/* Rijndael (AES) for GnuPG - PowerPC Vector Crypto AES implementation * Copyright (C) 2019 Shawn Landden * Copyright (C) 2019-2020 Jussi Kivilinna * * This file is part of Libgcrypt. * * Libgcrypt is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2.1 of * the License, or (at your option) any later version. * * Libgcrypt is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this program; if not, see . * * Alternatively, this code may be used in OpenSSL from The OpenSSL Project, * and Cryptogams by Andy Polyakov, and if made part of a release of either * or both projects, is thereafter dual-licensed under the license said project * is released under. */ #ifndef G10_RIJNDAEL_PPC_COMMON_H #define G10_RIJNDAEL_PPC_COMMON_H #include typedef vector unsigned char block; typedef vector unsigned int vec_u32; typedef union { u32 data32[4]; } __attribute__((packed, aligned(1), may_alias)) u128_t; #define ALWAYS_INLINE inline __attribute__((always_inline)) #define NO_INLINE __attribute__((noinline)) #define NO_INSTRUMENT_FUNCTION __attribute__((no_instrument_function)) #define ASM_FUNC_ATTR NO_INSTRUMENT_FUNCTION #define ASM_FUNC_ATTR_INLINE ASM_FUNC_ATTR ALWAYS_INLINE #define ASM_FUNC_ATTR_NOINLINE ASM_FUNC_ATTR NO_INLINE #define ALIGNED_LOAD(in_ptr, offs) \ (asm_aligned_ld ((offs) * 16, (const void *)(in_ptr))) #define ALIGNED_STORE(out_ptr, offs, vec) \ (asm_aligned_st ((vec), (offs) * 16, (void *)(out_ptr))) #define VEC_BE_SWAP(vec, bige_const) (asm_be_swap ((vec), (bige_const))) #define VEC_LOAD_BE(in_ptr, offs, bige_const) \ (asm_be_swap (asm_load_be_noswap ((offs) * 16, (const void *)(in_ptr)), \ bige_const)) #define VEC_LOAD_BE_NOSWAP(in_ptr, offs) \ (asm_load_be_noswap ((offs) * 16, (const unsigned char *)(in_ptr))) #define VEC_STORE_BE(out_ptr, offs, vec, bige_const) \ (asm_store_be_noswap (asm_be_swap ((vec), (bige_const)), (offs) * 16, \ (void *)(out_ptr))) #define VEC_STORE_BE_NOSWAP(out_ptr, offs, vec) \ (asm_store_be_noswap ((vec), (offs) * 16, (void *)(out_ptr))) #define ROUND_KEY_VARIABLES \ block rkey0, rkeylast #define PRELOAD_ROUND_KEYS(nrounds) \ do { \ rkey0 = ALIGNED_LOAD (rk, 0); \ rkeylast = ALIGNED_LOAD (rk, nrounds); \ } while (0) #define AES_ENCRYPT(blk, nrounds) \ do { \ blk ^= rkey0; \ blk = asm_cipher_be (blk, ALIGNED_LOAD (rk, 1)); \ blk = asm_cipher_be (blk, ALIGNED_LOAD (rk, 2)); \ blk = asm_cipher_be (blk, ALIGNED_LOAD (rk, 3)); \ blk = asm_cipher_be (blk, ALIGNED_LOAD (rk, 4)); \ blk = asm_cipher_be (blk, ALIGNED_LOAD (rk, 5)); \ blk = asm_cipher_be (blk, ALIGNED_LOAD (rk, 6)); \ blk = asm_cipher_be (blk, ALIGNED_LOAD (rk, 7)); \ blk = asm_cipher_be (blk, ALIGNED_LOAD (rk, 8)); \ blk = asm_cipher_be (blk, ALIGNED_LOAD (rk, 9)); \ if (nrounds >= 12) \ { \ blk = asm_cipher_be (blk, ALIGNED_LOAD (rk, 10)); \ blk = asm_cipher_be (blk, ALIGNED_LOAD (rk, 11)); \ if (rounds > 12) \ { \ blk = asm_cipher_be (blk, ALIGNED_LOAD (rk, 12)); \ blk = asm_cipher_be (blk, ALIGNED_LOAD (rk, 13)); \ } \ } \ blk = asm_cipherlast_be (blk, rkeylast); \ } while (0) #define AES_DECRYPT(blk, nrounds) \ do { \ blk ^= rkey0; \ blk = asm_ncipher_be (blk, ALIGNED_LOAD (rk, 1)); \ blk = asm_ncipher_be (blk, ALIGNED_LOAD (rk, 2)); \ blk = asm_ncipher_be (blk, ALIGNED_LOAD (rk, 3)); \ blk = asm_ncipher_be (blk, ALIGNED_LOAD (rk, 4)); \ blk = asm_ncipher_be (blk, ALIGNED_LOAD (rk, 5)); \ blk = asm_ncipher_be (blk, ALIGNED_LOAD (rk, 6)); \ blk = asm_ncipher_be (blk, ALIGNED_LOAD (rk, 7)); \ blk = asm_ncipher_be (blk, ALIGNED_LOAD (rk, 8)); \ blk = asm_ncipher_be (blk, ALIGNED_LOAD (rk, 9)); \ if (nrounds >= 12) \ { \ blk = asm_ncipher_be (blk, ALIGNED_LOAD (rk, 10)); \ blk = asm_ncipher_be (blk, ALIGNED_LOAD (rk, 11)); \ if (rounds > 12) \ { \ blk = asm_ncipher_be (blk, ALIGNED_LOAD (rk, 12)); \ blk = asm_ncipher_be (blk, ALIGNED_LOAD (rk, 13)); \ } \ } \ blk = asm_ncipherlast_be (blk, rkeylast); \ } while (0) #define ROUND_KEY_VARIABLES_ALL \ block rkey0, rkey1, rkey2, rkey3, rkey4, rkey5, rkey6, rkey7, rkey8, \ rkey9, rkey10, rkey11, rkey12, rkey13, rkeylast #define PRELOAD_ROUND_KEYS_ALL(nrounds) \ do { \ rkey0 = ALIGNED_LOAD (rk, 0); \ rkey1 = ALIGNED_LOAD (rk, 1); \ rkey2 = ALIGNED_LOAD (rk, 2); \ rkey3 = ALIGNED_LOAD (rk, 3); \ rkey4 = ALIGNED_LOAD (rk, 4); \ rkey5 = ALIGNED_LOAD (rk, 5); \ rkey6 = ALIGNED_LOAD (rk, 6); \ rkey7 = ALIGNED_LOAD (rk, 7); \ rkey8 = ALIGNED_LOAD (rk, 8); \ rkey9 = ALIGNED_LOAD (rk, 9); \ if (nrounds >= 12) \ { \ rkey10 = ALIGNED_LOAD (rk, 10); \ rkey11 = ALIGNED_LOAD (rk, 11); \ if (rounds > 12) \ { \ rkey12 = ALIGNED_LOAD (rk, 12); \ rkey13 = ALIGNED_LOAD (rk, 13); \ } \ } \ rkeylast = ALIGNED_LOAD (rk, nrounds); \ } while (0) static ASM_FUNC_ATTR_INLINE block asm_aligned_ld(unsigned long offset, const void *ptr) { block vec; #if __GNUC__ >= 4 if (__builtin_constant_p (offset) && offset == 0) __asm__ volatile ("lvx %0,0,%1\n\t" : "=v" (vec) : "r" ((uintptr_t)ptr) : "memory"); else #endif __asm__ volatile ("lvx %0,%1,%2\n\t" : "=v" (vec) : "r" (offset), "r" ((uintptr_t)ptr) : "memory", "r0"); return vec; } static ASM_FUNC_ATTR_INLINE void asm_aligned_st(block vec, unsigned long offset, void *ptr) { #if __GNUC__ >= 4 if (__builtin_constant_p (offset) && offset == 0) __asm__ volatile ("stvx %0,0,%1\n\t" : : "v" (vec), "r" ((uintptr_t)ptr) : "memory"); else #endif __asm__ volatile ("stvx %0,%1,%2\n\t" : : "v" (vec), "r" (offset), "r" ((uintptr_t)ptr) : "memory", "r0"); } static ASM_FUNC_ATTR_INLINE block asm_vperm1(block vec, block mask) { block o; __asm__ volatile ("vperm %0,%1,%1,%2\n\t" : "=v" (o) : "v" (vec), "v" (mask)); return o; } static ASM_FUNC_ATTR_INLINE block asm_add_uint128(block a, block b) { block res; __asm__ volatile ("vadduqm %0,%1,%2\n\t" : "=v" (res) : "v" (a), "v" (b)); return res; } static ASM_FUNC_ATTR_INLINE block asm_add_uint64(block a, block b) { block res; __asm__ volatile ("vaddudm %0,%1,%2\n\t" : "=v" (res) : "v" (a), "v" (b)); return res; } static ASM_FUNC_ATTR_INLINE block asm_sra_int64(block a, block b) { block res; __asm__ volatile ("vsrad %0,%1,%2\n\t" : "=v" (res) : "v" (a), "v" (b)); return res; } static block asm_swap_uint64_halfs(block a) { block res; __asm__ volatile ("xxswapd %x0, %x1" : "=wa" (res) : "wa" (a)); return res; } static ASM_FUNC_ATTR_INLINE block asm_xor(block a, block b) { block res; __asm__ volatile ("vxor %0,%1,%2\n\t" : "=v" (res) : "v" (a), "v" (b)); return res; } static ASM_FUNC_ATTR_INLINE block asm_sbox_be(block b) { block o; __asm__ volatile ("vsbox %0, %1\n\t" : "=v" (o) : "v" (b)); return o; } static ASM_FUNC_ATTR_INLINE block asm_cipher_be(block b, block rk) { block o; __asm__ volatile ("vcipher %0, %1, %2\n\t" : "=v" (o) : "v" (b), "v" (rk)); return o; } static ASM_FUNC_ATTR_INLINE block asm_cipherlast_be(block b, block rk) { block o; __asm__ volatile ("vcipherlast %0, %1, %2\n\t" : "=v" (o) : "v" (b), "v" (rk)); return o; } static ASM_FUNC_ATTR_INLINE block asm_ncipher_be(block b, block rk) { block o; __asm__ volatile ("vncipher %0, %1, %2\n\t" : "=v" (o) : "v" (b), "v" (rk)); return o; } static ASM_FUNC_ATTR_INLINE block asm_ncipherlast_be(block b, block rk) { block o; __asm__ volatile ("vncipherlast %0, %1, %2\n\t" : "=v" (o) : "v" (b), "v" (rk)); return o; } /* Make a decryption key from an encryption key. */ static ASM_FUNC_ATTR_INLINE void internal_aes_ppc_prepare_decryption (RIJNDAEL_context *ctx) { u128_t *ekey = (u128_t *)(void *)ctx->keyschenc; u128_t *dkey = (u128_t *)(void *)ctx->keyschdec; int rounds = ctx->rounds; int rr; int r; r = 0; rr = rounds; for (r = 0, rr = rounds; r <= rounds; r++, rr--) { ALIGNED_STORE (dkey, r, ALIGNED_LOAD (ekey, rr)); } } #endif /* G10_RIJNDAEL_PPC_COMMON_H */