/* bench-slope.c - for libgcrypt * Copyright (C) 2013 Jussi Kivilinna * * This file is part of Libgcrypt. * * Libgcrypt is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser general Public License as * published by the Free Software Foundation; either version 2.1 of * the License, or (at your option) any later version. * * Libgcrypt is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this program; if not, see . */ #ifdef HAVE_CONFIG_H #include #endif #include #include #include #include #include #include #include #ifdef _WIN32 #include #endif #ifdef _GCRYPT_IN_LIBGCRYPT # include "../src/gcrypt-int.h" # include "../compat/libcompat.h" #else # include #endif #ifndef STR #define STR(v) #v #define STR2(v) STR(v) #endif #define PGM "bench-slope" #include "t-common.h" static int verbose; static int csv_mode; static int unaligned_mode; static int num_measurement_repetitions; /* CPU Ghz value provided by user, allows constructing cycles/byte and other results. */ static double cpu_ghz = -1; /* Attempt to autodetect CPU Ghz. */ static int auto_ghz; /* Whether we are running as part of the regression test suite. */ static int in_regression_test; /* The name of the currently printed section. */ static char *current_section_name; /* The name of the currently printed algorithm. */ static char *current_algo_name; /* The name of the currently printed mode. */ static char *current_mode_name; /* Currently used CPU Ghz (either user input or auto-detected. */ static double bench_ghz; /* Current accuracy of auto-detected CPU Ghz. */ static double bench_ghz_diff; static int in_fips_mode; /*************************************** Default parameters for measurements. */ /* Start at small buffer size, to get reasonable timer calibration for fast * implementations (AES-NI etc). Sixteen selected to support the largest block * size of current set cipher blocks. */ #define BUF_START_SIZE 16 /* From ~0 to ~4kbytes give comparable results with results from academia * (SUPERCOP). */ #define BUF_END_SIZE (BUF_START_SIZE + 4096) /* With 128 byte steps, we get (4096)/64 = 64 data points. */ #define BUF_STEP_SIZE 64 /* Number of repeated measurements at each data point. The median of these * measurements is selected as data point further analysis. */ #define NUM_MEASUREMENT_REPETITIONS 64 /* Target accuracy for auto-detected CPU Ghz. */ #define AUTO_GHZ_TARGET_DIFF (5e-5) /**************************************************** High-resolution timers. */ /* This benchmarking module needs needs high resolution timer. */ #undef NO_GET_NSEC_TIME #if defined(_WIN32) struct nsec_time { LARGE_INTEGER perf_count; }; static void get_nsec_time (struct nsec_time *t) { BOOL ok; ok = QueryPerformanceCounter (&t->perf_count); assert (ok); } static double get_time_nsec_diff (struct nsec_time *start, struct nsec_time *end) { static double nsecs_per_count = 0.0; double nsecs; if (nsecs_per_count == 0.0) { LARGE_INTEGER perf_freq; BOOL ok; /* Get counts per second. */ ok = QueryPerformanceFrequency (&perf_freq); assert (ok); nsecs_per_count = 1.0 / perf_freq.QuadPart; nsecs_per_count *= 1000000.0 * 1000.0; /* sec => nsec */ assert (nsecs_per_count > 0.0); } nsecs = end->perf_count.QuadPart - start->perf_count.QuadPart; /* counts */ nsecs *= nsecs_per_count; /* counts * (nsecs / count) => nsecs */ return nsecs; } #elif defined(HAVE_CLOCK_GETTIME) struct nsec_time { struct timespec ts; }; static void get_nsec_time (struct nsec_time *t) { int err; err = clock_gettime (CLOCK_REALTIME, &t->ts); assert (err == 0); } static double get_time_nsec_diff (struct nsec_time *start, struct nsec_time *end) { double nsecs; nsecs = end->ts.tv_sec - start->ts.tv_sec; nsecs *= 1000000.0 * 1000.0; /* sec => nsec */ /* This way we don't have to care if tv_nsec unsigned or signed. */ if (end->ts.tv_nsec >= start->ts.tv_nsec) nsecs += end->ts.tv_nsec - start->ts.tv_nsec; else nsecs -= start->ts.tv_nsec - end->ts.tv_nsec; return nsecs; } #elif defined(HAVE_GETTIMEOFDAY) struct nsec_time { struct timeval tv; }; static void get_nsec_time (struct nsec_time *t) { int err; err = gettimeofday (&t->tv, NULL); assert (err == 0); } static double get_time_nsec_diff (struct nsec_time *start, struct nsec_time *end) { double nsecs; nsecs = end->tv.tv_sec - start->tv.tv_sec; nsecs *= 1000000; /* sec => µsec */ /* This way we don't have to care if tv_usec unsigned or signed. */ if (end->tv.tv_usec >= start->tv.tv_usec) nsecs += end->tv.tv_usec - start->tv.tv_usec; else nsecs -= start->tv.tv_usec - end->tv.tv_usec; nsecs *= 1000; /* µsec => nsec */ return nsecs; } #else #define NO_GET_NSEC_TIME 1 #endif /* If no high resolution timer found, provide dummy bench-slope. */ #ifdef NO_GET_NSEC_TIME int main (void) { /* No nsec timer => SKIP test. */ return 77; } #else /* !NO_GET_NSEC_TIME */ /********************************************** Slope benchmarking framework. */ struct bench_obj { const struct bench_ops *ops; unsigned int num_measure_repetitions; unsigned int min_bufsize; unsigned int max_bufsize; unsigned int step_size; void *priv; void *hd; }; typedef int (*const bench_initialize_t) (struct bench_obj * obj); typedef void (*const bench_finalize_t) (struct bench_obj * obj); typedef void (*const bench_do_run_t) (struct bench_obj * obj, void *buffer, size_t buflen); struct bench_ops { bench_initialize_t initialize; bench_finalize_t finalize; bench_do_run_t do_run; }; static double safe_div (double x, double y) { union { double d; char buf[sizeof(double)]; } u_neg_zero, u_y; if (y != 0) return x / y; u_neg_zero.d = -0.0; u_y.d = y; if (memcmp(u_neg_zero.buf, u_y.buf, sizeof(double)) == 0) return -DBL_MAX; return DBL_MAX; } static double get_slope (double (*const get_x) (unsigned int idx, void *priv), void *get_x_priv, double y_points[], unsigned int npoints, double *overhead) { double sumx, sumy, sumx2, sumy2, sumxy; unsigned int i; double b, a; sumx = sumy = sumx2 = sumy2 = sumxy = 0; if (npoints <= 1) { /* No slope with zero or one point. */ return 0; } for (i = 0; i < npoints; i++) { double x, y; x = get_x (i, get_x_priv); /* bytes */ y = y_points[i]; /* nsecs */ sumx += x; sumy += y; sumx2 += x * x; /*sumy2 += y * y;*/ sumxy += x * y; } b = safe_div(npoints * sumxy - sumx * sumy, npoints * sumx2 - sumx * sumx); if (overhead) { a = safe_div(sumy - b * sumx, npoints); *overhead = a; /* nsecs */ } return b; /* nsecs per byte */ } double get_bench_obj_point_x (unsigned int idx, void *priv) { struct bench_obj *obj = priv; return (double) (obj->min_bufsize + (idx * obj->step_size)); } unsigned int get_num_measurements (struct bench_obj *obj) { unsigned int buf_range = obj->max_bufsize - obj->min_bufsize; unsigned int num = buf_range / obj->step_size + 1; while (obj->min_bufsize + (num * obj->step_size) > obj->max_bufsize) num--; return num + 1; } static int double_cmp (const void *_a, const void *_b) { const double *a, *b; a = _a; b = _b; if (*a > *b) return 1; if (*a < *b) return -1; return 0; } double do_bench_obj_measurement (struct bench_obj *obj, void *buffer, size_t buflen, double *measurement_raw, unsigned int loop_iterations) { const unsigned int num_repetitions = obj->num_measure_repetitions; const bench_do_run_t do_run = obj->ops->do_run; struct nsec_time start, end; unsigned int rep, loop; double res; if (num_repetitions < 1 || loop_iterations < 1) return 0.0; for (rep = 0; rep < num_repetitions; rep++) { get_nsec_time (&start); for (loop = 0; loop < loop_iterations; loop++) do_run (obj, buffer, buflen); get_nsec_time (&end); measurement_raw[rep] = get_time_nsec_diff (&start, &end); } /* Return median of repeated measurements. */ qsort (measurement_raw, num_repetitions, sizeof (measurement_raw[0]), double_cmp); if (num_repetitions % 2 == 1) return measurement_raw[num_repetitions / 2]; res = measurement_raw[num_repetitions / 2] + measurement_raw[num_repetitions / 2 - 1]; return res / 2; } unsigned int adjust_loop_iterations_to_timer_accuracy (struct bench_obj *obj, void *buffer, double *measurement_raw) { const double increase_thres = 3.0; double tmp, nsecs; unsigned int loop_iterations; unsigned int test_bufsize; test_bufsize = obj->min_bufsize; if (test_bufsize == 0) test_bufsize += obj->step_size; loop_iterations = 0; do { /* Increase loop iterations until we get other results than zero. */ nsecs = do_bench_obj_measurement (obj, buffer, test_bufsize, measurement_raw, ++loop_iterations); } while (nsecs < 1.0 - 0.1); do { /* Increase loop iterations until we get reasonable increase for elapsed time. */ tmp = do_bench_obj_measurement (obj, buffer, test_bufsize, measurement_raw, ++loop_iterations); } while (tmp < nsecs * (increase_thres - 0.1)); return loop_iterations; } /* Benchmark and return linear regression slope in nanoseconds per byte. */ double slope_benchmark (struct bench_obj *obj) { unsigned int num_measurements; double *measurements = NULL; double *measurement_raw = NULL; double slope, overhead; unsigned int loop_iterations, midx, i; unsigned char *real_buffer = NULL; unsigned char *buffer; size_t cur_bufsize; int err; err = obj->ops->initialize (obj); if (err < 0) return -1; num_measurements = get_num_measurements (obj); measurements = calloc (num_measurements, sizeof (*measurements)); if (!measurements) goto err_free; measurement_raw = calloc (obj->num_measure_repetitions, sizeof (*measurement_raw)); if (!measurement_raw) goto err_free; if (num_measurements < 1 || obj->num_measure_repetitions < 1 || obj->max_bufsize < 1 || obj->min_bufsize > obj->max_bufsize) goto err_free; real_buffer = malloc (obj->max_bufsize + 128 + unaligned_mode); if (!real_buffer) goto err_free; /* Get aligned buffer */ buffer = real_buffer; buffer += 128 - ((uintptr_t)real_buffer & (128 - 1)); if (unaligned_mode) buffer += unaligned_mode; /* Make buffer unaligned */ for (i = 0; i < obj->max_bufsize; i++) buffer[i] = 0x55 ^ (-i); /* Adjust number of loop iterations up to timer accuracy. */ loop_iterations = adjust_loop_iterations_to_timer_accuracy (obj, buffer, measurement_raw); /* Perform measurements */ for (midx = 0, cur_bufsize = obj->min_bufsize; cur_bufsize <= obj->max_bufsize; cur_bufsize += obj->step_size, midx++) { measurements[midx] = do_bench_obj_measurement (obj, buffer, cur_bufsize, measurement_raw, loop_iterations); measurements[midx] /= loop_iterations; } assert (midx == num_measurements); slope = get_slope (&get_bench_obj_point_x, obj, measurements, num_measurements, &overhead); free (measurement_raw); free (measurements); free (real_buffer); obj->ops->finalize (obj); return slope; err_free: if (measurement_raw) free (measurement_raw); if (measurements) free (measurements); if (real_buffer) free (real_buffer); obj->ops->finalize (obj); return -1; } /********************************************* CPU frequency auto-detection. */ static int auto_ghz_init (struct bench_obj *obj) { obj->min_bufsize = 16; obj->max_bufsize = 64 + obj->min_bufsize; obj->step_size = 8; obj->num_measure_repetitions = 16; return 0; } static void auto_ghz_free (struct bench_obj *obj) { (void)obj; } static void auto_ghz_bench (struct bench_obj *obj, void *buf, size_t buflen) { (void)obj; (void)buf; buflen *= 1024; /* Turbo frequency detection benchmark. Without CPU turbo-boost, this * function will give cycles/iteration result 1024.0 on high-end CPUs. * With turbo, result will be less and can be used detect turbo-clock. */ #ifdef HAVE_GCC_ASM_VOLATILE_MEMORY /* Auto-ghz operation takes two CPU cycles to perform. Memory barriers * are used to prevent compiler from optimizing this loop away. */ #define AUTO_GHZ_OPERATION \ asm volatile ("":"+r"(buflen)::"memory"); \ buflen ^= 1; \ asm volatile ("":"+r"(buflen)::"memory"); \ buflen -= 2 #else /* TODO: Needs alternative way of preventing compiler optimizations. * Mix of XOR and subtraction appears to do the trick for now. */ #define AUTO_GHZ_OPERATION \ buflen ^= 1; \ buflen -= 2 #endif #define AUTO_GHZ_OPERATION_2 \ AUTO_GHZ_OPERATION; \ AUTO_GHZ_OPERATION #define AUTO_GHZ_OPERATION_4 \ AUTO_GHZ_OPERATION_2; \ AUTO_GHZ_OPERATION_2 #define AUTO_GHZ_OPERATION_8 \ AUTO_GHZ_OPERATION_4; \ AUTO_GHZ_OPERATION_4 #define AUTO_GHZ_OPERATION_16 \ AUTO_GHZ_OPERATION_8; \ AUTO_GHZ_OPERATION_8 #define AUTO_GHZ_OPERATION_32 \ AUTO_GHZ_OPERATION_16; \ AUTO_GHZ_OPERATION_16 #define AUTO_GHZ_OPERATION_64 \ AUTO_GHZ_OPERATION_32; \ AUTO_GHZ_OPERATION_32 #define AUTO_GHZ_OPERATION_128 \ AUTO_GHZ_OPERATION_64; \ AUTO_GHZ_OPERATION_64 do { /* 1024 auto-ghz operations per loop, total 2048 instructions. */ AUTO_GHZ_OPERATION_128; AUTO_GHZ_OPERATION_128; AUTO_GHZ_OPERATION_128; AUTO_GHZ_OPERATION_128; AUTO_GHZ_OPERATION_128; AUTO_GHZ_OPERATION_128; AUTO_GHZ_OPERATION_128; AUTO_GHZ_OPERATION_128; } while (buflen); } static struct bench_ops auto_ghz_detect_ops = { &auto_ghz_init, &auto_ghz_free, &auto_ghz_bench }; double get_auto_ghz (void) { struct bench_obj obj = { 0 }; double nsecs_per_iteration; double cycles_per_iteration; obj.ops = &auto_ghz_detect_ops; nsecs_per_iteration = slope_benchmark (&obj); cycles_per_iteration = nsecs_per_iteration * cpu_ghz; /* Adjust CPU Ghz so that cycles per iteration would give '1024.0'. */ return safe_div(cpu_ghz * 1024, cycles_per_iteration); } double do_slope_benchmark (struct bench_obj *obj) { unsigned int try_count = 0; double ret; if (!auto_ghz) { /* Perform measurement without autodetection of CPU frequency. */ do { ret = slope_benchmark (obj); } while (ret <= 0 && try_count++ <= 4); bench_ghz = cpu_ghz; bench_ghz_diff = 0; } else { double target_diff = AUTO_GHZ_TARGET_DIFF; double cpu_auto_ghz_before; double cpu_auto_ghz_after; double nsecs_per_iteration; double diff; /* Perform measurement with CPU frequency autodetection. */ do { /* Repeat measurement until CPU turbo frequency has stabilized. */ if ((++try_count % 4) == 0) { /* Too much frequency instability on the system, relax target * accuracy. */ target_diff *= 2; } cpu_auto_ghz_before = get_auto_ghz (); nsecs_per_iteration = slope_benchmark (obj); cpu_auto_ghz_after = get_auto_ghz (); diff = 1.0 - safe_div(cpu_auto_ghz_before, cpu_auto_ghz_after); diff = diff < 0 ? -diff : diff; } while ((nsecs_per_iteration <= 0 || diff > target_diff) && try_count < 1000); ret = nsecs_per_iteration; bench_ghz = (cpu_auto_ghz_before + cpu_auto_ghz_after) / 2; bench_ghz_diff = diff; } return ret; } /********************************************************** Printing results. */ static void double_to_str (char *out, size_t outlen, double value) { const char *fmt; if (value < 1.0) fmt = "%.3f"; else if (value < 100.0) fmt = "%.2f"; else if (value < 1000.0) fmt = "%.1f"; else fmt = "%.0f"; snprintf (out, outlen, fmt, value); } static void bench_print_result_csv (double nsecs_per_byte) { double cycles_per_byte, mbytes_per_sec; char nsecpbyte_buf[16]; char mbpsec_buf[16]; char cpbyte_buf[16]; char mhz_buf[16]; char mhz_diff_buf[32]; strcpy (mhz_diff_buf, ""); *cpbyte_buf = 0; *mhz_buf = 0; double_to_str (nsecpbyte_buf, sizeof (nsecpbyte_buf), nsecs_per_byte); /* If user didn't provide CPU speed, we cannot show cycles/byte results. */ if (bench_ghz > 0.0) { cycles_per_byte = nsecs_per_byte * bench_ghz; double_to_str (cpbyte_buf, sizeof (cpbyte_buf), cycles_per_byte); double_to_str (mhz_buf, sizeof (mhz_buf), bench_ghz * 1000); if (auto_ghz && bench_ghz_diff * 1000 >= 1) { snprintf(mhz_diff_buf, sizeof(mhz_diff_buf), ",%.0f,Mhz-diff", bench_ghz_diff * 1000); } } mbytes_per_sec = safe_div(1000.0 * 1000.0 * 1000.0, nsecs_per_byte * 1024 * 1024); double_to_str (mbpsec_buf, sizeof (mbpsec_buf), mbytes_per_sec); /* We print two empty fields to allow for future enhancements. */ if (auto_ghz) { printf ("%s,%s,%s,,,%s,ns/B,%s,MiB/s,%s,c/B,%s,Mhz%s\n", current_section_name, current_algo_name? current_algo_name : "", current_mode_name? current_mode_name : "", nsecpbyte_buf, mbpsec_buf, cpbyte_buf, mhz_buf, mhz_diff_buf); } else { printf ("%s,%s,%s,,,%s,ns/B,%s,MiB/s,%s,c/B\n", current_section_name, current_algo_name? current_algo_name : "", current_mode_name? current_mode_name : "", nsecpbyte_buf, mbpsec_buf, cpbyte_buf); } } static void bench_print_result_std (double nsecs_per_byte) { double cycles_per_byte, mbytes_per_sec; char nsecpbyte_buf[16]; char mbpsec_buf[16]; char cpbyte_buf[16]; char mhz_buf[16]; char mhz_diff_buf[32]; strcpy (mhz_diff_buf, ""); double_to_str (nsecpbyte_buf, sizeof (nsecpbyte_buf), nsecs_per_byte); /* If user didn't provide CPU speed, we cannot show cycles/byte results. */ if (bench_ghz > 0.0) { cycles_per_byte = nsecs_per_byte * bench_ghz; double_to_str (cpbyte_buf, sizeof (cpbyte_buf), cycles_per_byte); double_to_str (mhz_buf, sizeof (mhz_buf), bench_ghz * 1000); if (auto_ghz && bench_ghz_diff * 1000 >= 0.5) { snprintf(mhz_diff_buf, sizeof(mhz_diff_buf), "±%.0f", bench_ghz_diff * 1000); } } else { strcpy (cpbyte_buf, "-"); strcpy (mhz_buf, "-"); } mbytes_per_sec = safe_div(1000.0 * 1000.0 * 1000.0, nsecs_per_byte * 1024 * 1024); double_to_str (mbpsec_buf, sizeof (mbpsec_buf), mbytes_per_sec); if (auto_ghz) { printf ("%9s ns/B %9s MiB/s %9s c/B %9s%s\n", nsecpbyte_buf, mbpsec_buf, cpbyte_buf, mhz_buf, mhz_diff_buf); } else { printf ("%9s ns/B %9s MiB/s %9s c/B\n", nsecpbyte_buf, mbpsec_buf, cpbyte_buf); } } static void bench_print_result (double nsecs_per_byte) { if (csv_mode) bench_print_result_csv (nsecs_per_byte); else bench_print_result_std (nsecs_per_byte); } static void bench_print_result_nsec_per_iteration (double nsecs_per_iteration) { double cycles_per_iteration; char nsecpiter_buf[16]; char cpiter_buf[16]; char mhz_buf[16]; strcpy(cpiter_buf, csv_mode ? "" : "-"); strcpy(mhz_buf, csv_mode ? "" : "-"); double_to_str (nsecpiter_buf, sizeof (nsecpiter_buf), nsecs_per_iteration); /* If user didn't provide CPU speed, we cannot show cycles/iter results. */ if (bench_ghz > 0.0) { cycles_per_iteration = nsecs_per_iteration * bench_ghz; double_to_str (cpiter_buf, sizeof (cpiter_buf), cycles_per_iteration); double_to_str (mhz_buf, sizeof (mhz_buf), bench_ghz * 1000); } if (csv_mode) { if (auto_ghz) printf ("%s,%s,%s,,,,,,,,,%s,ns/iter,%s,c/iter,%s,Mhz\n", current_section_name, current_algo_name ? current_algo_name : "", current_mode_name ? current_mode_name : "", nsecpiter_buf, cpiter_buf, mhz_buf); else printf ("%s,%s,%s,,,,,,,,,%s,ns/iter,%s,c/iter\n", current_section_name, current_algo_name ? current_algo_name : "", current_mode_name ? current_mode_name : "", nsecpiter_buf, cpiter_buf); } else { if (auto_ghz) printf ("%14s %13s %9s\n", nsecpiter_buf, cpiter_buf, mhz_buf); else printf ("%14s %13s\n", nsecpiter_buf, cpiter_buf); } } static void bench_print_section (const char *section_name, const char *print_name) { if (csv_mode) { gcry_free (current_section_name); current_section_name = gcry_xstrdup (section_name); } else printf ("%s:\n", print_name); } static void bench_print_header (int algo_width, const char *algo_name) { if (csv_mode) { gcry_free (current_algo_name); current_algo_name = gcry_xstrdup (algo_name); } else { if (algo_width < 0) printf (" %-*s | ", -algo_width, algo_name); else printf (" %-*s | ", algo_width, algo_name); if (auto_ghz) printf ("%14s %15s %13s %9s\n", "nanosecs/byte", "mebibytes/sec", "cycles/byte", "auto Mhz"); else printf ("%14s %15s %13s\n", "nanosecs/byte", "mebibytes/sec", "cycles/byte"); } } static void bench_print_header_nsec_per_iteration (int algo_width, const char *algo_name) { if (csv_mode) { gcry_free (current_algo_name); current_algo_name = gcry_xstrdup (algo_name); } else { if (algo_width < 0) printf (" %-*s | ", -algo_width, algo_name); else printf (" %-*s | ", algo_width, algo_name); if (auto_ghz) printf ("%14s %13s %9s\n", "nanosecs/iter", "cycles/iter", "auto Mhz"); else printf ("%14s %13s\n", "nanosecs/iter", "cycles/iter"); } } static void bench_print_algo (int algo_width, const char *algo_name) { if (csv_mode) { gcry_free (current_algo_name); current_algo_name = gcry_xstrdup (algo_name); } else { if (algo_width < 0) printf (" %-*s | ", -algo_width, algo_name); else printf (" %-*s | ", algo_width, algo_name); } } static void bench_print_mode (int width, const char *mode_name) { if (csv_mode) { gcry_free (current_mode_name); current_mode_name = gcry_xstrdup (mode_name); } else { if (width < 0) printf (" %-*s | ", -width, mode_name); else printf (" %*s | ", width, mode_name); fflush (stdout); } } static void bench_print_footer (int algo_width) { if (!csv_mode) printf (" %-*s =\n", algo_width, ""); } /********************************************************* Cipher benchmarks. */ struct bench_cipher_mode { int mode; const char *name; struct bench_ops *ops; int algo; }; static void bench_set_cipher_key (gcry_cipher_hd_t hd, int keylen) { char *key; int err, i; key = malloc (keylen); if (!key) { fprintf (stderr, PGM ": couldn't allocate %d bytes\n", keylen); gcry_cipher_close (hd); exit (1); } for (i = 0; i < keylen; i++) key[i] = 0x33 ^ (11 - i); err = gcry_cipher_setkey (hd, key, keylen); free (key); if (err) { fprintf (stderr, PGM ": gcry_cipher_setkey failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hd); exit (1); } } static int bench_encrypt_init (struct bench_obj *obj) { struct bench_cipher_mode *mode = obj->priv; gcry_cipher_hd_t hd; int err, keylen; obj->min_bufsize = BUF_START_SIZE; obj->max_bufsize = BUF_END_SIZE; obj->step_size = BUF_STEP_SIZE; obj->num_measure_repetitions = num_measurement_repetitions; err = gcry_cipher_open (&hd, mode->algo, mode->mode, 0); if (err) { fprintf (stderr, PGM ": error opening cipher `%s'\n", gcry_cipher_algo_name (mode->algo)); exit (1); } keylen = gcry_cipher_get_algo_keylen (mode->algo); if (mode->mode == GCRY_CIPHER_MODE_SIV) { keylen *= 2; } if (keylen) { bench_set_cipher_key (hd, keylen); } else { fprintf (stderr, PGM ": failed to get key length for algorithm `%s'\n", gcry_cipher_algo_name (mode->algo)); gcry_cipher_close (hd); exit (1); } obj->hd = hd; return 0; } static void bench_encrypt_free (struct bench_obj *obj) { gcry_cipher_hd_t hd = obj->hd; gcry_cipher_close (hd); } static void bench_encrypt_do_bench (struct bench_obj *obj, void *buf, size_t buflen) { gcry_cipher_hd_t hd = obj->hd; int err; err = gcry_cipher_reset (hd); if (!err) err = gcry_cipher_encrypt (hd, buf, buflen, buf, buflen); if (err) { fprintf (stderr, PGM ": gcry_cipher_encrypt failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hd); exit (1); } } static void bench_decrypt_do_bench (struct bench_obj *obj, void *buf, size_t buflen) { gcry_cipher_hd_t hd = obj->hd; int err; err = gcry_cipher_reset (hd); if (!err) err = gcry_cipher_decrypt (hd, buf, buflen, buf, buflen); if (err) { fprintf (stderr, PGM ": gcry_cipher_encrypt failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hd); exit (1); } } static struct bench_ops encrypt_ops = { &bench_encrypt_init, &bench_encrypt_free, &bench_encrypt_do_bench }; static struct bench_ops decrypt_ops = { &bench_encrypt_init, &bench_encrypt_free, &bench_decrypt_do_bench }; static int bench_xts_encrypt_init (struct bench_obj *obj) { struct bench_cipher_mode *mode = obj->priv; gcry_cipher_hd_t hd; int err, keylen; obj->min_bufsize = BUF_START_SIZE; obj->max_bufsize = BUF_END_SIZE; obj->step_size = BUF_STEP_SIZE; obj->num_measure_repetitions = num_measurement_repetitions; err = gcry_cipher_open (&hd, mode->algo, mode->mode, 0); if (err) { fprintf (stderr, PGM ": error opening cipher `%s'\n", gcry_cipher_algo_name (mode->algo)); exit (1); } /* Double key-length for XTS. */ keylen = gcry_cipher_get_algo_keylen (mode->algo) * 2; if (keylen) { bench_set_cipher_key (hd, keylen); } else { fprintf (stderr, PGM ": failed to get key length for algorithm `%s'\n", gcry_cipher_algo_name (mode->algo)); gcry_cipher_close (hd); exit (1); } obj->hd = hd; return 0; } static struct bench_ops xts_encrypt_ops = { &bench_xts_encrypt_init, &bench_encrypt_free, &bench_encrypt_do_bench }; static struct bench_ops xts_decrypt_ops = { &bench_xts_encrypt_init, &bench_encrypt_free, &bench_decrypt_do_bench }; static void bench_ccm_encrypt_do_bench (struct bench_obj *obj, void *buf, size_t buflen) { gcry_cipher_hd_t hd = obj->hd; int err; char tag[8]; char nonce[11] = { 0x80, 0x01, }; u64 params[3]; gcry_cipher_setiv (hd, nonce, sizeof (nonce)); /* Set CCM lengths */ params[0] = buflen; params[1] = 0; /*aadlen */ params[2] = sizeof (tag); err = gcry_cipher_ctl (hd, GCRYCTL_SET_CCM_LENGTHS, params, sizeof (params)); if (err) { fprintf (stderr, PGM ": gcry_cipher_ctl failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hd); exit (1); } err = gcry_cipher_encrypt (hd, buf, buflen, buf, buflen); if (err) { fprintf (stderr, PGM ": gcry_cipher_encrypt failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hd); exit (1); } err = gcry_cipher_gettag (hd, tag, sizeof (tag)); if (err) { fprintf (stderr, PGM ": gcry_cipher_gettag failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hd); exit (1); } } static void bench_ccm_decrypt_do_bench (struct bench_obj *obj, void *buf, size_t buflen) { gcry_cipher_hd_t hd = obj->hd; int err; char tag[8] = { 0, }; char nonce[11] = { 0x80, 0x01, }; u64 params[3]; gcry_cipher_setiv (hd, nonce, sizeof (nonce)); /* Set CCM lengths */ params[0] = buflen; params[1] = 0; /*aadlen */ params[2] = sizeof (tag); err = gcry_cipher_ctl (hd, GCRYCTL_SET_CCM_LENGTHS, params, sizeof (params)); if (err) { fprintf (stderr, PGM ": gcry_cipher_ctl failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hd); exit (1); } err = gcry_cipher_decrypt (hd, buf, buflen, buf, buflen); if (err) { fprintf (stderr, PGM ": gcry_cipher_encrypt failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hd); exit (1); } err = gcry_cipher_checktag (hd, tag, sizeof (tag)); if (gpg_err_code (err) == GPG_ERR_CHECKSUM) err = gpg_error (GPG_ERR_NO_ERROR); if (err) { fprintf (stderr, PGM ": gcry_cipher_gettag failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hd); exit (1); } } static void bench_ccm_authenticate_do_bench (struct bench_obj *obj, void *buf, size_t buflen) { gcry_cipher_hd_t hd = obj->hd; int err; char tag[8] = { 0, }; char nonce[11] = { 0x80, 0x01, }; u64 params[3]; char data = 0xff; gcry_cipher_setiv (hd, nonce, sizeof (nonce)); /* Set CCM lengths */ params[0] = sizeof (data); /*datalen */ params[1] = buflen; /*aadlen */ params[2] = sizeof (tag); err = gcry_cipher_ctl (hd, GCRYCTL_SET_CCM_LENGTHS, params, sizeof (params)); if (err) { fprintf (stderr, PGM ": gcry_cipher_ctl failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hd); exit (1); } err = gcry_cipher_authenticate (hd, buf, buflen); if (err) { fprintf (stderr, PGM ": gcry_cipher_authenticate failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hd); exit (1); } err = gcry_cipher_encrypt (hd, &data, sizeof (data), &data, sizeof (data)); if (err) { fprintf (stderr, PGM ": gcry_cipher_encrypt failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hd); exit (1); } err = gcry_cipher_gettag (hd, tag, sizeof (tag)); if (err) { fprintf (stderr, PGM ": gcry_cipher_gettag failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hd); exit (1); } } static struct bench_ops ccm_encrypt_ops = { &bench_encrypt_init, &bench_encrypt_free, &bench_ccm_encrypt_do_bench }; static struct bench_ops ccm_decrypt_ops = { &bench_encrypt_init, &bench_encrypt_free, &bench_ccm_decrypt_do_bench }; static struct bench_ops ccm_authenticate_ops = { &bench_encrypt_init, &bench_encrypt_free, &bench_ccm_authenticate_do_bench }; static void bench_aead_encrypt_do_bench (struct bench_obj *obj, void *buf, size_t buflen, const char *nonce, size_t noncelen) { gcry_cipher_hd_t hd = obj->hd; int err; char tag[16]; gcry_cipher_reset (hd); gcry_cipher_setiv (hd, nonce, noncelen); gcry_cipher_final (hd); err = gcry_cipher_encrypt (hd, buf, buflen, buf, buflen); if (err) { fprintf (stderr, PGM ": gcry_cipher_encrypt failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hd); exit (1); } err = gcry_cipher_gettag (hd, tag, sizeof (tag)); if (err) { fprintf (stderr, PGM ": gcry_cipher_gettag failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hd); exit (1); } } static void bench_aead_decrypt_do_bench (struct bench_obj *obj, void *buf, size_t buflen, const char *nonce, size_t noncelen) { gcry_cipher_hd_t hd = obj->hd; int err; char tag[16] = { 0, }; gcry_cipher_reset (hd); gcry_cipher_set_decryption_tag (hd, tag, 16); gcry_cipher_setiv (hd, nonce, noncelen); gcry_cipher_final (hd); err = gcry_cipher_decrypt (hd, buf, buflen, buf, buflen); if (gpg_err_code (err) == GPG_ERR_CHECKSUM) err = gpg_error (GPG_ERR_NO_ERROR); if (err) { fprintf (stderr, PGM ": gcry_cipher_decrypt failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hd); exit (1); } err = gcry_cipher_checktag (hd, tag, sizeof (tag)); if (gpg_err_code (err) == GPG_ERR_CHECKSUM) err = gpg_error (GPG_ERR_NO_ERROR); if (err) { fprintf (stderr, PGM ": gcry_cipher_gettag failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hd); exit (1); } } static void bench_aead_authenticate_do_bench (struct bench_obj *obj, void *buf, size_t buflen, const char *nonce, size_t noncelen) { gcry_cipher_hd_t hd = obj->hd; int err; char tag[16] = { 0, }; char data = 0xff; gcry_cipher_reset (hd); if (noncelen > 0) { err = gcry_cipher_setiv (hd, nonce, noncelen); if (err) { fprintf (stderr, PGM ": gcry_cipher_setiv failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hd); exit (1); } } err = gcry_cipher_authenticate (hd, buf, buflen); if (err) { fprintf (stderr, PGM ": gcry_cipher_authenticate failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hd); exit (1); } gcry_cipher_final (hd); err = gcry_cipher_encrypt (hd, &data, sizeof (data), &data, sizeof (data)); if (err) { fprintf (stderr, PGM ": gcry_cipher_encrypt failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hd); exit (1); } err = gcry_cipher_gettag (hd, tag, sizeof (tag)); if (err) { fprintf (stderr, PGM ": gcry_cipher_gettag failed: %s\n", gpg_strerror (err)); gcry_cipher_close (hd); exit (1); } } static void bench_gcm_encrypt_do_bench (struct bench_obj *obj, void *buf, size_t buflen) { char nonce[12] = { 0xca, 0xfe, 0xba, 0xbe, 0xfa, 0xce, 0xdb, 0xad, 0xde, 0xca, 0xf8, 0x88 }; bench_aead_encrypt_do_bench (obj, buf, buflen, nonce, sizeof(nonce)); } static void bench_gcm_decrypt_do_bench (struct bench_obj *obj, void *buf, size_t buflen) { char nonce[12] = { 0xca, 0xfe, 0xba, 0xbe, 0xfa, 0xce, 0xdb, 0xad, 0xde, 0xca, 0xf8, 0x88 }; bench_aead_decrypt_do_bench (obj, buf, buflen, nonce, sizeof(nonce)); } static void bench_gcm_authenticate_do_bench (struct bench_obj *obj, void *buf, size_t buflen) { char nonce[12] = { 0xca, 0xfe, 0xba, 0xbe, 0xfa, 0xce, 0xdb, 0xad, 0xde, 0xca, 0xf8, 0x88 }; bench_aead_authenticate_do_bench (obj, buf, buflen, nonce, sizeof(nonce)); } static struct bench_ops gcm_encrypt_ops = { &bench_encrypt_init, &bench_encrypt_free, &bench_gcm_encrypt_do_bench }; static struct bench_ops gcm_decrypt_ops = { &bench_encrypt_init, &bench_encrypt_free, &bench_gcm_decrypt_do_bench }; static struct bench_ops gcm_authenticate_ops = { &bench_encrypt_init, &bench_encrypt_free, &bench_gcm_authenticate_do_bench }; static void bench_ocb_encrypt_do_bench (struct bench_obj *obj, void *buf, size_t buflen) { char nonce[15] = { 0xca, 0xfe, 0xba, 0xbe, 0xfa, 0xce, 0xdb, 0xad, 0xde, 0xca, 0xf8, 0x88, 0x00, 0x00, 0x01 }; bench_aead_encrypt_do_bench (obj, buf, buflen, nonce, sizeof(nonce)); } static void bench_ocb_decrypt_do_bench (struct bench_obj *obj, void *buf, size_t buflen) { char nonce[15] = { 0xca, 0xfe, 0xba, 0xbe, 0xfa, 0xce, 0xdb, 0xad, 0xde, 0xca, 0xf8, 0x88, 0x00, 0x00, 0x01 }; bench_aead_decrypt_do_bench (obj, buf, buflen, nonce, sizeof(nonce)); } static void bench_ocb_authenticate_do_bench (struct bench_obj *obj, void *buf, size_t buflen) { char nonce[15] = { 0xca, 0xfe, 0xba, 0xbe, 0xfa, 0xce, 0xdb, 0xad, 0xde, 0xca, 0xf8, 0x88, 0x00, 0x00, 0x01 }; bench_aead_authenticate_do_bench (obj, buf, buflen, nonce, sizeof(nonce)); } static struct bench_ops ocb_encrypt_ops = { &bench_encrypt_init, &bench_encrypt_free, &bench_ocb_encrypt_do_bench }; static struct bench_ops ocb_decrypt_ops = { &bench_encrypt_init, &bench_encrypt_free, &bench_ocb_decrypt_do_bench }; static struct bench_ops ocb_authenticate_ops = { &bench_encrypt_init, &bench_encrypt_free, &bench_ocb_authenticate_do_bench }; static void bench_siv_encrypt_do_bench (struct bench_obj *obj, void *buf, size_t buflen) { bench_aead_encrypt_do_bench (obj, buf, buflen, NULL, 0); } static void bench_siv_decrypt_do_bench (struct bench_obj *obj, void *buf, size_t buflen) { bench_aead_decrypt_do_bench (obj, buf, buflen, NULL, 0); } static void bench_siv_authenticate_do_bench (struct bench_obj *obj, void *buf, size_t buflen) { bench_aead_authenticate_do_bench (obj, buf, buflen, NULL, 0); } static struct bench_ops siv_encrypt_ops = { &bench_encrypt_init, &bench_encrypt_free, &bench_siv_encrypt_do_bench }; static struct bench_ops siv_decrypt_ops = { &bench_encrypt_init, &bench_encrypt_free, &bench_siv_decrypt_do_bench }; static struct bench_ops siv_authenticate_ops = { &bench_encrypt_init, &bench_encrypt_free, &bench_siv_authenticate_do_bench }; static void bench_gcm_siv_encrypt_do_bench (struct bench_obj *obj, void *buf, size_t buflen) { char nonce[12] = { 0xca, 0xfe, 0xba, 0xbe, 0xfa, 0xce, 0xdb, 0xad, 0xde, 0xca, 0xf8, 0x88 }; bench_aead_encrypt_do_bench (obj, buf, buflen, nonce, sizeof(nonce)); } static void bench_gcm_siv_decrypt_do_bench (struct bench_obj *obj, void *buf, size_t buflen) { char nonce[12] = { 0xca, 0xfe, 0xba, 0xbe, 0xfa, 0xce, 0xdb, 0xad, 0xde, 0xca, 0xf8, 0x88 }; bench_aead_decrypt_do_bench (obj, buf, buflen, nonce, sizeof(nonce)); } static void bench_gcm_siv_authenticate_do_bench (struct bench_obj *obj, void *buf, size_t buflen) { char nonce[12] = { 0xca, 0xfe, 0xba, 0xbe, 0xfa, 0xce, 0xdb, 0xad, 0xde, 0xca, 0xf8, 0x88 }; bench_aead_authenticate_do_bench (obj, buf, buflen, nonce, sizeof(nonce)); } static struct bench_ops gcm_siv_encrypt_ops = { &bench_encrypt_init, &bench_encrypt_free, &bench_gcm_siv_encrypt_do_bench }; static struct bench_ops gcm_siv_decrypt_ops = { &bench_encrypt_init, &bench_encrypt_free, &bench_gcm_siv_decrypt_do_bench }; static struct bench_ops gcm_siv_authenticate_ops = { &bench_encrypt_init, &bench_encrypt_free, &bench_gcm_siv_authenticate_do_bench }; static void bench_eax_encrypt_do_bench (struct bench_obj *obj, void *buf, size_t buflen) { char nonce[16] = { 0xca, 0xfe, 0xba, 0xbe, 0xfa, 0xce, 0xdb, 0xad, 0xde, 0xca, 0xf8, 0x88, 0x00, 0x00, 0x01, 0x00 }; bench_aead_encrypt_do_bench (obj, buf, buflen, nonce, sizeof(nonce)); } static void bench_eax_decrypt_do_bench (struct bench_obj *obj, void *buf, size_t buflen) { char nonce[16] = { 0xca, 0xfe, 0xba, 0xbe, 0xfa, 0xce, 0xdb, 0xad, 0xde, 0xca, 0xf8, 0x88, 0x00, 0x00, 0x01, 0x00 }; bench_aead_decrypt_do_bench (obj, buf, buflen, nonce, sizeof(nonce)); } static void bench_eax_authenticate_do_bench (struct bench_obj *obj, void *buf, size_t buflen) { char nonce[16] = { 0xca, 0xfe, 0xba, 0xbe, 0xfa, 0xce, 0xdb, 0xad, 0xde, 0xca, 0xf8, 0x88, 0x00, 0x00, 0x01, 0x00 }; bench_aead_authenticate_do_bench (obj, buf, buflen, nonce, sizeof(nonce)); } static struct bench_ops eax_encrypt_ops = { &bench_encrypt_init, &bench_encrypt_free, &bench_eax_encrypt_do_bench }; static struct bench_ops eax_decrypt_ops = { &bench_encrypt_init, &bench_encrypt_free, &bench_eax_decrypt_do_bench }; static struct bench_ops eax_authenticate_ops = { &bench_encrypt_init, &bench_encrypt_free, &bench_eax_authenticate_do_bench }; static void bench_poly1305_encrypt_do_bench (struct bench_obj *obj, void *buf, size_t buflen) { char nonce[8] = { 0xca, 0xfe, 0xba, 0xbe, 0xfa, 0xce, 0xdb, 0xad }; bench_aead_encrypt_do_bench (obj, buf, buflen, nonce, sizeof(nonce)); } static void bench_poly1305_decrypt_do_bench (struct bench_obj *obj, void *buf, size_t buflen) { char nonce[8] = { 0xca, 0xfe, 0xba, 0xbe, 0xfa, 0xce, 0xdb, 0xad }; bench_aead_decrypt_do_bench (obj, buf, buflen, nonce, sizeof(nonce)); } static void bench_poly1305_authenticate_do_bench (struct bench_obj *obj, void *buf, size_t buflen) { char nonce[8] = { 0xca, 0xfe, 0xba, 0xbe, 0xfa, 0xce, 0xdb, 0xad }; bench_aead_authenticate_do_bench (obj, buf, buflen, nonce, sizeof(nonce)); } static struct bench_ops poly1305_encrypt_ops = { &bench_encrypt_init, &bench_encrypt_free, &bench_poly1305_encrypt_do_bench }; static struct bench_ops poly1305_decrypt_ops = { &bench_encrypt_init, &bench_encrypt_free, &bench_poly1305_decrypt_do_bench }; static struct bench_ops poly1305_authenticate_ops = { &bench_encrypt_init, &bench_encrypt_free, &bench_poly1305_authenticate_do_bench }; static struct bench_cipher_mode cipher_modes[] = { {GCRY_CIPHER_MODE_ECB, "ECB enc", &encrypt_ops}, {GCRY_CIPHER_MODE_ECB, "ECB dec", &decrypt_ops}, {GCRY_CIPHER_MODE_CBC, "CBC enc", &encrypt_ops}, {GCRY_CIPHER_MODE_CBC, "CBC dec", &decrypt_ops}, {GCRY_CIPHER_MODE_CFB, "CFB enc", &encrypt_ops}, {GCRY_CIPHER_MODE_CFB, "CFB dec", &decrypt_ops}, {GCRY_CIPHER_MODE_OFB, "OFB enc", &encrypt_ops}, {GCRY_CIPHER_MODE_OFB, "OFB dec", &decrypt_ops}, {GCRY_CIPHER_MODE_CTR, "CTR enc", &encrypt_ops}, {GCRY_CIPHER_MODE_CTR, "CTR dec", &decrypt_ops}, {GCRY_CIPHER_MODE_XTS, "XTS enc", &xts_encrypt_ops}, {GCRY_CIPHER_MODE_XTS, "XTS dec", &xts_decrypt_ops}, {GCRY_CIPHER_MODE_CCM, "CCM enc", &ccm_encrypt_ops}, {GCRY_CIPHER_MODE_CCM, "CCM dec", &ccm_decrypt_ops}, {GCRY_CIPHER_MODE_CCM, "CCM auth", &ccm_authenticate_ops}, {GCRY_CIPHER_MODE_EAX, "EAX enc", &eax_encrypt_ops}, {GCRY_CIPHER_MODE_EAX, "EAX dec", &eax_decrypt_ops}, {GCRY_CIPHER_MODE_EAX, "EAX auth", &eax_authenticate_ops}, {GCRY_CIPHER_MODE_GCM, "GCM enc", &gcm_encrypt_ops}, {GCRY_CIPHER_MODE_GCM, "GCM dec", &gcm_decrypt_ops}, {GCRY_CIPHER_MODE_GCM, "GCM auth", &gcm_authenticate_ops}, {GCRY_CIPHER_MODE_OCB, "OCB enc", &ocb_encrypt_ops}, {GCRY_CIPHER_MODE_OCB, "OCB dec", &ocb_decrypt_ops}, {GCRY_CIPHER_MODE_OCB, "OCB auth", &ocb_authenticate_ops}, {GCRY_CIPHER_MODE_SIV, "SIV enc", &siv_encrypt_ops}, {GCRY_CIPHER_MODE_SIV, "SIV dec", &siv_decrypt_ops}, {GCRY_CIPHER_MODE_SIV, "SIV auth", &siv_authenticate_ops}, {GCRY_CIPHER_MODE_GCM_SIV, "GCM-SIV enc", &gcm_siv_encrypt_ops}, {GCRY_CIPHER_MODE_GCM_SIV, "GCM-SIV dec", &gcm_siv_decrypt_ops}, {GCRY_CIPHER_MODE_GCM_SIV, "GCM-SIV auth", &gcm_siv_authenticate_ops}, {GCRY_CIPHER_MODE_POLY1305, "POLY1305 enc", &poly1305_encrypt_ops}, {GCRY_CIPHER_MODE_POLY1305, "POLY1305 dec", &poly1305_decrypt_ops}, {GCRY_CIPHER_MODE_POLY1305, "POLY1305 auth", &poly1305_authenticate_ops}, {0}, }; static void cipher_bench_one (int algo, struct bench_cipher_mode *pmode) { struct bench_cipher_mode mode = *pmode; struct bench_obj obj = { 0 }; double result; unsigned int blklen; unsigned int keylen; mode.algo = algo; /* Check if this mode is ok */ blklen = gcry_cipher_get_algo_blklen (algo); if (!blklen) return; keylen = gcry_cipher_get_algo_keylen (algo); if (!keylen) return; /* Stream cipher? Only test with "ECB" and POLY1305. */ if (blklen == 1 && (mode.mode != GCRY_CIPHER_MODE_ECB && mode.mode != GCRY_CIPHER_MODE_POLY1305)) return; if (blklen == 1 && mode.mode == GCRY_CIPHER_MODE_ECB) { mode.mode = GCRY_CIPHER_MODE_STREAM; mode.name = mode.ops == &encrypt_ops ? "STREAM enc" : "STREAM dec"; } /* Poly1305 has restriction for cipher algorithm */ if (mode.mode == GCRY_CIPHER_MODE_POLY1305 && algo != GCRY_CIPHER_CHACHA20) return; /* CCM has restrictions for block-size */ if (mode.mode == GCRY_CIPHER_MODE_CCM && blklen != GCRY_CCM_BLOCK_LEN) return; /* GCM has restrictions for block-size; not allowed in FIPS mode */ if (mode.mode == GCRY_CIPHER_MODE_GCM && (in_fips_mode || blklen != GCRY_GCM_BLOCK_LEN)) return; /* XTS has restrictions for block-size */ if (mode.mode == GCRY_CIPHER_MODE_XTS && blklen != GCRY_XTS_BLOCK_LEN) return; /* SIV has restrictions for block-size */ if (mode.mode == GCRY_CIPHER_MODE_SIV && blklen != GCRY_SIV_BLOCK_LEN) return; /* GCM-SIV has restrictions for block-size */ if (mode.mode == GCRY_CIPHER_MODE_GCM_SIV && blklen != GCRY_SIV_BLOCK_LEN) return; /* GCM-SIV has restrictions for key length */ if (mode.mode == GCRY_CIPHER_MODE_GCM_SIV && !(keylen == 16 || keylen == 32)) return; /* Our OCB implementation has restrictions for block-size. */ if (mode.mode == GCRY_CIPHER_MODE_OCB && blklen != GCRY_OCB_BLOCK_LEN) return; bench_print_mode (14, mode.name); obj.ops = mode.ops; obj.priv = &mode; result = do_slope_benchmark (&obj); bench_print_result (result); } static void _cipher_bench (int algo) { const char *algoname; int i; algoname = gcry_cipher_algo_name (algo); bench_print_header (14, algoname); for (i = 0; cipher_modes[i].mode; i++) cipher_bench_one (algo, &cipher_modes[i]); bench_print_footer (14); } void cipher_bench (char **argv, int argc) { int i, algo; bench_print_section ("cipher", "Cipher"); if (argv && argc) { for (i = 0; i < argc; i++) { algo = gcry_cipher_map_name (argv[i]); if (algo) _cipher_bench (algo); } } else { for (i = 1; i < 400; i++) if (!gcry_cipher_test_algo (i)) _cipher_bench (i); } } /*********************************************************** Hash benchmarks. */ struct bench_hash_mode { const char *name; struct bench_ops *ops; int algo; }; static int bench_hash_init (struct bench_obj *obj) { struct bench_hash_mode *mode = obj->priv; gcry_md_hd_t hd; int err; obj->min_bufsize = BUF_START_SIZE; obj->max_bufsize = BUF_END_SIZE; obj->step_size = BUF_STEP_SIZE; obj->num_measure_repetitions = num_measurement_repetitions; err = gcry_md_open (&hd, mode->algo, 0); if (err) { fprintf (stderr, PGM ": error opening hash `%s'\n", gcry_md_algo_name (mode->algo)); exit (1); } obj->hd = hd; return 0; } static void bench_hash_free (struct bench_obj *obj) { gcry_md_hd_t hd = obj->hd; gcry_md_close (hd); } static void bench_hash_do_bench (struct bench_obj *obj, void *buf, size_t buflen) { gcry_md_hd_t hd = obj->hd; gcry_md_reset (hd); gcry_md_write (hd, buf, buflen); gcry_md_final (hd); } static struct bench_ops hash_ops = { &bench_hash_init, &bench_hash_free, &bench_hash_do_bench }; static struct bench_hash_mode hash_modes[] = { {"", &hash_ops}, {0}, }; static void hash_bench_one (int algo, struct bench_hash_mode *pmode) { struct bench_hash_mode mode = *pmode; struct bench_obj obj = { 0 }; double result; mode.algo = algo; if (mode.name[0] == '\0') bench_print_algo (-14, gcry_md_algo_name (algo)); else bench_print_algo (14, mode.name); obj.ops = mode.ops; obj.priv = &mode; result = do_slope_benchmark (&obj); bench_print_result (result); } static void _hash_bench (int algo) { int i; for (i = 0; hash_modes[i].name; i++) hash_bench_one (algo, &hash_modes[i]); } void hash_bench (char **argv, int argc) { int i, algo; bench_print_section ("hash", "Hash"); bench_print_header (14, ""); if (argv && argc) { for (i = 0; i < argc; i++) { algo = gcry_md_map_name (argv[i]); if (algo) _hash_bench (algo); } } else { for (i = 1; i < 400; i++) if (!gcry_md_test_algo (i)) _hash_bench (i); } bench_print_footer (14); } /************************************************************ MAC benchmarks. */ struct bench_mac_mode { const char *name; struct bench_ops *ops; int algo; }; static int bench_mac_init (struct bench_obj *obj) { struct bench_mac_mode *mode = obj->priv; gcry_mac_hd_t hd; int err; unsigned int keylen; void *key; obj->min_bufsize = BUF_START_SIZE; obj->max_bufsize = BUF_END_SIZE; obj->step_size = BUF_STEP_SIZE; obj->num_measure_repetitions = num_measurement_repetitions; keylen = gcry_mac_get_algo_keylen (mode->algo); if (keylen == 0) keylen = 32; key = malloc (keylen); if (!key) { fprintf (stderr, PGM ": couldn't allocate %d bytes\n", keylen); exit (1); } memset(key, 42, keylen); err = gcry_mac_open (&hd, mode->algo, 0, NULL); if (err) { fprintf (stderr, PGM ": error opening mac `%s'\n", gcry_mac_algo_name (mode->algo)); free (key); exit (1); } err = gcry_mac_setkey (hd, key, keylen); if (err) { fprintf (stderr, PGM ": error setting key for mac `%s'\n", gcry_mac_algo_name (mode->algo)); free (key); exit (1); } switch (mode->algo) { default: break; case GCRY_MAC_POLY1305_AES: case GCRY_MAC_POLY1305_CAMELLIA: case GCRY_MAC_POLY1305_TWOFISH: case GCRY_MAC_POLY1305_SERPENT: case GCRY_MAC_POLY1305_SEED: case GCRY_MAC_POLY1305_SM4: gcry_mac_setiv (hd, key, 16); break; } obj->hd = hd; free (key); return 0; } static void bench_mac_free (struct bench_obj *obj) { gcry_mac_hd_t hd = obj->hd; gcry_mac_close (hd); } static void bench_mac_do_bench (struct bench_obj *obj, void *buf, size_t buflen) { gcry_mac_hd_t hd = obj->hd; size_t bs; char b; gcry_mac_reset (hd); gcry_mac_write (hd, buf, buflen); bs = sizeof(b); gcry_mac_read (hd, &b, &bs); } static struct bench_ops mac_ops = { &bench_mac_init, &bench_mac_free, &bench_mac_do_bench }; static struct bench_mac_mode mac_modes[] = { {"", &mac_ops}, {0}, }; static void mac_bench_one (int algo, struct bench_mac_mode *pmode) { struct bench_mac_mode mode = *pmode; struct bench_obj obj = { 0 }; double result; mode.algo = algo; if (mode.name[0] == '\0') bench_print_algo (-18, gcry_mac_algo_name (algo)); else bench_print_algo (18, mode.name); obj.ops = mode.ops; obj.priv = &mode; result = do_slope_benchmark (&obj); bench_print_result (result); } static void _mac_bench (int algo) { int i; for (i = 0; mac_modes[i].name; i++) mac_bench_one (algo, &mac_modes[i]); } void mac_bench (char **argv, int argc) { int i, algo; bench_print_section ("mac", "MAC"); bench_print_header (18, ""); if (argv && argc) { for (i = 0; i < argc; i++) { algo = gcry_mac_map_name (argv[i]); if (algo) _mac_bench (algo); } } else { for (i = 1; i < 600; i++) if (!gcry_mac_test_algo (i)) _mac_bench (i); } bench_print_footer (18); } /************************************************************ KDF benchmarks. */ struct bench_kdf_mode { struct bench_ops *ops; int algo; int subalgo; }; static int bench_kdf_init (struct bench_obj *obj) { struct bench_kdf_mode *mode = obj->priv; if (mode->algo == GCRY_KDF_PBKDF2) { obj->min_bufsize = 2; obj->max_bufsize = 2 * 32; obj->step_size = 2; } obj->num_measure_repetitions = num_measurement_repetitions; return 0; } static void bench_kdf_free (struct bench_obj *obj) { (void)obj; } static void bench_kdf_do_bench (struct bench_obj *obj, void *buf, size_t buflen) { struct bench_kdf_mode *mode = obj->priv; char keybuf[16]; (void)buf; if (mode->algo == GCRY_KDF_PBKDF2) { gcry_kdf_derive("qwerty", 6, mode->algo, mode->subalgo, "01234567", 8, buflen, sizeof(keybuf), keybuf); } } static struct bench_ops kdf_ops = { &bench_kdf_init, &bench_kdf_free, &bench_kdf_do_bench }; static void kdf_bench_one (int algo, int subalgo) { struct bench_kdf_mode mode = { &kdf_ops }; struct bench_obj obj = { 0 }; double nsecs_per_iteration; char algo_name[32]; mode.algo = algo; mode.subalgo = subalgo; switch (subalgo) { case GCRY_MD_CRC32: case GCRY_MD_CRC32_RFC1510: case GCRY_MD_CRC24_RFC2440: case GCRY_MD_MD4: /* Skip CRC32s. */ return; } if (gcry_md_get_algo_dlen (subalgo) == 0) { /* Skip XOFs */ return; } *algo_name = 0; if (algo == GCRY_KDF_PBKDF2) { snprintf (algo_name, sizeof(algo_name), "PBKDF2-HMAC-%s", gcry_md_algo_name (subalgo)); } bench_print_algo (-24, algo_name); obj.ops = mode.ops; obj.priv = &mode; nsecs_per_iteration = do_slope_benchmark (&obj); bench_print_result_nsec_per_iteration (nsecs_per_iteration); } void kdf_bench (char **argv, int argc) { char algo_name[32]; int i, j; bench_print_section ("kdf", "KDF"); bench_print_header_nsec_per_iteration (24, ""); if (argv && argc) { for (i = 0; i < argc; i++) { for (j = 1; j < 400; j++) { if (gcry_md_test_algo (j)) continue; snprintf (algo_name, sizeof(algo_name), "PBKDF2-HMAC-%s", gcry_md_algo_name (j)); if (!strcmp(argv[i], algo_name)) kdf_bench_one (GCRY_KDF_PBKDF2, j); } } } else { for (i = 1; i < 400; i++) if (!gcry_md_test_algo (i)) kdf_bench_one (GCRY_KDF_PBKDF2, i); } bench_print_footer (24); } /************************************************************ ECC benchmarks. */ #if USE_ECC enum bench_ecc_algo { ECC_ALGO_ED25519 = 0, ECC_ALGO_ED448, ECC_ALGO_X25519, ECC_ALGO_X448, ECC_ALGO_NIST_P192, ECC_ALGO_NIST_P224, ECC_ALGO_NIST_P256, ECC_ALGO_NIST_P384, ECC_ALGO_NIST_P521, ECC_ALGO_SECP256K1, ECC_ALGO_BRAINP256R1, __MAX_ECC_ALGO }; enum bench_ecc_operation { ECC_OPER_MULT = 0, ECC_OPER_KEYGEN, ECC_OPER_SIGN, ECC_OPER_VERIFY, __MAX_ECC_OPER }; struct bench_ecc_oper { enum bench_ecc_operation oper; const char *name; struct bench_ops *ops; enum bench_ecc_algo algo; }; struct bench_ecc_mult_hd { gcry_ctx_t ec; gcry_mpi_t k, x, y; gcry_mpi_point_t G, Q; }; struct bench_ecc_hd { gcry_sexp_t key_spec; gcry_sexp_t data; gcry_sexp_t pub_key; gcry_sexp_t sec_key; gcry_sexp_t sig; }; static int ecc_algo_fips_allowed (int algo) { switch (algo) { case ECC_ALGO_NIST_P224: case ECC_ALGO_NIST_P256: case ECC_ALGO_NIST_P384: case ECC_ALGO_NIST_P521: return 1; case ECC_ALGO_SECP256K1: case ECC_ALGO_BRAINP256R1: case ECC_ALGO_ED25519: case ECC_ALGO_ED448: case ECC_ALGO_X25519: case ECC_ALGO_X448: case ECC_ALGO_NIST_P192: default: return 0; } } static const char * ecc_algo_name (int algo) { switch (algo) { case ECC_ALGO_ED25519: return "Ed25519"; case ECC_ALGO_ED448: return "Ed448"; case ECC_ALGO_X25519: return "X25519"; case ECC_ALGO_X448: return "X448"; case ECC_ALGO_NIST_P192: return "NIST-P192"; case ECC_ALGO_NIST_P224: return "NIST-P224"; case ECC_ALGO_NIST_P256: return "NIST-P256"; case ECC_ALGO_NIST_P384: return "NIST-P384"; case ECC_ALGO_NIST_P521: return "NIST-P521"; case ECC_ALGO_SECP256K1: return "secp256k1"; case ECC_ALGO_BRAINP256R1: return "brainpoolP256r1"; default: return NULL; } } static const char * ecc_algo_curve (int algo) { switch (algo) { case ECC_ALGO_ED25519: return "Ed25519"; case ECC_ALGO_ED448: return "Ed448"; case ECC_ALGO_X25519: return "Curve25519"; case ECC_ALGO_X448: return "X448"; case ECC_ALGO_NIST_P192: return "NIST P-192"; case ECC_ALGO_NIST_P224: return "NIST P-224"; case ECC_ALGO_NIST_P256: return "NIST P-256"; case ECC_ALGO_NIST_P384: return "NIST P-384"; case ECC_ALGO_NIST_P521: return "NIST P-521"; case ECC_ALGO_SECP256K1: return "secp256k1"; case ECC_ALGO_BRAINP256R1: return "brainpoolP256r1"; default: return NULL; } } static int ecc_nbits (int algo) { switch (algo) { case ECC_ALGO_ED25519: return 255; case ECC_ALGO_ED448: return 448; case ECC_ALGO_X25519: return 255; case ECC_ALGO_X448: return 448; case ECC_ALGO_NIST_P192: return 192; case ECC_ALGO_NIST_P224: return 224; case ECC_ALGO_NIST_P256: return 256; case ECC_ALGO_NIST_P384: return 384; case ECC_ALGO_NIST_P521: return 521; case ECC_ALGO_SECP256K1: return 256; case ECC_ALGO_BRAINP256R1: return 256; default: return 0; } } static int ecc_map_name (const char *name) { int i; for (i = 0; i < __MAX_ECC_ALGO; i++) { if (strcmp(ecc_algo_name(i), name) == 0) { return i; } } return -1; } static int bench_ecc_mult_init (struct bench_obj *obj) { struct bench_ecc_oper *oper = obj->priv; struct bench_ecc_mult_hd *hd; int p_size = ecc_nbits (oper->algo); gpg_error_t err; gcry_mpi_t p; obj->min_bufsize = 1; obj->max_bufsize = 4; obj->step_size = 1; obj->num_measure_repetitions = num_measurement_repetitions / obj->max_bufsize; while (obj->num_measure_repetitions == 0) { if (obj->max_bufsize == 2) { obj->num_measure_repetitions = 2; } else { obj->max_bufsize--; obj->num_measure_repetitions = num_measurement_repetitions / obj->max_bufsize; } } hd = calloc (1, sizeof(*hd)); if (!hd) return -1; err = gcry_mpi_ec_new (&hd->ec, NULL, ecc_algo_curve(oper->algo)); if (err) { fprintf (stderr, PGM ": gcry_mpi_ec_new failed: %s\n", gpg_strerror (err)); exit (1); } hd->G = gcry_mpi_ec_get_point ("g", hd->ec, 1); hd->Q = gcry_mpi_point_new (0); hd->x = gcry_mpi_new (0); hd->y = gcry_mpi_new (0); hd->k = gcry_mpi_new (p_size); gcry_mpi_randomize (hd->k, p_size, GCRY_WEAK_RANDOM); p = gcry_mpi_ec_get_mpi ("p", hd->ec, 1); gcry_mpi_mod (hd->k, hd->k, p); gcry_mpi_release (p); obj->hd = hd; return 0; } static void bench_ecc_mult_free (struct bench_obj *obj) { struct bench_ecc_mult_hd *hd = obj->hd; gcry_mpi_release (hd->k); gcry_mpi_release (hd->y); gcry_mpi_release (hd->x); gcry_mpi_point_release (hd->Q); gcry_mpi_point_release (hd->G); gcry_ctx_release (hd->ec); free (hd); obj->hd = NULL; } static void bench_ecc_mult_do_bench (struct bench_obj *obj, void *buf, size_t num_iter) { struct bench_ecc_oper *oper = obj->priv; struct bench_ecc_mult_hd *hd = obj->hd; gcry_mpi_t y; size_t i; (void)buf; if (oper->algo == ECC_ALGO_X25519 || oper->algo == ECC_ALGO_X448) { y = NULL; } else { y = hd->y; } for (i = 0; i < num_iter; i++) { gcry_mpi_ec_mul (hd->Q, hd->k, hd->G, hd->ec); if (gcry_mpi_ec_get_affine (hd->x, y, hd->Q, hd->ec)) { fprintf (stderr, PGM ": gcry_mpi_ec_get_affine failed\n"); exit (1); } } } static int bench_ecc_init (struct bench_obj *obj) { struct bench_ecc_oper *oper = obj->priv; struct bench_ecc_hd *hd; int p_size = ecc_nbits (oper->algo); gpg_error_t err; gcry_mpi_t x; obj->min_bufsize = 1; obj->max_bufsize = 4; obj->step_size = 1; obj->num_measure_repetitions = num_measurement_repetitions / obj->max_bufsize; while (obj->num_measure_repetitions == 0) { if (obj->max_bufsize == 2) { obj->num_measure_repetitions = 2; } else { obj->max_bufsize--; obj->num_measure_repetitions = num_measurement_repetitions / obj->max_bufsize; } } hd = calloc (1, sizeof(*hd)); if (!hd) return -1; x = gcry_mpi_new (p_size); gcry_mpi_randomize (x, p_size, GCRY_WEAK_RANDOM); switch (oper->algo) { default: gcry_mpi_release (x); free (hd); return -1; case ECC_ALGO_ED25519: err = gcry_sexp_build (&hd->key_spec, NULL, "(genkey (ecdsa (curve \"Ed25519\")" "(flags eddsa)))"); if (err) break; err = gcry_sexp_build (&hd->data, NULL, "(data (flags eddsa)(hash-algo sha512)" " (value %m))", x); break; case ECC_ALGO_ED448: err = gcry_sexp_build (&hd->key_spec, NULL, "(genkey (ecdsa (curve \"Ed448\")" "(flags eddsa)))"); if (err) break; err = gcry_sexp_build (&hd->data, NULL, "(data (flags eddsa)(hash-algo shake256)" " (value %m))", x); break; case ECC_ALGO_NIST_P192: case ECC_ALGO_NIST_P224: case ECC_ALGO_NIST_P256: case ECC_ALGO_NIST_P384: case ECC_ALGO_NIST_P521: err = gcry_sexp_build (&hd->key_spec, NULL, "(genkey (ECDSA (nbits %d)))", p_size); if (err) break; err = gcry_sexp_build (&hd->data, NULL, "(data (flags raw) (value %m))", x); break; case ECC_ALGO_BRAINP256R1: err = gcry_sexp_build (&hd->key_spec, NULL, "(genkey (ECDSA (curve brainpoolP256r1)))"); if (err) break; err = gcry_sexp_build (&hd->data, NULL, "(data (flags raw) (value %m))", x); break; } gcry_mpi_release (x); if (err) { fprintf (stderr, PGM ": gcry_sexp_build failed: %s\n", gpg_strerror (err)); exit (1); } obj->hd = hd; return 0; } static void bench_ecc_free (struct bench_obj *obj) { struct bench_ecc_hd *hd = obj->hd; gcry_sexp_release (hd->sig); gcry_sexp_release (hd->pub_key); gcry_sexp_release (hd->sec_key); gcry_sexp_release (hd->data); gcry_sexp_release (hd->key_spec); free (hd); obj->hd = NULL; } static void bench_ecc_keygen (struct bench_ecc_hd *hd) { gcry_sexp_t key_pair; gpg_error_t err; err = gcry_pk_genkey (&key_pair, hd->key_spec); if (err) { fprintf (stderr, PGM ": gcry_pk_genkey failed: %s\n", gpg_strerror (err)); exit (1); } hd->pub_key = gcry_sexp_find_token (key_pair, "public-key", 0); if (!hd->pub_key) { fprintf (stderr, PGM ": public part missing in key\n"); exit (1); } hd->sec_key = gcry_sexp_find_token (key_pair, "private-key", 0); if (!hd->sec_key) { fprintf (stderr, PGM ": private part missing in key\n"); exit (1); } gcry_sexp_release (key_pair); } static void bench_ecc_keygen_do_bench (struct bench_obj *obj, void *buf, size_t num_iter) { struct bench_ecc_hd *hd = obj->hd; size_t i; (void)buf; for (i = 0; i < num_iter; i++) { bench_ecc_keygen (hd); gcry_sexp_release (hd->pub_key); gcry_sexp_release (hd->sec_key); } hd->pub_key = NULL; hd->sec_key = NULL; } static void bench_ecc_sign_do_bench (struct bench_obj *obj, void *buf, size_t num_iter) { struct bench_ecc_hd *hd = obj->hd; gpg_error_t err; size_t i; (void)buf; bench_ecc_keygen (hd); for (i = 0; i < num_iter; i++) { err = gcry_pk_sign (&hd->sig, hd->data, hd->sec_key); if (err) { fprintf (stderr, PGM ": gcry_pk_sign failed: %s\n", gpg_strerror (err)); exit (1); } gcry_sexp_release (hd->sig); } gcry_sexp_release (hd->pub_key); gcry_sexp_release (hd->sec_key); hd->sig = NULL; hd->pub_key = NULL; hd->sec_key = NULL; } static void bench_ecc_verify_do_bench (struct bench_obj *obj, void *buf, size_t num_iter) { struct bench_ecc_hd *hd = obj->hd; gpg_error_t err; int i; (void)buf; bench_ecc_keygen (hd); err = gcry_pk_sign (&hd->sig, hd->data, hd->sec_key); if (err) { fprintf (stderr, PGM ": gcry_pk_sign failed: %s\n", gpg_strerror (err)); exit (1); } for (i = 0; i < num_iter; i++) { err = gcry_pk_verify (hd->sig, hd->data, hd->pub_key); if (err) { fprintf (stderr, PGM ": gcry_pk_verify failed: %s\n", gpg_strerror (err)); exit (1); } } gcry_sexp_release (hd->sig); gcry_sexp_release (hd->pub_key); gcry_sexp_release (hd->sec_key); hd->sig = NULL; hd->pub_key = NULL; hd->sec_key = NULL; } static struct bench_ops ecc_mult_ops = { &bench_ecc_mult_init, &bench_ecc_mult_free, &bench_ecc_mult_do_bench }; static struct bench_ops ecc_keygen_ops = { &bench_ecc_init, &bench_ecc_free, &bench_ecc_keygen_do_bench }; static struct bench_ops ecc_sign_ops = { &bench_ecc_init, &bench_ecc_free, &bench_ecc_sign_do_bench }; static struct bench_ops ecc_verify_ops = { &bench_ecc_init, &bench_ecc_free, &bench_ecc_verify_do_bench }; static struct bench_ecc_oper ecc_operations[] = { { ECC_OPER_MULT, "mult", &ecc_mult_ops }, { ECC_OPER_KEYGEN, "keygen", &ecc_keygen_ops }, { ECC_OPER_SIGN, "sign", &ecc_sign_ops }, { ECC_OPER_VERIFY, "verify", &ecc_verify_ops }, { 0, NULL, NULL } }; static void cipher_ecc_one (enum bench_ecc_algo algo, struct bench_ecc_oper *poper) { struct bench_ecc_oper oper = *poper; struct bench_obj obj = { 0 }; double result; if ((algo == ECC_ALGO_X25519 || algo == ECC_ALGO_X448 || algo == ECC_ALGO_SECP256K1) && oper.oper != ECC_OPER_MULT) return; oper.algo = algo; bench_print_mode (14, oper.name); obj.ops = oper.ops; obj.priv = &oper; result = do_slope_benchmark (&obj); bench_print_result_nsec_per_iteration (result); } static void _ecc_bench (int algo) { const char *algo_name; int i; /* Skip not allowed mechanisms */ if (in_fips_mode && !ecc_algo_fips_allowed (algo)) return; algo_name = ecc_algo_name (algo); bench_print_header_nsec_per_iteration (14, algo_name); for (i = 0; ecc_operations[i].name; i++) cipher_ecc_one (algo, &ecc_operations[i]); bench_print_footer (14); } #endif void ecc_bench (char **argv, int argc) { #if USE_ECC int i, algo; bench_print_section ("ecc", "ECC"); if (argv && argc) { for (i = 0; i < argc; i++) { algo = ecc_map_name (argv[i]); if (algo >= 0) _ecc_bench (algo); } } else { for (i = 0; i < __MAX_ECC_ALGO; i++) _ecc_bench (i); } #else (void)argv; (void)argc; #endif } /************************************************************** Main program. */ void print_help (void) { static const char *help_lines[] = { "usage: bench-slope [options] [hash|mac|cipher|kdf|ecc [algonames]]", "", " options:", " --cpu-mhz Set CPU speed for calculating cycles", " per bytes results. Set as \"auto\"", " for auto-detection of CPU speed.", " --disable-hwf Disable hardware acceleration feature(s)", " for benchmarking.", " --repetitions Use N repetitions (default " STR2(NUM_MEASUREMENT_REPETITIONS) ")", " --unaligned Use unaligned input buffers.", " --csv Use CSV output format", NULL }; const char **line; for (line = help_lines; *line; line++) fprintf (stdout, "%s\n", *line); } /* Warm up CPU. */ static void warm_up_cpu (void) { struct nsec_time start, end; get_nsec_time (&start); do { get_nsec_time (&end); } while (get_time_nsec_diff (&start, &end) < 1000.0 * 1000.0 * 1000.0); } int main (int argc, char **argv) { int last_argc = -1; if (argc) { argc--; argv++; } /* We skip this test if we are running under the test suite (no args and srcdir defined) and GCRYPT_NO_BENCHMARKS is set. */ if (!argc && getenv ("srcdir") && getenv ("GCRYPT_NO_BENCHMARKS")) exit (77); if (getenv ("GCRYPT_IN_REGRESSION_TEST")) { in_regression_test = 1; num_measurement_repetitions = 2; } else num_measurement_repetitions = NUM_MEASUREMENT_REPETITIONS; while (argc && last_argc != argc) { last_argc = argc; if (!strcmp (*argv, "--")) { argc--; argv++; break; } else if (!strcmp (*argv, "--help")) { print_help (); exit (0); } else if (!strcmp (*argv, "--verbose")) { verbose++; argc--; argv++; } else if (!strcmp (*argv, "--debug")) { verbose += 2; debug++; argc--; argv++; } else if (!strcmp (*argv, "--csv")) { csv_mode = 1; argc--; argv++; } else if (!strcmp (*argv, "--unaligned")) { unaligned_mode = 1; argc--; argv++; } else if (!strcmp (*argv, "--disable-hwf")) { argc--; argv++; if (argc) { if (gcry_control (GCRYCTL_DISABLE_HWF, *argv, NULL)) fprintf (stderr, PGM ": unknown hardware feature `%s' - option ignored\n", *argv); argc--; argv++; } } else if (!strcmp (*argv, "--cpu-mhz")) { argc--; argv++; if (argc) { if (!strcmp (*argv, "auto")) { auto_ghz = 1; } else { cpu_ghz = atof (*argv); cpu_ghz /= 1000; /* Mhz => Ghz */ } argc--; argv++; } } else if (!strcmp (*argv, "--repetitions")) { argc--; argv++; if (argc) { num_measurement_repetitions = atof (*argv); if (num_measurement_repetitions < 2) { fprintf (stderr, PGM ": value for --repetitions too small - using %d\n", NUM_MEASUREMENT_REPETITIONS); num_measurement_repetitions = NUM_MEASUREMENT_REPETITIONS; } argc--; argv++; } } } xgcry_control ((GCRYCTL_SET_VERBOSITY, (int) verbose)); if (!gcry_check_version (GCRYPT_VERSION)) { fprintf (stderr, PGM ": version mismatch; pgm=%s, library=%s\n", GCRYPT_VERSION, gcry_check_version (NULL)); exit (1); } if (debug) xgcry_control ((GCRYCTL_SET_DEBUG_FLAGS, 1u, 0)); xgcry_control ((GCRYCTL_DISABLE_SECMEM, 0)); xgcry_control ((GCRYCTL_INITIALIZATION_FINISHED, 0)); xgcry_control ((GCRYCTL_ENABLE_QUICK_RANDOM, 0)); if (gcry_fips_mode_active ()) in_fips_mode = 1; if (in_regression_test) fputs ("Note: " PGM " running in quick regression test mode.\n", stdout); if (!argc) { warm_up_cpu (); hash_bench (NULL, 0); mac_bench (NULL, 0); cipher_bench (NULL, 0); kdf_bench (NULL, 0); ecc_bench (NULL, 0); } else if (!strcmp (*argv, "hash")) { argc--; argv++; warm_up_cpu (); hash_bench ((argc == 0) ? NULL : argv, argc); } else if (!strcmp (*argv, "mac")) { argc--; argv++; warm_up_cpu (); mac_bench ((argc == 0) ? NULL : argv, argc); } else if (!strcmp (*argv, "cipher")) { argc--; argv++; warm_up_cpu (); cipher_bench ((argc == 0) ? NULL : argv, argc); } else if (!strcmp (*argv, "kdf")) { argc--; argv++; warm_up_cpu (); kdf_bench ((argc == 0) ? NULL : argv, argc); } else if (!strcmp (*argv, "ecc")) { argc--; argv++; warm_up_cpu (); ecc_bench ((argc == 0) ? NULL : argv, argc); } else { fprintf (stderr, PGM ": unknown argument: %s\n", *argv); print_help (); } return 0; } #endif /* !NO_GET_NSEC_TIME */