequentialFile** result) { FILE* f = fopen(fname.c_str(), "r"); if (f == NULL) { *result = NULL; return Status::IOError(fname, strerror(errno)); } else { *result = new PosixSequentialFile(fname, f); return Status::OK(); } } virtual Status NewRandomAccessFile(const std::string& fname, RandomAccessFile** result) { int fd = open(fname.c_str(), O_RDONLY); if (fd < 0) { *result = NULL; return Status::IOError(fname, strerror(errno)); } *result = new PosixRandomAccessFile(fname, fd); return Status::OK(); } virtual Status NewWritableFile(const std::string& fname, WritableFile** result) { Status s; const int fd = open(fname.c_str(), O_CREAT | O_RDWR | O_TRUNC, 0644); if (fd < 0) { *result = NULL; s = Status::IOError(fname, strerror(errno)); } else { *result = new PosixMmapFile(fname, fd, page_size_); } return s; } virtual bool FileExists(const std::string& fname) { return access(fname.c_str(), F_OK) == 0; } virtual Status GetChildren(const std::string& dir, std::vector* result) { result->clear(); DIR* d = opendir(dir.c_str()); if (d == NULL) { return Status::IOError(dir, strerror(errno)); } struct dirent* entry; while ((entry = readdir(d)) != NULL) { result->push_back(entry->d_name); } closedir(d); return Status::OK(); } virtual Status DeleteFile(const std::string& fname) { Status result; if (unlink(fname.c_str()) != 0) { result = Status::IOError(fname, strerror(errno)); } return result; }; virtual Status CreateDir(const std::string& name) { Status result; if (mkdir(name.c_str(), 0755) != 0) { result = Status::IOError(name, strerror(errno)); } return result; }; virtual Status DeleteDir(const std::string& name) { Status result; if (rmdir(name.c_str()) != 0) { result = Status::IOError(name, strerror(errno)); } return result; }; virtual Status GetFileSize(const std::string& fname, uint64_t* size) { Status s; struct stat sbuf; if (stat(fname.c_str(), &sbuf) != 0) { *size = 0; s = Status::IOError(fname, strerror(errno)); } else { *size = sbuf.st_size; } return s; } virtual Status RenameFile(const std::string& src, const std::string& target) { Status result; if (rename(src.c_str(), target.c_str()) != 0) { result = Status::IOError(src, strerror(errno)); } return result; } virtual Status LockFile(const std::string& fname, FileLock** lock) { *lock = NULL; Status result; int fd = open(fname.c_str(), O_RDWR | O_CREAT, 0644); if (fd < 0) { result = Status::IOError(fname, strerror(errno)); } else if (LockOrUnlock(fd, true) == -1) { result = Status::IOError("lock " + fname, strerror(errno)); close(fd); } else { PosixFileLock* my_lock = new PosixFileLock; my_lock->fd_ = fd; *lock = my_lock; } return result; } virtual Status UnlockFile(FileLock* lock) { PosixFileLock* my_lock = reinterpret_cast(lock); Status result; if (LockOrUnlock(my_lock->fd_, false) == -1) { result = Status::IOError(strerror(errno)); } close(my_lock->fd_); delete my_lock; return result; } virtual void Schedule(void (*function)(void*), void* arg); virtual void StartThread(void (*function)(void* arg), void* arg); virtual Status GetTestDirectory(std::string* result) { const char* env = getenv("TEST_TMPDIR"); if (env && env[0] != '\0') { *result = env; } else { char buf[100]; snprintf(buf, sizeof(buf), "/tmp/leveldbtest-%d", int(geteuid())); *result = buf; } // Directory may already exist CreateDir(*result); return Status::OK(); } virtual void Logv(WritableFile* info_log, const char* format, va_list ap) { pthread_t tid = pthread_self(); uint64_t thread_id = 0; memcpy(&thread_id, &tid, std::min(sizeof(thread_id), sizeof(tid))); // We try twice: the first time with a fixed-size stack allocated buffer, // and the second time with a much larger dynamically allocated buffer. char buffer[500]; for (int iter = 0; iter < 2; iter++) { char* base; int bufsize; if (iter == 0) { bufsize = sizeof(buffer); base = buffer; } else { bufsize = 30000; base = new char[bufsize]; } char* p = base; char* limit = base + bufsize; struct timeval now_tv; gettimeofday(&now_tv, NULL); const time_t seconds = now_tv.tv_sec; struct tm t; localtime_r(&seconds, &t); p += snprintf(p, limit - p, "%04d/%02d/%02d-%02d:%02d:%02d.%06d %llx ", t.tm_year + 1900, t.tm_mon + 1, t.tm_mday, t.tm_hour, t.tm_min, t.tm_sec, static_cast(now_tv.tv_usec), static_cast(thread_id)); // Print the message if (p < limit) { va_list backup_ap; va_copy(backup_ap, ap); p += vsnprintf(p, limit - p, format, backup_ap); va_end(backup_ap); } // Truncate to available space if necessary if (p >= limit) { if (iter == 0) { continue; // Try again with larger buffer } else { p = limit - 1; } } // Add newline if necessary if (p == base || p[-1] != '\n') { *p++ = '\n'; } assert(p <= limit); info_log->Append(Slice(base, p - base)); info_log->Flush(); if (base != buffer) { delete[] base; } break; } } virtual uint64_t NowMicros() { struct timeval tv; gettimeofday(&tv, NULL); return static_cast(tv.tv_sec) * 1000000 + tv.tv_usec; } virtual void SleepForMicroseconds(int micros) { usleep(micros); } private: void PthreadCall(const char* label, int result) { if (result != 0) { fprintf(stderr, "pthread %s: %s\n", label, strerror(result)); exit(1); } } // BGThread() is the body of the background thread void BGThread(); static void* BGThreadWrapper(void* arg) { reinterpret_cast(arg)->BGThread(); return NULL; } size_t page_size_; pthread_mutex_t mu_; pthread_cond_t bgsignal_; pthread_t bgthread_; bool started_bgthread_; // Entry per Schedule() call struct BGItem { void* arg; void (*function)(void*); }; typedef std::deque BGQueue; BGQueue queue_; }; PosixEnv::PosixEnv() : page_size_(getpagesize()), started_bgthread_(false) { PthreadCall("mutex_init", pthread_mutex_init(&mu_, NULL)); PthreadCall("cvar_init", pthread_cond_init(&bgsignal_, NULL)); } void PosixEnv::Schedule(void (*function)(void*), void* arg) { PthreadCall("lock", pthread_mutex_lock(&mu_)); // Start background thread if necessary if (!started_bgthread_) { started_bgthread_ = true; PthreadCall( "create thread", pthread_create(&bgthread_, NULL, &PosixEnv::BGThreadWrapper, this)); } // If the queue is currently empty, the background thread may currently be // waiting. if (queue_.empty()) { PthreadCall("signal", pthread_cond_signal(&bgsignal_)); } // Add to priority queue queue_.push_back(BGItem()); queue_.back().function = function; queue_.back().arg = arg; PthreadCall("unlock", pthread_mutex_unlock(&mu_)); } void PosixEnv::BGThread() { while (true) { // Wait until there is an item that is ready to run PthreadCall("lock", pthread_mutex_lock(&mu_)); while (queue_.empty()) { PthreadCall("wait", pthread_cond_wait(&bgsignal_, &mu_)); } void (*function)(void*) = queue_.front().function; void* arg = queue_.front().arg; queue_.pop_front(); PthreadCall("unlock", pthread_mutex_unlock(&mu_)); (*function)(arg); } } namespace { struct StartThreadState { void (*user_function)(void*); void* arg; }; } static void* StartThreadWrapper(void* arg) { StartThreadState* state = reinterpret_cast(arg); state->user_function(state->arg); delete state; return NULL; } void PosixEnv::StartThread(void (*function)(void* arg), void* arg) { pthread_t t; StartThreadState* state = new StartThreadState; state->user_function = function; state->arg = arg; PthreadCall("start thread", pthread_create(&t, NULL, &StartThreadWrapper, state)); } } static pthread_once_t once = PTHREAD_ONCE_INIT; static Env* default_env; static void InitDefaultEnv() { default_env = new PosixEnv; } Env* Env::Default() { pthread_once(&once, InitDefaultEnv); return default_env; } }