summaryrefslogtreecommitdiff
path: root/db/autocompact_test.cc
blob: d20a2362c30c49d9cc2b1e2f65a2f829905eb3f8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
// Copyright (c) 2013 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.

#include "leveldb/db.h"
#include "db/db_impl.h"
#include "leveldb/cache.h"
#include "util/testharness.h"
#include "util/testutil.h"

namespace leveldb {

class AutoCompactTest {
 public:
  std::string dbname_;
  Cache* tiny_cache_;
  Options options_;
  DB* db_;

  AutoCompactTest() {
    dbname_ = test::TmpDir() + "/autocompact_test";
    tiny_cache_ = NewLRUCache(100);
    options_.block_cache = tiny_cache_;
    DestroyDB(dbname_, options_);
    options_.create_if_missing = true;
    options_.compression = kNoCompression;
    ASSERT_OK(DB::Open(options_, dbname_, &db_));
  }

  ~AutoCompactTest() {
    delete db_;
    DestroyDB(dbname_, Options());
    delete tiny_cache_;
  }

  std::string Key(int i) {
    char buf[100];
    snprintf(buf, sizeof(buf), "key%06d", i);
    return std::string(buf);
  }

  uint64_t Size(const Slice& start, const Slice& limit) {
    Range r(start, limit);
    uint64_t size;
    db_->GetApproximateSizes(&r, 1, &size);
    return size;
  }

  void DoReads(int n);
};

static const int kValueSize = 200 * 1024;
static const int kTotalSize = 100 * 1024 * 1024;
static const int kCount = kTotalSize / kValueSize;

// Read through the first n keys repeatedly and check that they get
// compacted (verified by checking the size of the key space).
void AutoCompactTest::DoReads(int n) {
  std::string value(kValueSize, 'x');
  DBImpl* dbi = reinterpret_cast<DBImpl*>(db_);

  // Fill database
  for (int i = 0; i < kCount; i++) {
    ASSERT_OK(db_->Put(WriteOptions(), Key(i), value));
  }
  ASSERT_OK(dbi->TEST_CompactMemTable());

  // Delete everything
  for (int i = 0; i < kCount; i++) {
    ASSERT_OK(db_->Delete(WriteOptions(), Key(i)));
  }
  ASSERT_OK(dbi->TEST_CompactMemTable());

  // Get initial measurement of the space we will be reading.
  const int64_t initial_size = Size(Key(0), Key(n));
  const int64_t initial_other_size = Size(Key(n), Key(kCount));

  // Read until size drops significantly.
  std::string limit_key = Key(n);
  for (int read = 0; true; read++) {
    ASSERT_LT(read, 100) << "Taking too long to compact";
    Iterator* iter = db_->NewIterator(ReadOptions());
    for (iter->SeekToFirst();
         iter->Valid() && iter->key().ToString() < limit_key;
         iter->Next()) {
      // Drop data
    }
    delete iter;
    // Wait a little bit to allow any triggered compactions to complete.
    Env::Default()->SleepForMicroseconds(1000000);
    uint64_t size = Size(Key(0), Key(n));
    fprintf(stderr, "iter %3d => %7.3f MB [other %7.3f MB]\n",
            read+1, size/1048576.0, Size(Key(n), Key(kCount))/1048576.0);
    if (size <= initial_size/10) {
      break;
    }
  }

  // Verify that the size of the key space not touched by the reads
  // is pretty much unchanged.
  const int64_t final_other_size = Size(Key(n), Key(kCount));
  ASSERT_LE(final_other_size, initial_other_size + 1048576);
  ASSERT_GE(final_other_size, initial_other_size/5 - 1048576);
}

TEST(AutoCompactTest, ReadAll) {
  DoReads(kCount);
}

TEST(AutoCompactTest, ReadHalf) {
  DoReads(kCount/2);
}

}  // namespace leveldb

int main(int argc, char** argv) {
  return leveldb::test::RunAllTests();
}