/* sha256.c - SHA256 hash function * Copyright (C) 2003, 2006, 2008, 2009 Free Software Foundation, Inc. * * This file is part of Libgcrypt. * * Libgcrypt is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2.1 of * the License, or (at your option) any later version. * * Libgcrypt is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this program; if not, see . */ /* Test vectors: "abc" SHA224: 23097d22 3405d822 8642a477 bda255b3 2aadbce4 bda0b3f7 e36c9da7 SHA256: ba7816bf 8f01cfea 414140de 5dae2223 b00361a3 96177a9c b410ff61 f20015ad "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq" SHA224: 75388b16 512776cc 5dba5da1 fd890150 b0c6455c b4f58b19 52522525 SHA256: 248d6a61 d20638b8 e5c02693 0c3e6039 a33ce459 64ff2167 f6ecedd4 19db06c1 "a" one million times SHA224: 20794655 980c91d8 bbb4c1ea 97618a4b f03f4258 1948b2ee 4ee7ad67 SHA256: cdc76e5c 9914fb92 81a1c7e2 84d73e67 f1809a48 a497200e 046d39cc c7112cd0 */ #include #include #include #include #include "g10lib.h" #include "bithelp.h" #include "bufhelp.h" #include "cipher.h" #include "hash-common.h" /* USE_SSSE3 indicates whether to compile with Intel SSSE3 code. */ #undef USE_SSSE3 #if defined(__x86_64__) && defined(HAVE_GCC_INLINE_ASM_SSSE3) && \ defined(HAVE_INTEL_SYNTAX_PLATFORM_AS) && \ (defined(HAVE_COMPATIBLE_GCC_AMD64_PLATFORM_AS) || \ defined(HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS)) # define USE_SSSE3 1 #endif /* USE_AVX indicates whether to compile with Intel AVX code. */ #undef USE_AVX #if defined(__x86_64__) && defined(HAVE_GCC_INLINE_ASM_AVX) && \ defined(HAVE_INTEL_SYNTAX_PLATFORM_AS) && \ (defined(HAVE_COMPATIBLE_GCC_AMD64_PLATFORM_AS) || \ defined(HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS)) # define USE_AVX 1 #endif /* USE_AVX2 indicates whether to compile with Intel AVX2/BMI2 code. */ #undef USE_AVX2 #if defined(__x86_64__) && defined(HAVE_GCC_INLINE_ASM_AVX2) && \ defined(HAVE_GCC_INLINE_ASM_BMI2) && \ defined(HAVE_INTEL_SYNTAX_PLATFORM_AS) && \ (defined(HAVE_COMPATIBLE_GCC_AMD64_PLATFORM_AS) || \ defined(HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS)) # define USE_AVX2 1 #endif /* USE_SHAEXT indicates whether to compile with Intel SHA Extension code. */ #undef USE_SHAEXT #if defined(HAVE_GCC_INLINE_ASM_SHAEXT) && \ defined(HAVE_GCC_INLINE_ASM_SSE41) && \ defined(ENABLE_SHAEXT_SUPPORT) # define USE_SHAEXT 1 #endif /* USE_ARM_CE indicates whether to enable ARMv8 Crypto Extension assembly * code. */ #undef USE_ARM_CE #ifdef ENABLE_ARM_CRYPTO_SUPPORT # if defined(HAVE_ARM_ARCH_V6) && defined(__ARMEL__) \ && defined(HAVE_COMPATIBLE_GCC_ARM_PLATFORM_AS) \ && defined(HAVE_GCC_INLINE_ASM_AARCH32_CRYPTO) # define USE_ARM_CE 1 # elif defined(__AARCH64EL__) \ && defined(HAVE_COMPATIBLE_GCC_AARCH64_PLATFORM_AS) \ && defined(HAVE_GCC_INLINE_ASM_AARCH64_CRYPTO) # define USE_ARM_CE 1 # endif #endif /* USE_PPC_CRYPTO indicates whether to enable PowerPC vector crypto * accelerated code. */ #undef USE_PPC_CRYPTO #ifdef ENABLE_PPC_CRYPTO_SUPPORT # if defined(HAVE_COMPATIBLE_CC_PPC_ALTIVEC) && \ defined(HAVE_GCC_INLINE_ASM_PPC_ALTIVEC) # if __GNUC__ >= 4 # define USE_PPC_CRYPTO 1 # endif # endif #endif /* USE_S390X_CRYPTO indicates whether to enable zSeries code. */ #undef USE_S390X_CRYPTO #if defined(HAVE_GCC_INLINE_ASM_S390X) # define USE_S390X_CRYPTO 1 #endif /* USE_S390X_CRYPTO */ typedef struct { gcry_md_block_ctx_t bctx; u32 h0,h1,h2,h3,h4,h5,h6,h7; #ifdef USE_S390X_CRYPTO u32 final_len_msb, final_len_lsb; /* needs to be right after h7. */ int use_s390x_crypto; #endif } SHA256_CONTEXT; /* Assembly implementations use SystemV ABI, ABI conversion and additional * stack to store XMM6-XMM15 needed on Win64. */ #undef ASM_FUNC_ABI #undef ASM_EXTRA_STACK #if defined(USE_SSSE3) || defined(USE_AVX) || defined(USE_AVX2) || \ defined(USE_SHAEXT) # ifdef HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS # define ASM_FUNC_ABI __attribute__((sysv_abi)) # define ASM_EXTRA_STACK (10 * 16 + sizeof(void *) * 4) # else # define ASM_FUNC_ABI # define ASM_EXTRA_STACK 0 # endif #endif #ifdef USE_SSSE3 unsigned int _gcry_sha256_transform_amd64_ssse3(const void *input_data, u32 state[8], size_t num_blks) ASM_FUNC_ABI; static unsigned int do_sha256_transform_amd64_ssse3(void *ctx, const unsigned char *data, size_t nblks) { SHA256_CONTEXT *hd = ctx; return _gcry_sha256_transform_amd64_ssse3 (data, &hd->h0, nblks) + ASM_EXTRA_STACK; } #endif #ifdef USE_AVX unsigned int _gcry_sha256_transform_amd64_avx(const void *input_data, u32 state[8], size_t num_blks) ASM_FUNC_ABI; static unsigned int do_sha256_transform_amd64_avx(void *ctx, const unsigned char *data, size_t nblks) { SHA256_CONTEXT *hd = ctx; return _gcry_sha256_transform_amd64_avx (data, &hd->h0, nblks) + ASM_EXTRA_STACK; } #endif #ifdef USE_AVX2 unsigned int _gcry_sha256_transform_amd64_avx2(const void *input_data, u32 state[8], size_t num_blks) ASM_FUNC_ABI; static unsigned int do_sha256_transform_amd64_avx2(void *ctx, const unsigned char *data, size_t nblks) { SHA256_CONTEXT *hd = ctx; return _gcry_sha256_transform_amd64_avx2 (data, &hd->h0, nblks) + ASM_EXTRA_STACK; } #endif #ifdef USE_SHAEXT /* Does not need ASM_FUNC_ABI */ unsigned int _gcry_sha256_transform_intel_shaext(u32 state[8], const unsigned char *input_data, size_t num_blks); static unsigned int do_sha256_transform_intel_shaext(void *ctx, const unsigned char *data, size_t nblks) { SHA256_CONTEXT *hd = ctx; return _gcry_sha256_transform_intel_shaext (&hd->h0, data, nblks); } #endif #ifdef USE_ARM_CE unsigned int _gcry_sha256_transform_armv8_ce(u32 state[8], const void *input_data, size_t num_blks); static unsigned int do_sha256_transform_armv8_ce(void *ctx, const unsigned char *data, size_t nblks) { SHA256_CONTEXT *hd = ctx; return _gcry_sha256_transform_armv8_ce (&hd->h0, data, nblks); } #endif #ifdef USE_PPC_CRYPTO unsigned int _gcry_sha256_transform_ppc8(u32 state[8], const unsigned char *input_data, size_t num_blks); unsigned int _gcry_sha256_transform_ppc9(u32 state[8], const unsigned char *input_data, size_t num_blks); static unsigned int do_sha256_transform_ppc8(void *ctx, const unsigned char *data, size_t nblks) { SHA256_CONTEXT *hd = ctx; return _gcry_sha256_transform_ppc8 (&hd->h0, data, nblks); } static unsigned int do_sha256_transform_ppc9(void *ctx, const unsigned char *data, size_t nblks) { SHA256_CONTEXT *hd = ctx; return _gcry_sha256_transform_ppc9 (&hd->h0, data, nblks); } #endif #ifdef USE_S390X_CRYPTO #include "asm-inline-s390x.h" static unsigned int do_sha256_transform_s390x (void *ctx, const unsigned char *data, size_t nblks) { SHA256_CONTEXT *hd = ctx; kimd_execute (KMID_FUNCTION_SHA256, &hd->h0, data, nblks * 64); return 0; } static unsigned int do_sha256_final_s390x (void *ctx, const unsigned char *data, size_t datalen, u32 len_msb, u32 len_lsb) { SHA256_CONTEXT *hd = ctx; /* Make sure that 'final_len' is positioned at correct offset relative * to 'h0'. This is because we are passing 'h0' pointer as start of * parameter block to 'klmd' instruction. */ gcry_assert (offsetof (SHA256_CONTEXT, final_len_msb) - offsetof (SHA256_CONTEXT, h0) == 8 * sizeof(u32)); gcry_assert (offsetof (SHA256_CONTEXT, final_len_lsb) - offsetof (SHA256_CONTEXT, final_len_msb) == 1 * sizeof(u32)); hd->final_len_msb = len_msb; hd->final_len_lsb = len_lsb; klmd_execute (KMID_FUNCTION_SHA256, &hd->h0, data, datalen); return 0; } #endif static unsigned int do_transform_generic (void *ctx, const unsigned char *data, size_t nblks); static void sha256_common_init (SHA256_CONTEXT *hd) { unsigned int features = _gcry_get_hw_features (); hd->bctx.nblocks = 0; hd->bctx.nblocks_high = 0; hd->bctx.count = 0; hd->bctx.blocksize_shift = _gcry_ctz(64); /* Order of feature checks is important here; last match will be * selected. Keep slower implementations at the top and faster at * the bottom. */ hd->bctx.bwrite = do_transform_generic; #ifdef USE_SSSE3 if ((features & HWF_INTEL_SSSE3) != 0) hd->bctx.bwrite = do_sha256_transform_amd64_ssse3; #endif #ifdef USE_AVX /* AVX implementation uses SHLD which is known to be slow on non-Intel CPUs. * Therefore use this implementation on Intel CPUs only. */ if ((features & HWF_INTEL_AVX) && (features & HWF_INTEL_FAST_SHLD)) hd->bctx.bwrite = do_sha256_transform_amd64_avx; #endif #ifdef USE_AVX2 if ((features & HWF_INTEL_AVX2) && (features & HWF_INTEL_BMI2)) hd->bctx.bwrite = do_sha256_transform_amd64_avx2; #endif #ifdef USE_SHAEXT if ((features & HWF_INTEL_SHAEXT) && (features & HWF_INTEL_SSE4_1)) hd->bctx.bwrite = do_sha256_transform_intel_shaext; #endif #ifdef USE_ARM_CE if ((features & HWF_ARM_SHA2) != 0) hd->bctx.bwrite = do_sha256_transform_armv8_ce; #endif #ifdef USE_PPC_CRYPTO if ((features & HWF_PPC_VCRYPTO) != 0) hd->bctx.bwrite = do_sha256_transform_ppc8; if ((features & HWF_PPC_VCRYPTO) != 0 && (features & HWF_PPC_ARCH_3_00) != 0) hd->bctx.bwrite = do_sha256_transform_ppc9; #endif #ifdef USE_S390X_CRYPTO hd->use_s390x_crypto = 0; if ((features & HWF_S390X_MSA) != 0) { if ((kimd_query () & km_function_to_mask (KMID_FUNCTION_SHA256)) && (klmd_query () & km_function_to_mask (KMID_FUNCTION_SHA256))) { hd->bctx.bwrite = do_sha256_transform_s390x; hd->use_s390x_crypto = 1; } } #endif (void)features; } static void sha256_init (void *context, unsigned int flags) { SHA256_CONTEXT *hd = context; (void)flags; hd->h0 = 0x6a09e667; hd->h1 = 0xbb67ae85; hd->h2 = 0x3c6ef372; hd->h3 = 0xa54ff53a; hd->h4 = 0x510e527f; hd->h5 = 0x9b05688c; hd->h6 = 0x1f83d9ab; hd->h7 = 0x5be0cd19; sha256_common_init (hd); } static void sha224_init (void *context, unsigned int flags) { SHA256_CONTEXT *hd = context; (void)flags; hd->h0 = 0xc1059ed8; hd->h1 = 0x367cd507; hd->h2 = 0x3070dd17; hd->h3 = 0xf70e5939; hd->h4 = 0xffc00b31; hd->h5 = 0x68581511; hd->h6 = 0x64f98fa7; hd->h7 = 0xbefa4fa4; sha256_common_init (hd); } /* Transform the message X which consists of 16 32-bit-words. See FIPS 180-2 for details. */ #define R(a,b,c,d,e,f,g,h,k,w) do \ { \ t1 = (h) + Sum1((e)) + Cho((e),(f),(g)) + (k) + (w); \ t2 = Sum0((a)) + Maj((a),(b),(c)); \ d += t1; \ h = t1 + t2; \ } while (0) /* (4.2) same as SHA-1's F1. */ #define Cho(x, y, z) (z ^ (x & (y ^ z))) /* (4.3) same as SHA-1's F3 */ #define Maj(x, y, z) ((x & y) + (z & (x ^ y))) /* (4.4) */ #define Sum0(x) (ror (x, 2) ^ ror (x, 13) ^ ror (x, 22)) /* (4.5) */ #define Sum1(x) (ror (x, 6) ^ ror (x, 11) ^ ror (x, 25)) /* Message expansion */ #define S0(x) (ror ((x), 7) ^ ror ((x), 18) ^ ((x) >> 3)) /* (4.6) */ #define S1(x) (ror ((x), 17) ^ ror ((x), 19) ^ ((x) >> 10)) /* (4.7) */ #define I(i) ( w[i] = buf_get_be32(data + i * 4) ) #define W(i) ( w[i&0x0f] = S1(w[(i-2) &0x0f]) \ + w[(i-7) &0x0f] \ + S0(w[(i-15)&0x0f]) \ + w[(i-16)&0x0f] ) static unsigned int do_transform_generic (void *ctx, const unsigned char *data, size_t nblks) { SHA256_CONTEXT *hd = ctx; static const u32 K[64] = { 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 }; do { u32 a,b,c,d,e,f,g,h,t1,t2; u32 w[16]; a = hd->h0; b = hd->h1; c = hd->h2; d = hd->h3; e = hd->h4; f = hd->h5; g = hd->h6; h = hd->h7; R(a, b, c, d, e, f, g, h, K[0], I(0)); R(h, a, b, c, d, e, f, g, K[1], I(1)); R(g, h, a, b, c, d, e, f, K[2], I(2)); R(f, g, h, a, b, c, d, e, K[3], I(3)); R(e, f, g, h, a, b, c, d, K[4], I(4)); R(d, e, f, g, h, a, b, c, K[5], I(5)); R(c, d, e, f, g, h, a, b, K[6], I(6)); R(b, c, d, e, f, g, h, a, K[7], I(7)); R(a, b, c, d, e, f, g, h, K[8], I(8)); R(h, a, b, c, d, e, f, g, K[9], I(9)); R(g, h, a, b, c, d, e, f, K[10], I(10)); R(f, g, h, a, b, c, d, e, K[11], I(11)); R(e, f, g, h, a, b, c, d, K[12], I(12)); R(d, e, f, g, h, a, b, c, K[13], I(13)); R(c, d, e, f, g, h, a, b, K[14], I(14)); R(b, c, d, e, f, g, h, a, K[15], I(15)); R(a, b, c, d, e, f, g, h, K[16], W(16)); R(h, a, b, c, d, e, f, g, K[17], W(17)); R(g, h, a, b, c, d, e, f, K[18], W(18)); R(f, g, h, a, b, c, d, e, K[19], W(19)); R(e, f, g, h, a, b, c, d, K[20], W(20)); R(d, e, f, g, h, a, b, c, K[21], W(21)); R(c, d, e, f, g, h, a, b, K[22], W(22)); R(b, c, d, e, f, g, h, a, K[23], W(23)); R(a, b, c, d, e, f, g, h, K[24], W(24)); R(h, a, b, c, d, e, f, g, K[25], W(25)); R(g, h, a, b, c, d, e, f, K[26], W(26)); R(f, g, h, a, b, c, d, e, K[27], W(27)); R(e, f, g, h, a, b, c, d, K[28], W(28)); R(d, e, f, g, h, a, b, c, K[29], W(29)); R(c, d, e, f, g, h, a, b, K[30], W(30)); R(b, c, d, e, f, g, h, a, K[31], W(31)); R(a, b, c, d, e, f, g, h, K[32], W(32)); R(h, a, b, c, d, e, f, g, K[33], W(33)); R(g, h, a, b, c, d, e, f, K[34], W(34)); R(f, g, h, a, b, c, d, e, K[35], W(35)); R(e, f, g, h, a, b, c, d, K[36], W(36)); R(d, e, f, g, h, a, b, c, K[37], W(37)); R(c, d, e, f, g, h, a, b, K[38], W(38)); R(b, c, d, e, f, g, h, a, K[39], W(39)); R(a, b, c, d, e, f, g, h, K[40], W(40)); R(h, a, b, c, d, e, f, g, K[41], W(41)); R(g, h, a, b, c, d, e, f, K[42], W(42)); R(f, g, h, a, b, c, d, e, K[43], W(43)); R(e, f, g, h, a, b, c, d, K[44], W(44)); R(d, e, f, g, h, a, b, c, K[45], W(45)); R(c, d, e, f, g, h, a, b, K[46], W(46)); R(b, c, d, e, f, g, h, a, K[47], W(47)); R(a, b, c, d, e, f, g, h, K[48], W(48)); R(h, a, b, c, d, e, f, g, K[49], W(49)); R(g, h, a, b, c, d, e, f, K[50], W(50)); R(f, g, h, a, b, c, d, e, K[51], W(51)); R(e, f, g, h, a, b, c, d, K[52], W(52)); R(d, e, f, g, h, a, b, c, K[53], W(53)); R(c, d, e, f, g, h, a, b, K[54], W(54)); R(b, c, d, e, f, g, h, a, K[55], W(55)); R(a, b, c, d, e, f, g, h, K[56], W(56)); R(h, a, b, c, d, e, f, g, K[57], W(57)); R(g, h, a, b, c, d, e, f, K[58], W(58)); R(f, g, h, a, b, c, d, e, K[59], W(59)); R(e, f, g, h, a, b, c, d, K[60], W(60)); R(d, e, f, g, h, a, b, c, K[61], W(61)); R(c, d, e, f, g, h, a, b, K[62], W(62)); R(b, c, d, e, f, g, h, a, K[63], W(63)); hd->h0 += a; hd->h1 += b; hd->h2 += c; hd->h3 += d; hd->h4 += e; hd->h5 += f; hd->h6 += g; hd->h7 += h; data += 64; } while (--nblks); return 26*4 + 32 + 3 * sizeof(void*); } #undef S0 #undef S1 #undef R /* The routine finally terminates the computation and returns the digest. The handle is prepared for a new cycle, but adding bytes to the handle will the destroy the returned buffer. Returns: 32 bytes with the message the digest. */ static void sha256_final(void *context) { SHA256_CONTEXT *hd = context; u32 t, th, msb, lsb; byte *p; unsigned int burn; t = hd->bctx.nblocks; if (sizeof t == sizeof hd->bctx.nblocks) th = hd->bctx.nblocks_high; else th = hd->bctx.nblocks >> 32; /* multiply by 64 to make a byte count */ lsb = t << 6; msb = (th << 6) | (t >> 26); /* add the count */ t = lsb; if ((lsb += hd->bctx.count) < t) msb++; /* multiply by 8 to make a bit count */ t = lsb; lsb <<= 3; msb <<= 3; msb |= t >> 29; if (0) { } #ifdef USE_S390X_CRYPTO else if (hd->use_s390x_crypto) { burn = do_sha256_final_s390x (hd, hd->bctx.buf, hd->bctx.count, msb, lsb); } #endif else if (hd->bctx.count < 56) /* enough room */ { hd->bctx.buf[hd->bctx.count++] = 0x80; /* pad */ if (hd->bctx.count < 56) memset (&hd->bctx.buf[hd->bctx.count], 0, 56 - hd->bctx.count); /* append the 64 bit count */ buf_put_be32(hd->bctx.buf + 56, msb); buf_put_be32(hd->bctx.buf + 60, lsb); burn = (*hd->bctx.bwrite) (hd, hd->bctx.buf, 1); } else /* need one extra block */ { hd->bctx.buf[hd->bctx.count++] = 0x80; /* pad character */ /* fill pad and next block with zeroes */ memset (&hd->bctx.buf[hd->bctx.count], 0, 64 - hd->bctx.count + 56); /* append the 64 bit count */ buf_put_be32(hd->bctx.buf + 64 + 56, msb); buf_put_be32(hd->bctx.buf + 64 + 60, lsb); burn = (*hd->bctx.bwrite) (hd, hd->bctx.buf, 2); } p = hd->bctx.buf; #define X(a) do { buf_put_be32(p, hd->h##a); p += 4; } while(0) X(0); X(1); X(2); X(3); X(4); X(5); X(6); X(7); #undef X hd->bctx.count = 0; _gcry_burn_stack (burn); } static byte * sha256_read (void *context) { SHA256_CONTEXT *hd = context; return hd->bctx.buf; } /* Shortcut functions which puts the hash value of the supplied buffer iov * into outbuf which must have a size of 32 bytes. */ static void _gcry_sha256_hash_buffers (void *outbuf, size_t nbytes, const gcry_buffer_t *iov, int iovcnt) { SHA256_CONTEXT hd; (void)nbytes; sha256_init (&hd, 0); for (;iovcnt > 0; iov++, iovcnt--) _gcry_md_block_write (&hd, (const char*)iov[0].data + iov[0].off, iov[0].len); sha256_final (&hd); memcpy (outbuf, hd.bctx.buf, 32); } /* Shortcut functions which puts the hash value of the supplied buffer iov * into outbuf which must have a size of 28 bytes. */ static void _gcry_sha224_hash_buffers (void *outbuf, size_t nbytes, const gcry_buffer_t *iov, int iovcnt) { SHA256_CONTEXT hd; (void)nbytes; sha224_init (&hd, 0); for (;iovcnt > 0; iov++, iovcnt--) _gcry_md_block_write (&hd, (const char*)iov[0].data + iov[0].off, iov[0].len); sha256_final (&hd); memcpy (outbuf, hd.bctx.buf, 28); } /* Self-test section. */ static gpg_err_code_t selftests_sha224 (int extended, selftest_report_func_t report) { const char *what; const char *errtxt; what = "short string"; errtxt = _gcry_hash_selftest_check_one (GCRY_MD_SHA224, 0, "abc", 3, "\x23\x09\x7d\x22\x34\x05\xd8\x22\x86\x42\xa4\x77\xbd\xa2\x55\xb3" "\x2a\xad\xbc\xe4\xbd\xa0\xb3\xf7\xe3\x6c\x9d\xa7", 28); if (errtxt) goto failed; if (extended) { what = "long string"; errtxt = _gcry_hash_selftest_check_one (GCRY_MD_SHA224, 0, "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", 56, "\x75\x38\x8b\x16\x51\x27\x76\xcc\x5d\xba\x5d\xa1\xfd\x89\x01\x50" "\xb0\xc6\x45\x5c\xb4\xf5\x8b\x19\x52\x52\x25\x25", 28); if (errtxt) goto failed; what = "one million \"a\""; errtxt = _gcry_hash_selftest_check_one (GCRY_MD_SHA224, 1, NULL, 0, "\x20\x79\x46\x55\x98\x0c\x91\xd8\xbb\xb4\xc1\xea\x97\x61\x8a\x4b" "\xf0\x3f\x42\x58\x19\x48\xb2\xee\x4e\xe7\xad\x67", 28); if (errtxt) goto failed; } return 0; /* Succeeded. */ failed: if (report) report ("digest", GCRY_MD_SHA224, what, errtxt); return GPG_ERR_SELFTEST_FAILED; } static gpg_err_code_t selftests_sha256 (int extended, selftest_report_func_t report) { const char *what; const char *errtxt; what = "short string"; errtxt = _gcry_hash_selftest_check_one (GCRY_MD_SHA256, 0, "abc", 3, "\xba\x78\x16\xbf\x8f\x01\xcf\xea\x41\x41\x40\xde\x5d\xae\x22\x23" "\xb0\x03\x61\xa3\x96\x17\x7a\x9c\xb4\x10\xff\x61\xf2\x00\x15\xad", 32); if (errtxt) goto failed; if (extended) { what = "long string"; errtxt = _gcry_hash_selftest_check_one (GCRY_MD_SHA256, 0, "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", 56, "\x24\x8d\x6a\x61\xd2\x06\x38\xb8\xe5\xc0\x26\x93\x0c\x3e\x60\x39" "\xa3\x3c\xe4\x59\x64\xff\x21\x67\xf6\xec\xed\xd4\x19\xdb\x06\xc1", 32); if (errtxt) goto failed; what = "one million \"a\""; errtxt = _gcry_hash_selftest_check_one (GCRY_MD_SHA256, 1, NULL, 0, "\xcd\xc7\x6e\x5c\x99\x14\xfb\x92\x81\xa1\xc7\xe2\x84\xd7\x3e\x67" "\xf1\x80\x9a\x48\xa4\x97\x20\x0e\x04\x6d\x39\xcc\xc7\x11\x2c\xd0", 32); if (errtxt) goto failed; } return 0; /* Succeeded. */ failed: if (report) report ("digest", GCRY_MD_SHA256, what, errtxt); return GPG_ERR_SELFTEST_FAILED; } /* Run a full self-test for ALGO and return 0 on success. */ static gpg_err_code_t run_selftests (int algo, int extended, selftest_report_func_t report) { gpg_err_code_t ec; switch (algo) { case GCRY_MD_SHA224: ec = selftests_sha224 (extended, report); break; case GCRY_MD_SHA256: ec = selftests_sha256 (extended, report); break; default: ec = GPG_ERR_DIGEST_ALGO; break; } return ec; } static byte asn224[19] = /* Object ID is 2.16.840.1.101.3.4.2.4 */ { 0x30, 0x2D, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04, 0x05, 0x00, 0x04, 0x1C }; static gcry_md_oid_spec_t oid_spec_sha224[] = { /* From RFC3874, Section 4 */ { "2.16.840.1.101.3.4.2.4" }, { NULL }, }; static byte asn256[19] = /* Object ID is 2.16.840.1.101.3.4.2.1 */ { 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20 }; static gcry_md_oid_spec_t oid_spec_sha256[] = { /* According to the OpenPGP draft rfc2440-bis06 */ { "2.16.840.1.101.3.4.2.1" }, /* PKCS#1 sha256WithRSAEncryption */ { "1.2.840.113549.1.1.11" }, { NULL }, }; gcry_md_spec_t _gcry_digest_spec_sha224 = { GCRY_MD_SHA224, {0, 1}, "SHA224", asn224, DIM (asn224), oid_spec_sha224, 28, sha224_init, _gcry_md_block_write, sha256_final, sha256_read, NULL, _gcry_sha224_hash_buffers, sizeof (SHA256_CONTEXT), run_selftests }; gcry_md_spec_t _gcry_digest_spec_sha256 = { GCRY_MD_SHA256, {0, 1}, "SHA256", asn256, DIM (asn256), oid_spec_sha256, 32, sha256_init, _gcry_md_block_write, sha256_final, sha256_read, NULL, _gcry_sha256_hash_buffers, sizeof (SHA256_CONTEXT), run_selftests };