/* ----------------------------------------------------------------------- sysv.S - Copyright (c) 1998, 2008, 2011 Red Hat, Inc. Copyright (c) 2011 Plausible Labs Cooperative, Inc. ARM Foreign Function Interface Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the ``Software''), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ----------------------------------------------------------------------- */ #ifdef __arm__ #define LIBFFI_ASM #include #include #include #include "internal.h" /* GCC 4.8 provides __ARM_ARCH; construct it otherwise. */ #ifndef __ARM_ARCH # if defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) \ || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) \ || defined(__ARM_ARCH_7EM__) # define __ARM_ARCH 7 # elif defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) \ || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) \ || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) \ || defined(__ARM_ARCH_6M__) # define __ARM_ARCH 6 # elif defined(__ARM_ARCH_5__) || defined(__ARM_ARCH_5T__) \ || defined(__ARM_ARCH_5E__) || defined(__ARM_ARCH_5TE__) \ || defined(__ARM_ARCH_5TEJ__) # define __ARM_ARCH 5 # else # define __ARM_ARCH 4 # endif #endif /* Conditionally compile unwinder directives. */ #ifdef __ARM_EABI__ # define UNWIND(...) __VA_ARGS__ #else # define UNWIND(...) #endif #if defined(HAVE_AS_CFI_PSEUDO_OP) && defined(__ARM_EABI__) .cfi_sections .debug_frame #endif #define CONCAT(a, b) CONCAT2(a, b) #define CONCAT2(a, b) a ## b #ifdef __USER_LABEL_PREFIX__ # define CNAME(X) CONCAT (__USER_LABEL_PREFIX__, X) #else # define CNAME(X) X #endif #ifdef __ELF__ # define SIZE(X) .size CNAME(X), . - CNAME(X) # define TYPE(X, Y) .type CNAME(X), Y #else # define SIZE(X) # define TYPE(X, Y) #endif #define ARM_FUNC_START_LOCAL(name) \ .align 3; \ TYPE(CNAME(name), %function); \ CNAME(name): #define ARM_FUNC_START(name) \ .globl CNAME(name); \ FFI_HIDDEN(CNAME(name)); \ ARM_FUNC_START_LOCAL(name) #define ARM_FUNC_END(name) \ SIZE(name) .text .syntax unified #if defined(_WIN32) /* Windows on ARM is thumb-only */ .thumb #else /* Keep the assembly in ARM mode in other cases, for simplicity * (to avoid interworking issues). */ #undef __thumb__ .arm #endif /* Aid in defining a jump table with 8 bytes between entries. */ #ifdef __thumb__ /* In thumb mode, instructions can be shorter than expected in arm mode, so * we need to align the start of each case. */ # define E(index) .align 3 #elif defined(__clang__) /* ??? The clang assembler doesn't handle .if with symbolic expressions. */ # define E(index) #else # define E(index) \ .if . - 0b - 8*index; \ .error "type table out of sync"; \ .endif #endif #ifndef __clang__ /* We require interworking on LDM, which implies ARMv5T, which implies the existance of BLX. */ .arch armv5t #endif /* Note that we use STC and LDC to encode VFP instructions, so that we do not need ".fpu vfp", nor get that added to the object file attributes. These will not be executed unless the FFI_VFP abi is used. */ @ r0: stack @ r1: frame @ r2: fn @ r3: vfp_used ARM_FUNC_START(ffi_call_VFP) UNWIND(.fnstart) cfi_startproc cmp r3, #3 @ load only d0 if possible ite le #ifdef __clang__ vldrle d0, [r0] vldmgt r0, {d0-d7} #else ldcle p11, cr0, [r0] @ vldrle d0, [r0] ldcgt p11, cr0, [r0], {16} @ vldmgt r0, {d0-d7} #endif add r0, r0, #64 @ discard the vfp register args /* FALLTHRU */ ARM_FUNC_END(ffi_call_VFP) ARM_FUNC_START(ffi_call_SYSV) stm r1, {fp, lr} mov fp, r1 @ This is a bit of a lie wrt the origin of the unwind info, but @ now we've got the usual frame pointer and two saved registers. UNWIND(.save {fp,lr}) UNWIND(.setfp fp, sp) cfi_def_cfa(fp, 8) cfi_rel_offset(fp, 0) cfi_rel_offset(lr, 4) mov sp, r0 @ install the stack pointer mov lr, r2 @ move the fn pointer out of the way ldr ip, [fp, #16] @ install the static chain ldmia sp!, {r0-r3} @ move first 4 parameters in registers. blx lr @ call fn @ Load r2 with the pointer to storage for the return value @ Load r3 with the return type code ldr r2, [fp, #8] ldr r3, [fp, #12] @ Deallocate the stack with the arguments. mov sp, fp cfi_def_cfa_register(sp) @ Store values stored in registers. #ifndef __thumb__ .align 3 add pc, pc, r3, lsl #3 nop #else adr ip, 0f add ip, ip, r3, lsl #3 mov pc, ip .align 3 #endif 0: E(ARM_TYPE_VFP_S) #ifdef __clang__ vstr s0, [r2] #else stc p10, cr0, [r2] @ vstr s0, [r2] #endif pop {fp,pc} E(ARM_TYPE_VFP_D) #ifdef __clang__ vstr d0, [r2] #else stc p11, cr0, [r2] @ vstr d0, [r2] #endif pop {fp,pc} E(ARM_TYPE_VFP_N) #ifdef __clang__ vstm r2, {d0-d3} #else stc p11, cr0, [r2], {8} @ vstm r2, {d0-d3} #endif pop {fp,pc} E(ARM_TYPE_INT64) str r1, [r2, #4] nop E(ARM_TYPE_INT) str r0, [r2] pop {fp,pc} E(ARM_TYPE_VOID) pop {fp,pc} nop E(ARM_TYPE_STRUCT) pop {fp,pc} cfi_endproc UNWIND(.fnend) ARM_FUNC_END(ffi_call_SYSV) #if FFI_CLOSURES /* int ffi_closure_inner_* (cif, fun, user_data, frame) */ ARM_FUNC_START(ffi_go_closure_SYSV) cfi_startproc stmdb sp!, {r0-r3} @ save argument regs cfi_adjust_cfa_offset(16) ldr r0, [ip, #4] @ load cif ldr r1, [ip, #8] @ load fun mov r2, ip @ load user_data b 0f cfi_endproc ARM_FUNC_END(ffi_go_closure_SYSV) ARM_FUNC_START(ffi_closure_SYSV) UNWIND(.fnstart) cfi_startproc #ifdef _WIN32 ldmfd sp!, {r0, ip} @ restore fp (r0 is used for stack alignment) #endif stmdb sp!, {r0-r3} @ save argument regs cfi_adjust_cfa_offset(16) #if FFI_EXEC_TRAMPOLINE_TABLE ldr ip, [ip] @ ip points to the config page, dereference to get the ffi_closure* #endif ldr r0, [ip, #FFI_TRAMPOLINE_CLOSURE_OFFSET] @ load cif ldr r1, [ip, #FFI_TRAMPOLINE_CLOSURE_OFFSET+4] @ load fun ldr r2, [ip, #FFI_TRAMPOLINE_CLOSURE_OFFSET+8] @ load user_data 0: add ip, sp, #16 @ compute entry sp sub sp, sp, #64+32 @ allocate frame cfi_adjust_cfa_offset(64+32) stmdb sp!, {ip,lr} /* Remember that EABI unwind info only applies at call sites. We need do nothing except note the save of the stack pointer and the link registers. */ UNWIND(.save {sp,lr}) cfi_adjust_cfa_offset(8) cfi_rel_offset(lr, 4) add r3, sp, #8 @ load frame bl CNAME(ffi_closure_inner_SYSV) @ Load values returned in registers. add r2, sp, #8+64 @ load result adr r3, CNAME(ffi_closure_ret) #ifndef __thumb__ add pc, r3, r0, lsl #3 #else add r3, r3, r0, lsl #3 mov pc, r3 #endif cfi_endproc UNWIND(.fnend) ARM_FUNC_END(ffi_closure_SYSV) ARM_FUNC_START(ffi_go_closure_VFP) cfi_startproc stmdb sp!, {r0-r3} @ save argument regs cfi_adjust_cfa_offset(16) ldr r0, [ip, #4] @ load cif ldr r1, [ip, #8] @ load fun mov r2, ip @ load user_data b 0f cfi_endproc ARM_FUNC_END(ffi_go_closure_VFP) ARM_FUNC_START(ffi_closure_VFP) UNWIND(.fnstart) cfi_startproc #ifdef _WIN32 ldmfd sp!, {r0, ip} @ restore fp (r0 is used for stack alignment) #endif stmdb sp!, {r0-r3} @ save argument regs cfi_adjust_cfa_offset(16) #if FFI_EXEC_TRAMPOLINE_TABLE ldr ip, [ip] @ ip points to the config page, dereference to get the ffi_closure* #endif ldr r0, [ip, #FFI_TRAMPOLINE_CLOSURE_OFFSET] @ load cif ldr r1, [ip, #FFI_TRAMPOLINE_CLOSURE_OFFSET+4] @ load fun ldr r2, [ip, #FFI_TRAMPOLINE_CLOSURE_OFFSET+8] @ load user_data 0: add ip, sp, #16 sub sp, sp, #64+32 @ allocate frame cfi_adjust_cfa_offset(64+32) #ifdef __clang__ vstm sp, {d0-d7} #else stc p11, cr0, [sp], {16} @ vstm sp, {d0-d7} #endif stmdb sp!, {ip,lr} /* See above. */ UNWIND(.save {sp,lr}) cfi_adjust_cfa_offset(8) cfi_rel_offset(lr, 4) add r3, sp, #8 @ load frame bl CNAME(ffi_closure_inner_VFP) @ Load values returned in registers. add r2, sp, #8+64 @ load result adr r3, CNAME(ffi_closure_ret) #ifndef __thumb__ add pc, r3, r0, lsl #3 #else add r3, r3, r0, lsl #3 mov pc, r3 #endif cfi_endproc UNWIND(.fnend) ARM_FUNC_END(ffi_closure_VFP) /* Load values returned in registers for both closure entry points. Note that we use LDM with SP in the register set. This is deprecated by ARM, but not yet unpredictable. */ ARM_FUNC_START_LOCAL(ffi_closure_ret) cfi_startproc cfi_rel_offset(sp, 0) cfi_rel_offset(lr, 4) 0: E(ARM_TYPE_VFP_S) #ifdef __clang__ vldr s0, [r2] #else ldc p10, cr0, [r2] @ vldr s0, [r2] #endif b call_epilogue E(ARM_TYPE_VFP_D) #ifdef __clang__ vldr d0, [r2] #else ldc p11, cr0, [r2] @ vldr d0, [r2] #endif b call_epilogue E(ARM_TYPE_VFP_N) #ifdef __clang__ vldm r2, {d0-d3} #else ldc p11, cr0, [r2], {8} @ vldm r2, {d0-d3} #endif b call_epilogue E(ARM_TYPE_INT64) ldr r1, [r2, #4] nop E(ARM_TYPE_INT) ldr r0, [r2] b call_epilogue E(ARM_TYPE_VOID) b call_epilogue nop E(ARM_TYPE_STRUCT) b call_epilogue call_epilogue: #ifndef __thumb__ ldm sp, {sp,pc} #else ldm sp, {ip,lr} mov sp, ip bx lr #endif cfi_endproc ARM_FUNC_END(ffi_closure_ret) #if defined(FFI_EXEC_STATIC_TRAMP) ARM_FUNC_START(ffi_closure_SYSV_alt) /* See the comments above trampoline_code_table. */ ldr ip, [sp, #4] /* Load closure in ip */ add sp, sp, 8 /* Restore the stack */ b CNAME(ffi_closure_SYSV) ARM_FUNC_END(ffi_closure_SYSV_alt) ARM_FUNC_START(ffi_closure_VFP_alt) /* See the comments above trampoline_code_table. */ ldr ip, [sp, #4] /* Load closure in ip */ add sp, sp, 8 /* Restore the stack */ b CNAME(ffi_closure_VFP) ARM_FUNC_END(ffi_closure_VFP_alt) /* * Below is the definition of the trampoline code table. Each element in * the code table is a trampoline. */ /* * The trampoline uses register ip (r12). It saves the original value of ip * on the stack. * * The trampoline has two parameters - target code to jump to and data for * the target code. The trampoline extracts the parameters from its parameter * block (see tramp_table_map()). The trampoline saves the data address on * the stack. Finally, it jumps to the target code. * * The target code can choose to: * * - restore the value of ip * - load the data address in a register * - restore the stack pointer to what it was when the trampoline was invoked. */ .align ARM_TRAMP_MAP_SHIFT ARM_FUNC_START(trampoline_code_table) .rept ARM_TRAMP_MAP_SIZE / ARM_TRAMP_SIZE sub sp, sp, #8 /* Make space on the stack */ str ip, [sp] /* Save ip on stack */ ldr ip, [pc, #4080] /* Copy data into ip */ str ip, [sp, #4] /* Save data on stack */ ldr pc, [pc, #4076] /* Copy code into PC */ .endr ARM_FUNC_END(trampoline_code_table) .align ARM_TRAMP_MAP_SHIFT #endif /* FFI_EXEC_STATIC_TRAMP */ #endif /* FFI_CLOSURES */ #if FFI_EXEC_TRAMPOLINE_TABLE #ifdef __MACH__ #include .align PAGE_MAX_SHIFT ARM_FUNC_START(ffi_closure_trampoline_table_page) .rept PAGE_MAX_SIZE / FFI_TRAMPOLINE_SIZE adr ip, #-PAGE_MAX_SIZE @ the config page is PAGE_MAX_SIZE behind the trampoline page sub ip, #8 @ account for pc bias ldr pc, [ip, #4] @ jump to ffi_closure_SYSV or ffi_closure_VFP .endr ARM_FUNC_END(ffi_closure_trampoline_table_page) #endif #elif defined(_WIN32) ARM_FUNC_START(ffi_arm_trampoline) 0: adr ip, 0b stmdb sp!, {r0, ip} ldr pc, 1f 1: .long 0 ARM_FUNC_END(ffi_arm_trampoline) #else ARM_FUNC_START(ffi_arm_trampoline) 0: adr ip, 0b ldr pc, 1f 1: .long 0 ARM_FUNC_END(ffi_arm_trampoline) #endif /* FFI_EXEC_TRAMPOLINE_TABLE */ #endif /* __arm__ */ #if defined __ELF__ && defined __linux__ .section .note.GNU-stack,"",%progbits #endif