1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
|
package cap
import (
"bytes"
"encoding/binary"
"errors"
"io"
"os"
"syscall"
"unsafe"
)
// uapi/linux/xattr.h defined.
var (
xattrNameCaps, _ = syscall.BytePtrFromString("security.capability")
)
// uapi/linux/capability.h defined.
const (
VFS_CAP_REVISION_MASK = uint32(0xff000000)
VFS_CAP_FLAGS_MASK = ^VFS_CAP_REVISION_MASK
VFS_CAP_FLAGS_EFFECTIVE = uint32(1)
VFS_CAP_REVISION_1 = uint32(0x01000000)
VFS_CAP_REVISION_2 = uint32(0x02000000)
VFS_CAP_REVISION_3 = uint32(0x03000000)
)
// Data types stored in little-endian order.
type vfs_caps_1 struct {
MagicEtc uint32
Data [1]struct {
Permitted, Inheritable uint32
}
}
type vfs_caps_2 struct {
MagicEtc uint32
Data [2]struct {
Permitted, Inheritable uint32
}
}
type vfs_caps_3 struct {
MagicEtc uint32
Data [2]struct {
Permitted, Inheritable uint32
}
RootID uint32
}
// ErrBadSize indicates the the loaded file capability has
// an invalid number of bytes in it.
var (
ErrBadSize = errors.New("filecap bad size")
ErrBadMagic = errors.New("unsupported magic")
ErrBadPath = errors.New("file is not a regular executable")
)
// digestFileCap unpacks a file capability and returns it in a *Set
// form.
func digestFileCap(d []byte, sz int, err error) (*Set, error) {
if err != nil {
return nil, err
}
var raw1 vfs_caps_1
var raw2 vfs_caps_2
var raw3 vfs_caps_3
if sz < binary.Size(raw1) || sz > binary.Size(raw3) {
return nil, ErrBadSize
}
b := bytes.NewReader(d[:sz])
var magicEtc uint32
if err = binary.Read(b, binary.LittleEndian, &magicEtc); err != nil {
return nil, err
}
c := NewSet()
b.Seek(0, io.SeekStart)
switch magicEtc & VFS_CAP_REVISION_MASK {
case VFS_CAP_REVISION_1:
if err = binary.Read(b, binary.LittleEndian, &raw1); err != nil {
return nil, err
}
data := raw1.Data[0]
c.flat[0][Permitted] = data.Permitted
c.flat[0][Inheritable] = data.Inheritable
if raw1.MagicEtc&VFS_CAP_FLAGS_MASK == VFS_CAP_FLAGS_EFFECTIVE {
c.flat[0][Effective] = data.Inheritable | data.Permitted
}
case VFS_CAP_REVISION_2:
if err = binary.Read(b, binary.LittleEndian, &raw2); err != nil {
return nil, err
}
for i, data := range raw2.Data {
c.flat[i][Permitted] = data.Permitted
c.flat[i][Inheritable] = data.Inheritable
if raw2.MagicEtc&VFS_CAP_FLAGS_MASK == VFS_CAP_FLAGS_EFFECTIVE {
c.flat[i][Effective] = data.Inheritable | data.Permitted
}
}
case VFS_CAP_REVISION_3:
if err = binary.Read(b, binary.LittleEndian, &raw3); err != nil {
return nil, err
}
for i, data := range raw3.Data {
c.flat[i][Permitted] = data.Permitted
c.flat[i][Inheritable] = data.Inheritable
if raw3.MagicEtc&VFS_CAP_FLAGS_MASK == VFS_CAP_FLAGS_EFFECTIVE {
c.flat[i][Effective] = data.Inheritable | data.Permitted
}
}
c.nsRoot = int(raw3.RootID)
default:
return nil, ErrBadMagic
}
return c, nil
}
//go:uintptrescapes
// GetFd returns the file capabilities of an open (*os.File).Fd().
func GetFd(file *os.File) (*Set, error) {
var raw3 vfs_caps_3
d := make([]byte, binary.Size(raw3))
sz, _, oErr := multisc.r6(syscall.SYS_FGETXATTR, uintptr(file.Fd()), uintptr(unsafe.Pointer(xattrNameCaps)), uintptr(unsafe.Pointer(&d[0])), uintptr(len(d)), 0, 0)
var err error
if oErr != 0 {
err = oErr
}
return digestFileCap(d, int(sz), err)
}
//go:uintptrescapes
// GetFile returns the file capabilities of a named file.
func GetFile(path string) (*Set, error) {
p, err := syscall.BytePtrFromString(path)
if err != nil {
return nil, err
}
var raw3 vfs_caps_3
d := make([]byte, binary.Size(raw3))
sz, _, oErr := multisc.r6(syscall.SYS_GETXATTR, uintptr(unsafe.Pointer(p)), uintptr(unsafe.Pointer(xattrNameCaps)), uintptr(unsafe.Pointer(&d[0])), uintptr(len(d)), 0, 0)
if oErr != 0 {
err = oErr
}
return digestFileCap(d, int(sz), err)
}
// GetNSOwner returns the namespace owner UID of the capability Set.
func (c *Set) GetNSOwner() (int, error) {
if magic < kv3 {
return 0, ErrBadMagic
}
return c.nsRoot, nil
}
// packFileCap transforms a system capability into a VFS form. Because
// of the way Linux stores capabilities in the file extended
// attributes, the process is a little lossy with respect to effective
// bits.
func (c *Set) packFileCap() ([]byte, error) {
var magic uint32
switch words {
case 1:
if c.nsRoot != 0 {
return nil, ErrBadSet // nsRoot not supported for single DWORD caps.
}
magic = VFS_CAP_REVISION_1
case 2:
if c.nsRoot == 0 {
magic = VFS_CAP_REVISION_2
break
}
magic = VFS_CAP_REVISION_3
}
if magic == 0 {
return nil, ErrBadSize
}
eff := uint32(0)
for _, f := range c.flat {
eff |= (f[Permitted] | f[Inheritable]) & f[Effective]
}
if eff != 0 {
magic |= VFS_CAP_FLAGS_EFFECTIVE
}
b := new(bytes.Buffer)
binary.Write(b, binary.LittleEndian, magic)
for _, f := range c.flat {
binary.Write(b, binary.LittleEndian, f[Permitted])
binary.Write(b, binary.LittleEndian, f[Inheritable])
}
if c.nsRoot != 0 {
binary.Write(b, binary.LittleEndian, c.nsRoot)
}
return b.Bytes(), nil
}
//go:uintptrescapes
// SetFd attempts to set the file capabilities of an open
// (*os.File).Fd(). Note, Linux does not store the full Effective
// Value vector in the metadata for the file. Only a single Effective
// bit is stored. This single bit is non-zero if the Permitted vector
// have any overlapping bits with the Effective or Inheritable vector
// of c. This may seem suboptimal, but the reasoning behind it is
// sound. Namely, the purpose of the Effective bit it to support
// capabability unaware binaries that can work if they magically
// launch with only the needed bits raised (this bit is sometimes
// referred to simply as the 'legacy' bit). However, the preferred way
// a binary will actually manipulate its file-acquired capabilities is
// carefully and deliberately using this package, or libcap for C
// family code. This function can also be used to delete a file's
// capabilities, by calling with c = nil.
func (c *Set) SetFd(file *os.File) error {
if c == nil {
if _, _, err := multisc.r6(syscall.SYS_FREMOVEXATTR, uintptr(file.Fd()), uintptr(unsafe.Pointer(xattrNameCaps)), 0, 0, 0, 0); err != 0 {
return err
}
return nil
}
c.mu.Lock()
defer c.mu.Unlock()
d, err := c.packFileCap()
if err != nil {
return err
}
if _, _, err := multisc.r6(syscall.SYS_FSETXATTR, uintptr(file.Fd()), uintptr(unsafe.Pointer(xattrNameCaps)), uintptr(unsafe.Pointer(&d[0])), uintptr(len(d)), 0, 0); err != 0 {
return err
}
return nil
}
//go:uintptrescapes
// SetFile attempts to set the file capabilities of the specfied
// filename. See the comment for SetFd() for some non-obvious behavior
// of Linux for the Effective Value vector on the modified file. This
// function can also be used to delete a file's capabilities, by
// calling with c = nil.
func (c *Set) SetFile(path string) error {
fi, err := os.Stat(path)
if err != nil {
return err
}
mode := fi.Mode()
if mode&os.ModeType != 0 {
return ErrBadPath
}
if mode&os.FileMode(0111) == 0 {
return ErrBadPath
}
p, err := syscall.BytePtrFromString(path)
if err != nil {
return err
}
if c == nil {
if _, _, err := multisc.r6(syscall.SYS_REMOVEXATTR, uintptr(unsafe.Pointer(p)), uintptr(unsafe.Pointer(xattrNameCaps)), 0, 0, 0, 0); err != 0 {
return err
}
return nil
}
c.mu.Lock()
defer c.mu.Unlock()
d, err := c.packFileCap()
if err != nil {
return err
}
if _, _, err := multisc.r6(syscall.SYS_SETXATTR, uintptr(unsafe.Pointer(p)), uintptr(unsafe.Pointer(xattrNameCaps)), uintptr(unsafe.Pointer(&d[0])), uintptr(len(d)), 0, 0); err != 0 {
return err
}
return nil
}
// ExtMagic is the 32-bit (little endian) magic for an external
// capability set. It can be used to transmit capabilities in binary
// format in a Linux portable way. The format is:
// <ExtMagic><byte:length><length-bytes*3-of-cap-data>.
const ExtMagic = uint32(0x5101c290)
// Import imports a Set from a byte array where it has been stored in
// a portable (lossless) way.
func Import(d []byte) (*Set, error) {
b := bytes.NewBuffer(d)
var m uint32
if err := binary.Read(b, binary.LittleEndian, &m); err != nil {
return nil, ErrBadSize
} else if m != ExtMagic {
return nil, ErrBadMagic
}
var n byte
if err := binary.Read(b, binary.LittleEndian, &n); err != nil {
return nil, ErrBadSize
}
c := NewSet()
if int(n) > 4*words {
return nil, ErrBadSize
}
f := make([]byte, 3)
for i := 0; i < words; i++ {
for j := uint(0); n > 0 && j < 4; j++ {
n--
if x, err := b.Read(f); err != nil || x != 3 {
return nil, ErrBadSize
}
sh := 8 * j
c.flat[i][Effective] |= uint32(f[0]) << sh
c.flat[i][Permitted] |= uint32(f[1]) << sh
c.flat[i][Inheritable] |= uint32(f[2]) << sh
}
}
return c, nil
}
// Export exports a Set into a lossless byte array format where it is
// stored in a portable way. Note, any namespace owner in the Set
// content is not exported by this function.
func (c *Set) Export() ([]byte, error) {
if c == nil {
return nil, ErrBadSet
}
b := new(bytes.Buffer)
binary.Write(b, binary.LittleEndian, ExtMagic)
c.mu.Lock()
defer c.mu.Unlock()
var n = byte(0)
for i, f := range c.flat {
if u := f[Effective] | f[Permitted] | f[Inheritable]; u != 0 {
n = 4 * byte(i)
for ; u != 0; u >>= 8 {
n++
}
}
}
b.Write([]byte{n})
for _, f := range c.flat {
if n == 0 {
break
}
eff, per, inh := f[Effective], f[Permitted], f[Inheritable]
for i := 0; n > 0 && i < 4; i++ {
n--
b.Write([]byte{
byte(eff & 0xff),
byte(per & 0xff),
byte(inh & 0xff),
})
eff >>= 8
per >>= 8
inh >>= 8
}
}
return b.Bytes(), nil
}
|