/* ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; Copyright (c) 2012, Intel Corporation ; ; All rights reserved. ; ; Redistribution and use in source and binary forms, with or without ; modification, are permitted provided that the following conditions are ; met: ; ; * Redistributions of source code must retain the above copyright ; notice, this list of conditions and the following disclaimer. ; ; * Redistributions in binary form must reproduce the above copyright ; notice, this list of conditions and the following disclaimer in the ; documentation and/or other materials provided with the ; distribution. ; ; * Neither the name of the Intel Corporation nor the names of its ; contributors may be used to endorse or promote products derived from ; this software without specific prior written permission. ; ; ; THIS SOFTWARE IS PROVIDED BY INTEL CORPORATION "AS IS" AND ANY ; EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ; IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR ; PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL CORPORATION OR ; CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ; EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ; PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR ; PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ; LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING ; NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ; SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; ; This code is described in an Intel White-Paper: ; "Fast SHA-256 Implementations on Intel Architecture Processors" ; ; To find it, surf to http://www.intel.com/p/en_US/embedded ; and search for that title. ; The paper is expected to be released roughly at the end of April, 2012 ; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; This code schedules 2 blocks at a time, with 4 lanes per block ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; */ /* * Conversion to GAS assembly and integration to libgcrypt * by Jussi Kivilinna */ #ifdef __x86_64 #include #if (defined(HAVE_COMPATIBLE_GCC_AMD64_PLATFORM_AS) || \ defined(HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS)) && \ defined(HAVE_INTEL_SYNTAX_PLATFORM_AS) && \ defined(HAVE_GCC_INLINE_ASM_AVX2) && defined(HAVE_GCC_INLINE_ASM_BMI2) && \ defined(USE_SHA256) #include "asm-common-amd64.h" .intel_syntax noprefix #define VMOVDQ vmovdqu /* ; assume buffers not aligned */ /* ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Define Macros */ /* addm [mem], reg */ /* Add reg to mem using reg-mem add and store */ .macro addm p1 p2 add \p2, \p1 mov \p1, \p2 .endm /* ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; */ X0 = ymm4 X1 = ymm5 X2 = ymm6 X3 = ymm7 /* XMM versions of above */ XWORD0 = xmm4 XWORD1 = xmm5 XWORD2 = xmm6 XWORD3 = xmm7 XTMP0 = ymm0 XTMP1 = ymm1 XTMP2 = ymm2 XTMP3 = ymm3 XTMP4 = ymm8 XFER = ymm9 XTMP5 = ymm11 SHUF_00BA = ymm10 /* shuffle xBxA -> 00BA */ SHUF_DC00 = ymm12 /* shuffle xDxC -> DC00 */ BYTE_FLIP_MASK = ymm13 X_BYTE_FLIP_MASK = xmm13 /* XMM version of BYTE_FLIP_MASK */ NUM_BLKS = rdx /* 3rd arg */ CTX = rsi /* 2nd arg */ INP = rdi /* 1st arg */ c = ecx d = r8d e = edx /* clobbers NUM_BLKS */ y3 = edi /* clobbers INP */ TBL = rbp SRND = CTX /* SRND is same register as CTX */ a = eax b = ebx f = r9d g = r10d h = r11d old_h = r11d T1 = r12d y0 = r13d y1 = r14d y2 = r15d _XFER_SIZE = 2*64*4 /* 2 blocks, 64 rounds, 4 bytes/round */ _XMM_SAVE_SIZE = 0 _INP_END_SIZE = 8 _INP_SIZE = 8 _CTX_SIZE = 8 _RSP_SIZE = 8 _XFER = 0 _XMM_SAVE = _XFER + _XFER_SIZE _INP_END = _XMM_SAVE + _XMM_SAVE_SIZE _INP = _INP_END + _INP_END_SIZE _CTX = _INP + _INP_SIZE _RSP = _CTX + _CTX_SIZE STACK_SIZE = _RSP + _RSP_SIZE /* rotate_Xs */ /* Rotate values of symbols X0...X3 */ .macro rotate_Xs X_ = X0 X0 = X1 X1 = X2 X2 = X3 X3 = X_ .endm /* ROTATE_ARGS */ /* Rotate values of symbols a...h */ .macro ROTATE_ARGS old_h = h TMP_ = h h = g g = f f = e e = d d = c c = b b = a a = TMP_ .endm .macro ONE_ROUND_PART1 XFER /* h += Sum1 (e) + Ch (e, f, g) + (k[t] + w[0]); * d += h; * h += Sum0 (a) + Maj (a, b, c); * * Ch(x, y, z) => ((x & y) + (~x & z)) * Maj(x, y, z) => ((x & y) + (z & (x ^ y))) */ mov y3, e add h, [\XFER] and y3, f rorx y0, e, 25 rorx y1, e, 11 lea h, [h + y3] andn y3, e, g rorx T1, a, 13 xor y0, y1 lea h, [h + y3] .endm .macro ONE_ROUND_PART2 rorx y2, a, 22 rorx y1, e, 6 mov y3, a xor T1, y2 xor y0, y1 xor y3, b lea h, [h + y0] mov y0, a rorx y2, a, 2 add d, h and y3, c xor T1, y2 lea h, [h + y3] lea h, [h + T1] and y0, b lea h, [h + y0] .endm .macro ONE_ROUND XFER ONE_ROUND_PART1 \XFER ONE_ROUND_PART2 .endm .macro FOUR_ROUNDS_AND_SCHED XFER, XFEROUT /* ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; RND N + 0 ;;;;;;;;;;;;;;;;;;;;;;;;;;;; */ vpalignr XTMP0, X3, X2, 4 /* XTMP0 = W[-7] */ vpaddd XTMP0, XTMP0, X0 /* XTMP0 = W[-7] + W[-16]; y1 = (e >> 6); S1 */ vpalignr XTMP1, X1, X0, 4 /* XTMP1 = W[-15] */ vpsrld XTMP2, XTMP1, 7 vpslld XTMP3, XTMP1, (32-7) vpor XTMP3, XTMP3, XTMP2 /* XTMP3 = W[-15] ror 7 */ vpsrld XTMP2, XTMP1,18 ONE_ROUND 0*4+\XFER ROTATE_ARGS /* ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; RND N + 1 ;;;;;;;;;;;;;;;;;;;;;;;;;;;; */ vpsrld XTMP4, XTMP1, 3 /* XTMP4 = W[-15] >> 3 */ vpslld XTMP1, XTMP1, (32-18) vpxor XTMP3, XTMP3, XTMP1 vpxor XTMP3, XTMP3, XTMP2 /* XTMP3 = W[-15] ror 7 ^ W[-15] ror 18 */ vpxor XTMP1, XTMP3, XTMP4 /* XTMP1 = s0 */ vpshufd XTMP2, X3, 0b11111010 /* XTMP2 = W[-2] {BBAA} */ vpaddd XTMP0, XTMP0, XTMP1 /* XTMP0 = W[-16] + W[-7] + s0 */ vpsrld XTMP4, XTMP2, 10 /* XTMP4 = W[-2] >> 10 {BBAA} */ ONE_ROUND 1*4+\XFER ROTATE_ARGS /* ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; RND N + 2 ;;;;;;;;;;;;;;;;;;;;;;;;;;;; */ vpsrlq XTMP3, XTMP2, 19 /* XTMP3 = W[-2] ror 19 {xBxA} */ vpsrlq XTMP2, XTMP2, 17 /* XTMP2 = W[-2] ror 17 {xBxA} */ vpxor XTMP2, XTMP2, XTMP3 vpxor XTMP4, XTMP4, XTMP2 /* XTMP4 = s1 {xBxA} */ vpshufb XTMP4, XTMP4, SHUF_00BA /* XTMP4 = s1 {00BA} */ vpaddd XTMP0, XTMP0, XTMP4 /* XTMP0 = {..., ..., W[1], W[0]} */ vpshufd XTMP2, XTMP0, 0b1010000 /* XTMP2 = W[-2] {DDCC} */ ONE_ROUND 2*4+\XFER ROTATE_ARGS /* ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; RND N + 3 ;;;;;;;;;;;;;;;;;;;;;;;;;;;; */ vpsrld XTMP5, XTMP2, 10 /* XTMP5 = W[-2] >> 10 {DDCC} */ vpsrlq XTMP3, XTMP2, 19 /* XTMP3 = W[-2] ror 19 {xDxC} */ vpsrlq XTMP2, XTMP2, 17 /* XTMP2 = W[-2] ror 17 {xDxC} */ vpxor XTMP2, XTMP2, XTMP3 vpxor XTMP5, XTMP5, XTMP2 /* XTMP5 = s1 {xDxC} */ vpshufb XTMP5, XTMP5, SHUF_DC00 /* XTMP5 = s1 {DC00} */ vpaddd X0, XTMP5, XTMP0 /* X0 = {W[3], W[2], W[1], W[0]} */ vpaddd XFER, X0, [TBL + \XFEROUT] ONE_ROUND_PART1 3*4+\XFER vmovdqa [rsp + _XFER + \XFEROUT], XFER ONE_ROUND_PART2 ROTATE_ARGS rotate_Xs .endm .macro DO_4ROUNDS XFER /* ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; RND N + 0 ;;;;;;;;;;;;;;;;;;;;;;;;;;; */ ONE_ROUND 0*4+\XFER ROTATE_ARGS /* ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; RND N + 1 ;;;;;;;;;;;;;;;;;;;;;;;;;;; */ ONE_ROUND 1*4+\XFER ROTATE_ARGS /* ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; RND N + 2 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; */ ONE_ROUND 2*4+\XFER ROTATE_ARGS /* ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; RND N + 3 ;;;;;;;;;;;;;;;;;;;;;;;;;;; */ ONE_ROUND 3*4+\XFER ROTATE_ARGS .endm /* ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; void sha256_rorx(void *input_data, UINT32 digest[8], UINT64 num_blks) ;; arg 1 : pointer to input data ;; arg 2 : pointer to digest ;; arg 3 : Num blocks */ .text .globl _gcry_sha256_transform_amd64_avx2 ELF(.type _gcry_sha256_transform_amd64_avx2,@function) .align 32 _gcry_sha256_transform_amd64_avx2: CFI_STARTPROC() xor eax, eax cmp rdx, 0 je .Lnowork push rbx CFI_PUSH(rbx) push rbp CFI_PUSH(rbp) push r12 CFI_PUSH(r12) push r13 CFI_PUSH(r13) push r14 CFI_PUSH(r14) push r15 CFI_PUSH(r15) vzeroupper vmovdqa BYTE_FLIP_MASK, [.LPSHUFFLE_BYTE_FLIP_MASK ADD_RIP] vmovdqa SHUF_00BA, [.L_SHUF_00BA ADD_RIP] vmovdqa SHUF_DC00, [.L_SHUF_DC00 ADD_RIP] mov rax, rsp CFI_DEF_CFA_REGISTER(rax); sub rsp, STACK_SIZE and rsp, ~63 mov [rsp + _RSP], rax CFI_CFA_ON_STACK(_RSP, 6 * 8) shl NUM_BLKS, 6 /* convert to bytes */ lea NUM_BLKS, [NUM_BLKS + INP - 64] /* pointer to last block */ mov [rsp + _INP_END], NUM_BLKS /* ; load initial digest */ mov a,[4*0 + CTX] mov b,[4*1 + CTX] mov c,[4*2 + CTX] mov d,[4*3 + CTX] mov e,[4*4 + CTX] mov f,[4*5 + CTX] mov g,[4*6 + CTX] mov h,[4*7 + CTX] mov [rsp + _CTX], CTX .Loop0: lea TBL, [.LK256 ADD_RIP] /* ; Load first 16 dwords from two blocks */ VMOVDQ XTMP0, [INP + 0*32] VMOVDQ XTMP1, [INP + 1*32] VMOVDQ XTMP2, [INP + 2*32] VMOVDQ XTMP3, [INP + 3*32] /* ; byte swap data */ vpshufb XTMP0, XTMP0, BYTE_FLIP_MASK vpshufb XTMP1, XTMP1, BYTE_FLIP_MASK vpshufb XTMP2, XTMP2, BYTE_FLIP_MASK vpshufb XTMP3, XTMP3, BYTE_FLIP_MASK /* ; transpose data into high/low halves */ vperm2i128 X0, XTMP0, XTMP2, 0x20 vperm2i128 X1, XTMP0, XTMP2, 0x31 vperm2i128 X2, XTMP1, XTMP3, 0x20 vperm2i128 X3, XTMP1, XTMP3, 0x31 .Last_block_enter: add INP, 64 mov [rsp + _INP], INP /* ; schedule 48 input dwords, by doing 3 rounds of 12 each */ xor SRND, SRND vpaddd XFER, X0, [TBL + 0*32] vmovdqa [rsp + _XFER + 0*32], XFER vpaddd XFER, X1, [TBL + 1*32] vmovdqa [rsp + _XFER + 1*32], XFER vpaddd XFER, X2, [TBL + 2*32] vmovdqa [rsp + _XFER + 2*32], XFER vpaddd XFER, X3, [TBL + 3*32] vmovdqa [rsp + _XFER + 3*32], XFER .align 16 .Loop1: FOUR_ROUNDS_AND_SCHED rsp + _XFER + SRND + 0*32, SRND + 4*32 FOUR_ROUNDS_AND_SCHED rsp + _XFER + SRND + 1*32, SRND + 5*32 FOUR_ROUNDS_AND_SCHED rsp + _XFER + SRND + 2*32, SRND + 6*32 FOUR_ROUNDS_AND_SCHED rsp + _XFER + SRND + 3*32, SRND + 7*32 add SRND, 4*32 cmp SRND, 3 * 4*32 jb .Loop1 /* ; Do last 16 rounds with no scheduling */ DO_4ROUNDS rsp + _XFER + (3*4*32 + 0*32) DO_4ROUNDS rsp + _XFER + (3*4*32 + 1*32) DO_4ROUNDS rsp + _XFER + (3*4*32 + 2*32) DO_4ROUNDS rsp + _XFER + (3*4*32 + 3*32) mov CTX, [rsp + _CTX] mov INP, [rsp + _INP] addm [4*0 + CTX],a addm [4*1 + CTX],b addm [4*2 + CTX],c addm [4*3 + CTX],d addm [4*4 + CTX],e addm [4*5 + CTX],f addm [4*6 + CTX],g addm [4*7 + CTX],h cmp INP, [rsp + _INP_END] ja .Ldone_hash /* ;;; Do second block using previously scheduled results */ xor SRND, SRND .align 16 .Loop3: DO_4ROUNDS rsp + _XFER + SRND + 0*32 + 16 DO_4ROUNDS rsp + _XFER + SRND + 1*32 + 16 add SRND, 2*32 cmp SRND, 4 * 4*32 jb .Loop3 mov CTX, [rsp + _CTX] mov INP, [rsp + _INP] add INP, 64 addm [4*0 + CTX],a addm [4*1 + CTX],b addm [4*2 + CTX],c addm [4*3 + CTX],d addm [4*4 + CTX],e addm [4*5 + CTX],f addm [4*6 + CTX],g addm [4*7 + CTX],h cmp INP, [rsp + _INP_END] jb .Loop0 ja .Ldone_hash .Ldo_last_block: /* ;;; do last block */ lea TBL, [.LK256 ADD_RIP] VMOVDQ XWORD0, [INP + 0*16] VMOVDQ XWORD1, [INP + 1*16] VMOVDQ XWORD2, [INP + 2*16] VMOVDQ XWORD3, [INP + 3*16] vpshufb XWORD0, XWORD0, X_BYTE_FLIP_MASK vpshufb XWORD1, XWORD1, X_BYTE_FLIP_MASK vpshufb XWORD2, XWORD2, X_BYTE_FLIP_MASK vpshufb XWORD3, XWORD3, X_BYTE_FLIP_MASK jmp .Last_block_enter .Lonly_one_block: /* ; load initial digest */ mov a,[4*0 + CTX] mov b,[4*1 + CTX] mov c,[4*2 + CTX] mov d,[4*3 + CTX] mov e,[4*4 + CTX] mov f,[4*5 + CTX] mov g,[4*6 + CTX] mov h,[4*7 + CTX] vmovdqa BYTE_FLIP_MASK, [.LPSHUFFLE_BYTE_FLIP_MASK ADD_RIP] vmovdqa SHUF_00BA, [.L_SHUF_00BA ADD_RIP] vmovdqa SHUF_DC00, [.L_SHUF_DC00 ADD_RIP] mov [rsp + _CTX], CTX jmp .Ldo_last_block .Ldone_hash: vzeroall /* burn stack */ vmovdqa [rsp + _XFER + 0 * 32], ymm0 vmovdqa [rsp + _XFER + 1 * 32], ymm0 vmovdqa [rsp + _XFER + 2 * 32], ymm0 vmovdqa [rsp + _XFER + 3 * 32], ymm0 vmovdqa [rsp + _XFER + 4 * 32], ymm0 vmovdqa [rsp + _XFER + 5 * 32], ymm0 vmovdqa [rsp + _XFER + 6 * 32], ymm0 vmovdqa [rsp + _XFER + 7 * 32], ymm0 vmovdqa [rsp + _XFER + 8 * 32], ymm0 vmovdqa [rsp + _XFER + 9 * 32], ymm0 vmovdqa [rsp + _XFER + 10 * 32], ymm0 vmovdqa [rsp + _XFER + 11 * 32], ymm0 vmovdqa [rsp + _XFER + 12 * 32], ymm0 vmovdqa [rsp + _XFER + 13 * 32], ymm0 vmovdqa [rsp + _XFER + 14 * 32], ymm0 vmovdqa [rsp + _XFER + 15 * 32], ymm0 xor eax, eax mov rsp, [rsp + _RSP] CFI_DEF_CFA_REGISTER(rsp) pop r15 CFI_POP(r15) pop r14 CFI_POP(r14) pop r13 CFI_POP(r13) pop r12 CFI_POP(r12) pop rbp CFI_POP(rbp) pop rbx CFI_POP(rbx) .Lnowork: ret CFI_ENDPROC() .align 64 .LK256: .long 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5 .long 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5 .long 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5 .long 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5 .long 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3 .long 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3 .long 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174 .long 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174 .long 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc .long 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc .long 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da .long 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da .long 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7 .long 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7 .long 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967 .long 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967 .long 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13 .long 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13 .long 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85 .long 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85 .long 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3 .long 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3 .long 0xd192e819,0xd6990624,0xf40e3585,0x106aa070 .long 0xd192e819,0xd6990624,0xf40e3585,0x106aa070 .long 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5 .long 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5 .long 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3 .long 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3 .long 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208 .long 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208 .long 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2 .long 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2 .LPSHUFFLE_BYTE_FLIP_MASK: .octa 0x0c0d0e0f08090a0b0405060700010203,0x0c0d0e0f08090a0b0405060700010203 /* shuffle xBxA -> 00BA */ .L_SHUF_00BA: .octa 0xFFFFFFFFFFFFFFFF0b0a090803020100,0xFFFFFFFFFFFFFFFF0b0a090803020100 /* shuffle xDxC -> DC00 */ .L_SHUF_DC00: .octa 0x0b0a090803020100FFFFFFFFFFFFFFFF,0x0b0a090803020100FFFFFFFFFFFFFFFF #endif #endif