summaryrefslogtreecommitdiff
path: root/benchmarks/db_bench_sqlite3.cc
blob: d3fe3399da1b9756384e754cda0d86f867e22816 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.

#include <sqlite3.h>
#include <stdio.h>
#include <stdlib.h>

#include "util/histogram.h"
#include "util/random.h"
#include "util/testutil.h"

// Comma-separated list of operations to run in the specified order
//   Actual benchmarks:
//
//   fillseq       -- write N values in sequential key order in async mode
//   fillseqsync   -- write N/100 values in sequential key order in sync mode
//   fillseqbatch  -- batch write N values in sequential key order in async mode
//   fillrandom    -- write N values in random key order in async mode
//   fillrandsync  -- write N/100 values in random key order in sync mode
//   fillrandbatch -- batch write N values in sequential key order in async mode
//   overwrite     -- overwrite N values in random key order in async mode
//   fillrand100K  -- write N/1000 100K values in random order in async mode
//   fillseq100K   -- write N/1000 100K values in sequential order in async mode
//   readseq       -- read N times sequentially
//   readrandom    -- read N times in random order
//   readrand100K  -- read N/1000 100K values in sequential order in async mode
static const char* FLAGS_benchmarks =
    "fillseq,"
    "fillseqsync,"
    "fillseqbatch,"
    "fillrandom,"
    "fillrandsync,"
    "fillrandbatch,"
    "overwrite,"
    "overwritebatch,"
    "readrandom,"
    "readseq,"
    "fillrand100K,"
    "fillseq100K,"
    "readseq,"
    "readrand100K,";

// Number of key/values to place in database
static int FLAGS_num = 1000000;

// Number of read operations to do.  If negative, do FLAGS_num reads.
static int FLAGS_reads = -1;

// Size of each value
static int FLAGS_value_size = 100;

// Print histogram of operation timings
static bool FLAGS_histogram = false;

// Arrange to generate values that shrink to this fraction of
// their original size after compression
static double FLAGS_compression_ratio = 0.5;

// Page size. Default 1 KB.
static int FLAGS_page_size = 1024;

// Number of pages.
// Default cache size = FLAGS_page_size * FLAGS_num_pages = 4 MB.
static int FLAGS_num_pages = 4096;

// If true, do not destroy the existing database.  If you set this
// flag and also specify a benchmark that wants a fresh database, that
// benchmark will fail.
static bool FLAGS_use_existing_db = false;

// If true, the SQLite table has ROWIDs.
static bool FLAGS_use_rowids = false;

// If true, we allow batch writes to occur
static bool FLAGS_transaction = true;

// If true, we enable Write-Ahead Logging
static bool FLAGS_WAL_enabled = true;

// Use the db with the following name.
static const char* FLAGS_db = nullptr;

inline static void ExecErrorCheck(int status, char* err_msg) {
  if (status != SQLITE_OK) {
    fprintf(stderr, "SQL error: %s\n", err_msg);
    sqlite3_free(err_msg);
    exit(1);
  }
}

inline static void StepErrorCheck(int status) {
  if (status != SQLITE_DONE) {
    fprintf(stderr, "SQL step error: status = %d\n", status);
    exit(1);
  }
}

inline static void ErrorCheck(int status) {
  if (status != SQLITE_OK) {
    fprintf(stderr, "sqlite3 error: status = %d\n", status);
    exit(1);
  }
}

inline static void WalCheckpoint(sqlite3* db_) {
  // Flush all writes to disk
  if (FLAGS_WAL_enabled) {
    sqlite3_wal_checkpoint_v2(db_, nullptr, SQLITE_CHECKPOINT_FULL, nullptr,
                              nullptr);
  }
}

namespace leveldb {

// Helper for quickly generating random data.
namespace {
class RandomGenerator {
 private:
  std::string data_;
  int pos_;

 public:
  RandomGenerator() {
    // We use a limited amount of data over and over again and ensure
    // that it is larger than the compression window (32KB), and also
    // large enough to serve all typical value sizes we want to write.
    Random rnd(301);
    std::string piece;
    while (data_.size() < 1048576) {
      // Add a short fragment that is as compressible as specified
      // by FLAGS_compression_ratio.
      test::CompressibleString(&rnd, FLAGS_compression_ratio, 100, &piece);
      data_.append(piece);
    }
    pos_ = 0;
  }

  Slice Generate(int len) {
    if (pos_ + len > data_.size()) {
      pos_ = 0;
      assert(len < data_.size());
    }
    pos_ += len;
    return Slice(data_.data() + pos_ - len, len);
  }
};

static Slice TrimSpace(Slice s) {
  int start = 0;
  while (start < s.size() && isspace(s[start])) {
    start++;
  }
  int limit = s.size();
  while (limit > start && isspace(s[limit - 1])) {
    limit--;
  }
  return Slice(s.data() + start, limit - start);
}

}  // namespace

class Benchmark {
 private:
  sqlite3* db_;
  int db_num_;
  int num_;
  int reads_;
  double start_;
  double last_op_finish_;
  int64_t bytes_;
  std::string message_;
  Histogram hist_;
  RandomGenerator gen_;
  Random rand_;

  // State kept for progress messages
  int done_;
  int next_report_;  // When to report next

  void PrintHeader() {
    const int kKeySize = 16;
    PrintEnvironment();
    fprintf(stdout, "Keys:       %d bytes each\n", kKeySize);
    fprintf(stdout, "Values:     %d bytes each\n", FLAGS_value_size);
    fprintf(stdout, "Entries:    %d\n", num_);
    fprintf(stdout, "RawSize:    %.1f MB (estimated)\n",
            ((static_cast<int64_t>(kKeySize + FLAGS_value_size) * num_) /
             1048576.0));
    PrintWarnings();
    fprintf(stdout, "------------------------------------------------\n");
  }

  void PrintWarnings() {
#if defined(__GNUC__) && !defined(__OPTIMIZE__)
    fprintf(
        stdout,
        "WARNING: Optimization is disabled: benchmarks unnecessarily slow\n");
#endif
#ifndef NDEBUG
    fprintf(stdout,
            "WARNING: Assertions are enabled; benchmarks unnecessarily slow\n");
#endif
  }

  void PrintEnvironment() {
    fprintf(stderr, "SQLite:     version %s\n", SQLITE_VERSION);

#if defined(__linux)
    time_t now = time(nullptr);
    fprintf(stderr, "Date:       %s", ctime(&now));  // ctime() adds newline

    FILE* cpuinfo = fopen("/proc/cpuinfo", "r");
    if (cpuinfo != nullptr) {
      char line[1000];
      int num_cpus = 0;
      std::string cpu_type;
      std::string cache_size;
      while (fgets(line, sizeof(line), cpuinfo) != nullptr) {
        const char* sep = strchr(line, ':');
        if (sep == nullptr) {
          continue;
        }
        Slice key = TrimSpace(Slice(line, sep - 1 - line));
        Slice val = TrimSpace(Slice(sep + 1));
        if (key == "model name") {
          ++num_cpus;
          cpu_type = val.ToString();
        } else if (key == "cache size") {
          cache_size = val.ToString();
        }
      }
      fclose(cpuinfo);
      fprintf(stderr, "CPU:        %d * %s\n", num_cpus, cpu_type.c_str());
      fprintf(stderr, "CPUCache:   %s\n", cache_size.c_str());
    }
#endif
  }

  void Start() {
    start_ = Env::Default()->NowMicros() * 1e-6;
    bytes_ = 0;
    message_.clear();
    last_op_finish_ = start_;
    hist_.Clear();
    done_ = 0;
    next_report_ = 100;
  }

  void FinishedSingleOp() {
    if (FLAGS_histogram) {
      double now = Env::Default()->NowMicros() * 1e-6;
      double micros = (now - last_op_finish_) * 1e6;
      hist_.Add(micros);
      if (micros > 20000) {
        fprintf(stderr, "long op: %.1f micros%30s\r", micros, "");
        fflush(stderr);
      }
      last_op_finish_ = now;
    }

    done_++;
    if (done_ >= next_report_) {
      if (next_report_ < 1000)
        next_report_ += 100;
      else if (next_report_ < 5000)
        next_report_ += 500;
      else if (next_report_ < 10000)
        next_report_ += 1000;
      else if (next_report_ < 50000)
        next_report_ += 5000;
      else if (next_report_ < 100000)
        next_report_ += 10000;
      else if (next_report_ < 500000)
        next_report_ += 50000;
      else
        next_report_ += 100000;
      fprintf(stderr, "... finished %d ops%30s\r", done_, "");
      fflush(stderr);
    }
  }

  void Stop(const Slice& name) {
    double finish = Env::Default()->NowMicros() * 1e-6;

    // Pretend at least one op was done in case we are running a benchmark
    // that does not call FinishedSingleOp().
    if (done_ < 1) done_ = 1;

    if (bytes_ > 0) {
      char rate[100];
      snprintf(rate, sizeof(rate), "%6.1f MB/s",
               (bytes_ / 1048576.0) / (finish - start_));
      if (!message_.empty()) {
        message_ = std::string(rate) + " " + message_;
      } else {
        message_ = rate;
      }
    }

    fprintf(stdout, "%-12s : %11.3f micros/op;%s%s\n", name.ToString().c_str(),
            (finish - start_) * 1e6 / done_, (message_.empty() ? "" : " "),
            message_.c_str());
    if (FLAGS_histogram) {
      fprintf(stdout, "Microseconds per op:\n%s\n", hist_.ToString().c_str());
    }
    fflush(stdout);
  }

 public:
  enum Order { SEQUENTIAL, RANDOM };
  enum DBState { FRESH, EXISTING };

  Benchmark()
      : db_(nullptr),
        db_num_(0),
        num_(FLAGS_num),
        reads_(FLAGS_reads < 0 ? FLAGS_num : FLAGS_reads),
        bytes_(0),
        rand_(301) {
    std::vector<std::string> files;
    std::string test_dir;
    Env::Default()->GetTestDirectory(&test_dir);
    Env::Default()->GetChildren(test_dir, &files);
    if (!FLAGS_use_existing_db) {
      for (int i = 0; i < files.size(); i++) {
        if (Slice(files[i]).starts_with("dbbench_sqlite3")) {
          std::string file_name(test_dir);
          file_name += "/";
          file_name += files[i];
          Env::Default()->DeleteFile(file_name.c_str());
        }
      }
    }
  }

  ~Benchmark() {
    int status = sqlite3_close(db_);
    ErrorCheck(status);
  }

  void Run() {
    PrintHeader();
    Open();

    const char* benchmarks = FLAGS_benchmarks;
    while (benchmarks != nullptr) {
      const char* sep = strchr(benchmarks, ',');
      Slice name;
      if (sep == nullptr) {
        name = benchmarks;
        benchmarks = nullptr;
      } else {
        name = Slice(benchmarks, sep - benchmarks);
        benchmarks = sep + 1;
      }

      bytes_ = 0;
      Start();

      bool known = true;
      bool write_sync = false;
      if (name == Slice("fillseq")) {
        Write(write_sync, SEQUENTIAL, FRESH, num_, FLAGS_value_size, 1);
        WalCheckpoint(db_);
      } else if (name == Slice("fillseqbatch")) {
        Write(write_sync, SEQUENTIAL, FRESH, num_, FLAGS_value_size, 1000);
        WalCheckpoint(db_);
      } else if (name == Slice("fillrandom")) {
        Write(write_sync, RANDOM, FRESH, num_, FLAGS_value_size, 1);
        WalCheckpoint(db_);
      } else if (name == Slice("fillrandbatch")) {
        Write(write_sync, RANDOM, FRESH, num_, FLAGS_value_size, 1000);
        WalCheckpoint(db_);
      } else if (name == Slice("overwrite")) {
        Write(write_sync, RANDOM, EXISTING, num_, FLAGS_value_size, 1);
        WalCheckpoint(db_);
      } else if (name == Slice("overwritebatch")) {
        Write(write_sync, RANDOM, EXISTING, num_, FLAGS_value_size, 1000);
        WalCheckpoint(db_);
      } else if (name == Slice("fillrandsync")) {
        write_sync = true;
        Write(write_sync, RANDOM, FRESH, num_ / 100, FLAGS_value_size, 1);
        WalCheckpoint(db_);
      } else if (name == Slice("fillseqsync")) {
        write_sync = true;
        Write(write_sync, SEQUENTIAL, FRESH, num_ / 100, FLAGS_value_size, 1);
        WalCheckpoint(db_);
      } else if (name == Slice("fillrand100K")) {
        Write(write_sync, RANDOM, FRESH, num_ / 1000, 100 * 1000, 1);
        WalCheckpoint(db_);
      } else if (name == Slice("fillseq100K")) {
        Write(write_sync, SEQUENTIAL, FRESH, num_ / 1000, 100 * 1000, 1);
        WalCheckpoint(db_);
      } else if (name == Slice("readseq")) {
        ReadSequential();
      } else if (name == Slice("readrandom")) {
        Read(RANDOM, 1);
      } else if (name == Slice("readrand100K")) {
        int n = reads_;
        reads_ /= 1000;
        Read(RANDOM, 1);
        reads_ = n;
      } else {
        known = false;
        if (name != Slice()) {  // No error message for empty name
          fprintf(stderr, "unknown benchmark '%s'\n", name.ToString().c_str());
        }
      }
      if (known) {
        Stop(name);
      }
    }
  }

  void Open() {
    assert(db_ == nullptr);

    int status;
    char file_name[100];
    char* err_msg = nullptr;
    db_num_++;

    // Open database
    std::string tmp_dir;
    Env::Default()->GetTestDirectory(&tmp_dir);
    snprintf(file_name, sizeof(file_name), "%s/dbbench_sqlite3-%d.db",
             tmp_dir.c_str(), db_num_);
    status = sqlite3_open(file_name, &db_);
    if (status) {
      fprintf(stderr, "open error: %s\n", sqlite3_errmsg(db_));
      exit(1);
    }

    // Change SQLite cache size
    char cache_size[100];
    snprintf(cache_size, sizeof(cache_size), "PRAGMA cache_size = %d",
             FLAGS_num_pages);
    status = sqlite3_exec(db_, cache_size, nullptr, nullptr, &err_msg);
    ExecErrorCheck(status, err_msg);

    // FLAGS_page_size is defaulted to 1024
    if (FLAGS_page_size != 1024) {
      char page_size[100];
      snprintf(page_size, sizeof(page_size), "PRAGMA page_size = %d",
               FLAGS_page_size);
      status = sqlite3_exec(db_, page_size, nullptr, nullptr, &err_msg);
      ExecErrorCheck(status, err_msg);
    }

    // Change journal mode to WAL if WAL enabled flag is on
    if (FLAGS_WAL_enabled) {
      std::string WAL_stmt = "PRAGMA journal_mode = WAL";

      // LevelDB's default cache size is a combined 4 MB
      std::string WAL_checkpoint = "PRAGMA wal_autocheckpoint = 4096";
      status = sqlite3_exec(db_, WAL_stmt.c_str(), nullptr, nullptr, &err_msg);
      ExecErrorCheck(status, err_msg);
      status =
          sqlite3_exec(db_, WAL_checkpoint.c_str(), nullptr, nullptr, &err_msg);
      ExecErrorCheck(status, err_msg);
    }

    // Change locking mode to exclusive and create tables/index for database
    std::string locking_stmt = "PRAGMA locking_mode = EXCLUSIVE";
    std::string create_stmt =
        "CREATE TABLE test (key blob, value blob, PRIMARY KEY(key))";
    if (!FLAGS_use_rowids) create_stmt += " WITHOUT ROWID";
    std::string stmt_array[] = {locking_stmt, create_stmt};
    int stmt_array_length = sizeof(stmt_array) / sizeof(std::string);
    for (int i = 0; i < stmt_array_length; i++) {
      status =
          sqlite3_exec(db_, stmt_array[i].c_str(), nullptr, nullptr, &err_msg);
      ExecErrorCheck(status, err_msg);
    }
  }

  void Write(bool write_sync, Order order, DBState state, int num_entries,
             int value_size, int entries_per_batch) {
    // Create new database if state == FRESH
    if (state == FRESH) {
      if (FLAGS_use_existing_db) {
        message_ = "skipping (--use_existing_db is true)";
        return;
      }
      sqlite3_close(db_);
      db_ = nullptr;
      Open();
      Start();
    }

    if (num_entries != num_) {
      char msg[100];
      snprintf(msg, sizeof(msg), "(%d ops)", num_entries);
      message_ = msg;
    }

    char* err_msg = nullptr;
    int status;

    sqlite3_stmt *replace_stmt, *begin_trans_stmt, *end_trans_stmt;
    std::string replace_str = "REPLACE INTO test (key, value) VALUES (?, ?)";
    std::string begin_trans_str = "BEGIN TRANSACTION;";
    std::string end_trans_str = "END TRANSACTION;";

    // Check for synchronous flag in options
    std::string sync_stmt =
        (write_sync) ? "PRAGMA synchronous = FULL" : "PRAGMA synchronous = OFF";
    status = sqlite3_exec(db_, sync_stmt.c_str(), nullptr, nullptr, &err_msg);
    ExecErrorCheck(status, err_msg);

    // Preparing sqlite3 statements
    status = sqlite3_prepare_v2(db_, replace_str.c_str(), -1, &replace_stmt,
                                nullptr);
    ErrorCheck(status);
    status = sqlite3_prepare_v2(db_, begin_trans_str.c_str(), -1,
                                &begin_trans_stmt, nullptr);
    ErrorCheck(status);
    status = sqlite3_prepare_v2(db_, end_trans_str.c_str(), -1, &end_trans_stmt,
                                nullptr);
    ErrorCheck(status);

    bool transaction = (entries_per_batch > 1);
    for (int i = 0; i < num_entries; i += entries_per_batch) {
      // Begin write transaction
      if (FLAGS_transaction && transaction) {
        status = sqlite3_step(begin_trans_stmt);
        StepErrorCheck(status);
        status = sqlite3_reset(begin_trans_stmt);
        ErrorCheck(status);
      }

      // Create and execute SQL statements
      for (int j = 0; j < entries_per_batch; j++) {
        const char* value = gen_.Generate(value_size).data();

        // Create values for key-value pair
        const int k =
            (order == SEQUENTIAL) ? i + j : (rand_.Next() % num_entries);
        char key[100];
        snprintf(key, sizeof(key), "%016d", k);

        // Bind KV values into replace_stmt
        status = sqlite3_bind_blob(replace_stmt, 1, key, 16, SQLITE_STATIC);
        ErrorCheck(status);
        status = sqlite3_bind_blob(replace_stmt, 2, value, value_size,
                                   SQLITE_STATIC);
        ErrorCheck(status);

        // Execute replace_stmt
        bytes_ += value_size + strlen(key);
        status = sqlite3_step(replace_stmt);
        StepErrorCheck(status);

        // Reset SQLite statement for another use
        status = sqlite3_clear_bindings(replace_stmt);
        ErrorCheck(status);
        status = sqlite3_reset(replace_stmt);
        ErrorCheck(status);

        FinishedSingleOp();
      }

      // End write transaction
      if (FLAGS_transaction && transaction) {
        status = sqlite3_step(end_trans_stmt);
        StepErrorCheck(status);
        status = sqlite3_reset(end_trans_stmt);
        ErrorCheck(status);
      }
    }

    status = sqlite3_finalize(replace_stmt);
    ErrorCheck(status);
    status = sqlite3_finalize(begin_trans_stmt);
    ErrorCheck(status);
    status = sqlite3_finalize(end_trans_stmt);
    ErrorCheck(status);
  }

  void Read(Order order, int entries_per_batch) {
    int status;
    sqlite3_stmt *read_stmt, *begin_trans_stmt, *end_trans_stmt;

    std::string read_str = "SELECT * FROM test WHERE key = ?";
    std::string begin_trans_str = "BEGIN TRANSACTION;";
    std::string end_trans_str = "END TRANSACTION;";

    // Preparing sqlite3 statements
    status = sqlite3_prepare_v2(db_, begin_trans_str.c_str(), -1,
                                &begin_trans_stmt, nullptr);
    ErrorCheck(status);
    status = sqlite3_prepare_v2(db_, end_trans_str.c_str(), -1, &end_trans_stmt,
                                nullptr);
    ErrorCheck(status);
    status = sqlite3_prepare_v2(db_, read_str.c_str(), -1, &read_stmt, nullptr);
    ErrorCheck(status);

    bool transaction = (entries_per_batch > 1);
    for (int i = 0; i < reads_; i += entries_per_batch) {
      // Begin read transaction
      if (FLAGS_transaction && transaction) {
        status = sqlite3_step(begin_trans_stmt);
        StepErrorCheck(status);
        status = sqlite3_reset(begin_trans_stmt);
        ErrorCheck(status);
      }

      // Create and execute SQL statements
      for (int j = 0; j < entries_per_batch; j++) {
        // Create key value
        char key[100];
        int k = (order == SEQUENTIAL) ? i + j : (rand_.Next() % reads_);
        snprintf(key, sizeof(key), "%016d", k);

        // Bind key value into read_stmt
        status = sqlite3_bind_blob(read_stmt, 1, key, 16, SQLITE_STATIC);
        ErrorCheck(status);

        // Execute read statement
        while ((status = sqlite3_step(read_stmt)) == SQLITE_ROW) {
        }
        StepErrorCheck(status);

        // Reset SQLite statement for another use
        status = sqlite3_clear_bindings(read_stmt);
        ErrorCheck(status);
        status = sqlite3_reset(read_stmt);
        ErrorCheck(status);
        FinishedSingleOp();
      }

      // End read transaction
      if (FLAGS_transaction && transaction) {
        status = sqlite3_step(end_trans_stmt);
        StepErrorCheck(status);
        status = sqlite3_reset(end_trans_stmt);
        ErrorCheck(status);
      }
    }

    status = sqlite3_finalize(read_stmt);
    ErrorCheck(status);
    status = sqlite3_finalize(begin_trans_stmt);
    ErrorCheck(status);
    status = sqlite3_finalize(end_trans_stmt);
    ErrorCheck(status);
  }

  void ReadSequential() {
    int status;
    sqlite3_stmt* pStmt;
    std::string read_str = "SELECT * FROM test ORDER BY key";

    status = sqlite3_prepare_v2(db_, read_str.c_str(), -1, &pStmt, nullptr);
    ErrorCheck(status);
    for (int i = 0; i < reads_ && SQLITE_ROW == sqlite3_step(pStmt); i++) {
      bytes_ += sqlite3_column_bytes(pStmt, 1) + sqlite3_column_bytes(pStmt, 2);
      FinishedSingleOp();
    }

    status = sqlite3_finalize(pStmt);
    ErrorCheck(status);
  }
};

}  // namespace leveldb

int main(int argc, char** argv) {
  std::string default_db_path;
  for (int i = 1; i < argc; i++) {
    double d;
    int n;
    char junk;
    if (leveldb::Slice(argv[i]).starts_with("--benchmarks=")) {
      FLAGS_benchmarks = argv[i] + strlen("--benchmarks=");
    } else if (sscanf(argv[i], "--histogram=%d%c", &n, &junk) == 1 &&
               (n == 0 || n == 1)) {
      FLAGS_histogram = n;
    } else if (sscanf(argv[i], "--compression_ratio=%lf%c", &d, &junk) == 1) {
      FLAGS_compression_ratio = d;
    } else if (sscanf(argv[i], "--use_existing_db=%d%c", &n, &junk) == 1 &&
               (n == 0 || n == 1)) {
      FLAGS_use_existing_db = n;
    } else if (sscanf(argv[i], "--use_rowids=%d%c", &n, &junk) == 1 &&
               (n == 0 || n == 1)) {
      FLAGS_use_rowids = n;
    } else if (sscanf(argv[i], "--num=%d%c", &n, &junk) == 1) {
      FLAGS_num = n;
    } else if (sscanf(argv[i], "--reads=%d%c", &n, &junk) == 1) {
      FLAGS_reads = n;
    } else if (sscanf(argv[i], "--value_size=%d%c", &n, &junk) == 1) {
      FLAGS_value_size = n;
    } else if (leveldb::Slice(argv[i]) == leveldb::Slice("--no_transaction")) {
      FLAGS_transaction = false;
    } else if (sscanf(argv[i], "--page_size=%d%c", &n, &junk) == 1) {
      FLAGS_page_size = n;
    } else if (sscanf(argv[i], "--num_pages=%d%c", &n, &junk) == 1) {
      FLAGS_num_pages = n;
    } else if (sscanf(argv[i], "--WAL_enabled=%d%c", &n, &junk) == 1 &&
               (n == 0 || n == 1)) {
      FLAGS_WAL_enabled = n;
    } else if (strncmp(argv[i], "--db=", 5) == 0) {
      FLAGS_db = argv[i] + 5;
    } else {
      fprintf(stderr, "Invalid flag '%s'\n", argv[i]);
      exit(1);
    }
  }

  // Choose a location for the test database if none given with --db=<path>
  if (FLAGS_db == nullptr) {
    leveldb::Env::Default()->GetTestDirectory(&default_db_path);
    default_db_path += "/dbbench";
    FLAGS_db = default_db_path.c_str();
  }

  leveldb::Benchmark benchmark;
  benchmark.Run();
  return 0;
}