From 5644578190c3364300128799967d4e7b5e920242 Mon Sep 17 00:00:00 2001 From: Thomas Graf Date: Sat, 27 Nov 2010 10:18:07 +0100 Subject: Tons of documentation --- doc/Doxyfile.in | 4 +- doc/src/core.c | 1999 +++++++++++++++++++++++++++++----- doc/src/examples/NLA_PUT.c | 15 + doc/src/examples/msg_constr_attr.c | 51 + doc/src/examples/msg_parse_attr.c | 50 + doc/src/examples/my_parse.c | 11 + doc/src/examples/nl_cb_set.c | 14 + doc/src/examples/nl_send_simple.c | 11 + doc/src/examples/nla_flag.c | 7 + doc/src/examples/nla_for_each_attr.c | 11 + doc/src/examples/nla_nest_start.c | 16 + doc/src/examples/nla_ok.c | 10 + doc/src/examples/nla_parse_nested.c | 12 + doc/src/examples/nla_put.c | 14 + doc/src/examples/nlmsg_for_each.c | 7 + doc/src/examples/nlmsg_parse.c | 29 + doc/src/examples/nlmsg_put.c | 31 + doc/src/examples/sk_group_example.c | 43 + include/linux/netlink.h | 94 -- include/netlink/netlink-kernel.h | 136 ++- 20 files changed, 2191 insertions(+), 374 deletions(-) create mode 100644 doc/src/examples/NLA_PUT.c create mode 100644 doc/src/examples/msg_constr_attr.c create mode 100644 doc/src/examples/msg_parse_attr.c create mode 100644 doc/src/examples/my_parse.c create mode 100644 doc/src/examples/nl_cb_set.c create mode 100644 doc/src/examples/nl_send_simple.c create mode 100644 doc/src/examples/nla_flag.c create mode 100644 doc/src/examples/nla_for_each_attr.c create mode 100644 doc/src/examples/nla_nest_start.c create mode 100644 doc/src/examples/nla_ok.c create mode 100644 doc/src/examples/nla_parse_nested.c create mode 100644 doc/src/examples/nla_put.c create mode 100644 doc/src/examples/nlmsg_for_each.c create mode 100644 doc/src/examples/nlmsg_parse.c create mode 100644 doc/src/examples/nlmsg_put.c create mode 100644 doc/src/examples/sk_group_example.c diff --git a/doc/Doxyfile.in b/doc/Doxyfile.in index 8c87c64..aafebbe 100644 --- a/doc/Doxyfile.in +++ b/doc/Doxyfile.in @@ -642,7 +642,7 @@ EXCLUDE_SYMBOLS = # directories that contain example code fragments that are included (see # the \include command). -EXAMPLE_PATH = +EXAMPLE_PATH = src/examples # If the value of the EXAMPLE_PATH tag contains directories, you can use the # EXAMPLE_PATTERNS tag to specify one or more wildcard pattern (like *.cpp @@ -662,7 +662,7 @@ EXAMPLE_RECURSIVE = NO # directories that contain image that are included in the documentation (see # the \image command). -IMAGE_PATH = +IMAGE_PATH = src/img # The INPUT_FILTER tag can be used to specify a program that doxygen should # invoke to filter for each input file. Doxygen will invoke the filter program diff --git a/doc/src/core.c b/doc/src/core.c index 9520730..a173a43 100644 --- a/doc/src/core.c +++ b/doc/src/core.c @@ -1,6 +1,6 @@ /** * \cond skip - * vim:syntax=doxygen + * vim:syntax=c.doxygen * \endcond \page core_doc Netlink Core Library (-lnl) @@ -9,49 +9,199 @@ The core library contains the fundamentals required to communicate over netlink sockets. It deals with connecting and disconnectng of sockets, -sending and receiving of data, provides a customizeable receiving state -machine, and provides a abstract data type framework which eases the -implementation of object based netlink protocols where objects are added, -removed, or modified with the help of netlink messages. +sending and receiving of data, construction and parsing of messages, +provides a customizeable receiving state machine, and provides a abstract +data type framework which eases the implementation of object based netlink +protocols where objects are added, removed, or modified with the help of +netlink messages. \section core_toc Table of Contents +- \ref core_lib + - \ref core_lib_howto + - \ref core_lib_link - \ref proto_fund - \ref core_format - - \ref core_msgtype - - \ref core_multipart - - \ref core_errmsg - - \ref core_ack + - \ref core_msg_type + - \ref core_multipart + - \ref core_errmsg + - \ref core_ack + - \ref core_msg_flags + - \ref core_seq + - \ref core_multicast - \ref sk_doc - \ref core_sk_alloc - - \ref core_sk_local_port - - \ref core_sk_peer_port - - \ref core_sk_fd - - \ref core_sk_buffer_size + - \ref core_sk_seq_num - \ref core_sk_groups + - \ref core_sk_cb + - \ref core_sk_attrs + - \ref core_sk_local_port + - \ref core_sk_peer_port + - \ref core_sk_fd + - \ref core_sk_buffer_size + - \ref core_sk_cred + - \ref core_sk_auto_ack + - \ref core_sk_msg_peek + - \ref core_sk_pktinfo - \ref core_send_recv - \ref core_send + - \ref core_nl_send + - \ref core_nl_send_iovec + - \ref core_nl_sendmsg + - \ref core_send_raw + - \ref core_send_simple - \ref core_recv + - \ref core_nl_recvmsgs + - \ref core_recvmsgs + - \ref core_recv_parse + - \ref core_auto_ack - \ref core_msg + - \ref core_msg_format + - \ref core_msg_fmt_align + - \ref core_msg_parse + - \ref core_msg_split + - \ref core_msg_payload + - \ref core_msg_parse_attr + - \ref core_nlmsg_parse + - \ref core_msg_constr + - \ref core_msg_alloc + - \ref core_msg_nlmsg_put + - \ref core_msg_reserve + - \ref core_msg_append +- \ref core_attr + - \ref core_attr_format + - \ref core_attr_parse + - \ref core_attr_parse_split + - \ref core_attr_payload + - \ref core_attr_validation + - \ref core_attr_nla_parse + - \ref core_attr_find + - \ref core_attr_iterate + - \ref core_attr_constr + - \ref core_attr_exception + - \ref core_attr_data_type + - \ref core_attr_int + - \ref core_attr_string + - \ref core_attr_flag + - \ref core_attr_nested + - \ref core_attr_unspec + - \ref core_attr_examples + - \ref core_attr_example_constr + - \ref core_attr_example_parse - \ref core_cb + - \ref core_cb_hooks + - \ref core_cb_default + - \ref core_cb_msg_proc + - \ref core_cb_errmsg + - \ref core_cb_example + - \ref core_cb_overwrite + - \ref core_cb_ow_recvmsgs + - \ref core_cb_ow_recv + - \ref core_cb_ow_send +- \ref core_cache +- \ref core_abstract_types + - \ref core_abstract_addr + - \ref core_abstract_addr_alloc + - \ref core_abstract_addr_ref + - \ref core_abstract_addr_attr + - \ref core_abstract_addr_prefix + - \ref core_abstract_addr_helpers + - \ref core_abstract_data + - \ref core_abstract_data_alloc + - \ref core_abstract_data_access + - \ref core_abstract_data_helpers + +\section core_lib 1. Introduction to the Library + +\subsection core_lib_howto 1.1 How To Read This Documentation + +The documentation consists of this manual and the API reference pages. +Both contain references to each other and as many examples as possible. + +Even though the library tries to be as consistent and as intuitive as +possible it may be difficult to understand where to start looking for +information. + + + +\subsection core_lib_link 1.2 Linking to this Library + + +\subsection flags Flags to Character StringTranslations + +All functions converting a set of flags to a character string follow +the same principles, therefore, the following information applies +to all functions convertings flags to a character string and vice versa. + +\subsubsection flags2str Flags to Character String +\code +char *_flags2str(int flags, char *buf, size_t len) +\endcode +\arg flags Flags. +\arg buf Destination buffer. +\arg len Buffer length. + +Converts the specified flags to a character string separated by +commas and stores it in the specified destination buffer. + +\return The destination buffer + +\subsubsection str2flags Character String to Flags +\code +int _str2flags(const char *name) +\endcode +\arg name Name of flag. + +Converts the provided character string specifying a flag +to the corresponding numeric value. + +\return Link flag or a negative value if none was found. + +\subsubsection type2str Type to Character String +\code +char *_2str(int type, char *buf, size_t len) +\endcode +\arg type Type as numeric value +\arg buf Destination buffer. +\arg len Buffer length. + +Converts an identifier (type) to a character string and stores +it in the specified destination buffer. + +\return The destination buffer or the type encoded in hexidecimal + form if the identifier is unknown. + +\subsubsection str2type Character String to Type +\code +int _str2(const char *name) +\endcode +\arg name Name of identifier (type). + +Converts the provided character string specifying a identifier +to the corresponding numeric value. + +\return Identifier as numeric value or a negative value if none was found. + \section proto_fund 1. Netlink Protocol Fundamentals The netlink protocol is a socket based IPC mechanism used for communication -between any number of userspace processes and the kernel. The netlink -protocol is based on BSD sockets and uses the \c AF_NETLINK address family. -It uses a protocol type for each subsystem protocol (e.g. NETLINK_ROUTE, -NETLINK_NETFILTER, etc). Its addressing schema is based on a 32 bit port -number, formerly referred to as PID, which uniquely identifies each peer. +between userspace processes and the kernel or between userspace processes +themselves. The netlink protocol is based on BSD sockets and uses the +\c AF_NETLINK address family. Every netlink protocol uses its own protocol +number (e.g. NETLINK_ROUTE, NETLINK_NETFILTER, etc). Its addressing schema +is based on a 32 bit port number, formerly referred to as PID, which uniquely +identifies each peer. \subsection core_format 1.1 Message Format -A netlink protocol is typicall based on messages and consists of the +A netlink protocol is typically based on messages and consists of the netlink message header (struct nlmsghdr) plus the payload attached to it. The payload can consist of arbitary data but usually contains a fixed size protocol specific header followed by a stream of attributes. The netlink message header (struct nlmsghdr) has the following format: + \code 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 @@ -66,7 +216,7 @@ The netlink message header (struct nlmsghdr) has the following format: +-------------------------------------------------------------+ \endcode -\subsection core_msgtype 1.2 Message Types +\subsection core_msg_type 1.2 Message Types Netlink differs between requests, notifications, and replies. Requests are messages which have the \c NLM_F_REQUEST flag set and are meant to @@ -79,10 +229,7 @@ request with another netlink message. The sequence number of a reply must match the sequence number of the request it relates to. Notifications are of informal nature and no reply is expected, therefore -the sequence number is typically set to 0. It should be noted that unlike -in protocols such as TCP there is no strict enforcment of the sequence -number. The sole purpose of sequence numbers is to assist a sender in -relating replies to the corresponding requests. +the sequence number is typically set to 0. \msc A,B; @@ -92,12 +239,72 @@ A<=B [label="PUT (seq=1)"]; A<=B [label="NOTIFY (seq=0)"]; \endmsc -\subsection core_multipart 1.3 Multipart Messages (NLM_F_MULTI) +The type of message is primarly identified by its 16 bit message type set +in the message header. The following standard message types are defined: + +- \c NLMSG_NOOP - No operation, message must be discarded +- \c NLMSG_ERROR - Error message or ACK, see \ref core_errmsg, + respectively \ref core_ack +- \c NLMSG_DONE - End of multipart sequence, see \ref core_multipart. +- \c NLMSG_OVERRUN - Overrun notification (Error) + +Every netlink protocol is free to define own message types. Note that +message type values < \c NLMSG_MIN_TYPE (0x10) are reserved and may not +be used. + +It is common practice to use own message types to implement RPC schemas. +Suppose the goal of the netlink protocol you are implementing is allow +configuration of a particular network device, therefore you want to +provide read/write access to various configuration options. The typical +"netlink way" of doing this would be to define two message types +\c MSG_SETCFG, \c MSG_GETCFG: + +\code +#define MSG_SETCFG 0x11 +#define MSG_GETCFG 0x12 +\endcode + +Sending a \c MSG_GETCFG request message will typically trigger a reply +with the message type \c MSG_SETCFG containing the current configuration. +In object oriented terms one would describe this as "the kernel sets +the local copy of the configuration in userspace". + +\msc +A,B; +A=>B [label="MSG_GETCFG (seq=1, NLM_F_REQUEST)"]; +A<=B [label="MSG_SETCFG (seq=1)"]; +\endmsc + +The configuration may be changed by sending a \c MSG_SETCFG which will +be responded to with either a ACK (see \ref core_ack) or a error +message (see \ref core_errmsg). + +\msc +A,B; +A=>B [label="MSG_SETCFG (seq=1, NLM_F_REQUEST, NLM_F_ACK)"]; +A<=B [label="ACK (seq=1)"]; +\endmsc + +Optionally, the kernel may send out notifications for configuration +changes allowing userspace to listen for changes instead of polling +frequently. Notifications typically reuse an existing message type +and rely on the application using a separate socket to differ between +requests and notifications but you may also specify a separate message +type. + +\msc +A,B; +A<=B [label="MSG_SETCFG (seq=0)"]; +\endmsc + +\subsubsection core_multipart 1.2.1 Multipart Messages -If the size of a reply exceeds the size of a memory page and thus exceeds -the maximum message size, the reply can be split into a series of multipart -messages. A multipart message has the \c flag NLM_F_MULTI set and the -receiver is expected to continue parsing the reply until the special +Although in theory a netlink message can be up to 4GiB in size. The socket +buffers are very likely not large enough to hold message of such sizes. +Therefore it is common to limit messages to one page size (PAGE_SIZE) and +use the multipart mechanism to split large pieces of data into several +messages. A multipart message has the \c flag NLM_F_MULTI set and the +receiver is expected to continue receiving and parsing until the special message type \c NLMSG_DONE is received. Multipart messages unlike fragmented ip packets must not be reassmbled @@ -115,13 +322,34 @@ A<=B [label="PUT (seq=1, NLM_F_MULTI)"]; A<=B [label="NLMSG_DONE (seq=1)"]; \endmsc -\subsection core_errmsg 1.4 Error Message +\subsubsection core_errmsg 1.2.2 Error Message Error messages can be sent in response to a request. Error messages must use the standard message type \c NLMSG_ERROR. The payload consists of a -error code and the original netlink mesage header of the request. Error -messages should set the sequence number to the sequence number of the -request which caused the error. +error code and the original netlink mesage header of the request. + +\code +0 1 2 3 +0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 ++-------------------------------------------------------------+ +| Length | ++------------------------------+------------------------------+ +| .nlmsg_type = NLMSG_ERROR | .nlmsg_flags = 0 | ++------------------------------+------------------------------+ +| Sequence number of the orig request | ++-------------------------------------------------------------+ +| Port number of the orig request | ++-------------------------------------------------------------+ +| Error Code (e.g. EINVAL) | ++-------------------------------------------------------------+ +| Netlink Message Header of orig. request | +. . +. . ++-------------------------------------------------------------+ +\endcode + +Error messages should set the sequence number to the sequence number +of the request which caused the error. \msc A,B; @@ -129,22 +357,99 @@ A=>B [label="GET (seq=1, NLM_F_REQUEST)"]; A<=B [label="NLMSG_ERROR code=EINVAL (seq=1)"]; \endmsc -\subsection core_ack 1.5 ACKs +\subsubsection core_ack 1.2.3 ACKs A sender can request an ACK message to be sent back for each request processed by setting the \c NLM_F_ACK flag in the request. This is typically used to allow the sender to synchronize further processing until the request has been processed by the receiver. -ACK messages also use the message type \c NLMSG_ERROR and payload format -but the error code is set to 0. - \msc A,B; A=>B [label="GET (seq=1, NLM_F_REQUEST | NLM_F_ACK)"]; A<=B [label="ACK (seq=1)"]; \endmsc +ACK messages also use the message type \c NLMSG_ERROR and payload format +but the error code is set to 0. + +\subsubsection core_msg_flags 1.3 Message Flags + +The following standard flags are defined + +\code +#define NLM_F_REQUEST 1 +#define NLM_F_MULTI 2 +#define NLM_F_ACK 4 +#define NLM_F_ECHO 8 +\endcode + +- \c NLM_F_REQUEST - Message is a request, see \ref core_msg_type. +- \c NLM_F_MULTI - Multipart message, see \ref core_multipart. +- \c NLM_F_ACK - ACK message requested, see \ref core_ack. +- \c NLM_F_ECHO - Request to echo the request. + +The flag \c NLM_F_ECHO is similar to the \c NLM_F_ACK flag. It can be +used in combination with \c NLM_F_REQUEST and causes a notification +which is sent as a result of a request to also be sent to the sender +regardless of whether the sender has subscribed to the corresponding +multicast group or not. See \ref core_multicast. + +Additional universal message flags are defined which only apply for +\c GET requests: + +\code +#define NLM_F_ROOT 0x100 +#define NLM_F_MATCH 0x200 +#define NLM_F_ATOMIC 0x400 +#define NLM_F_DUMP (NLM_F_ROOT|NLM_F_MATCH) +\endcode + +- \c NLM_F_ROOT - Return based on root of tree. +- \c NLM_F_MATCH - Return all matching entries. +- \c NLM_F_ATOMIC - Obsoleted, once used to request an atomic operation. +- \c NLM_F_DUMP - Return a list of all objects \c (NLM_F_ROOT|NLM_F_MATCH). + +Use of these flags is completely optional and many netlink protocols only +make use of the \c NLM_F_DUMP flag which typically requests the receiver +to send a list of all objects in the context of the message type as a +sequence of multipart messages (see \ref core_multipart). + +Another set of flags exist related to \c NEW or \c SET requests. These +flags are mutually exclusive to the \c GET flags: + +\code +#define NLM_F_REPLACE 0x100 +#define NLM_F_EXCL 0x200 +#define NLM_F_CREATE 0x400 +#define NLM_F_APPEND 0x800 +\endcode + +- \c NLM_F_REPLACE - Replace an existing object if it exists. +- \c NLM_F_EXCL - Do not update object if it exists already. +- \c NLM_F_CREATE - Create object if it does not exist yet. +- \c NLM_F_APPEND - Add object at end of list. + +Behaviour of these flags may differ slightly between different netlink +protocols. + +\subsection core_seq 1.4 Sequence Numbers + +Netlink allows the use of sequence numbers to help relate replies to +requests. It should be noted that unlike in protocols such as TCP there +is no strict enforcment of the sequence number. The sole purpose of +sequence numbers is to assist a sender in relating replies to the +corresponding requests. See \ref core_msg_type for more information. + +Sequence numbers are managed on a per socket basis, see +\ref core_sk_seq_num for more information on how to use sequence numbers. + +\subsection core_multicast 1.5 Multicast Groups + +TODO + +See \ref core_sk_groups. + \section sk_doc 2. Netlink Sockets In order to use the netlink protocol, a netlink socket is required. Each @@ -159,12 +464,117 @@ The netlink socket and all its related attributes are represented by struct nl_sock. \code +#include + struct nl_sock *nl_socket_alloc(void) void nl_socket_free(struct nl_sock *sk) \endcode +\subsection core_sk_seq_num 2.2 Sequence Numbers + +The library will automatically take care of sequence number handling for +the application. A sequence number counter is stored in struct nl_sock which +is meant to be used when sending messages which will produce a reply, error +or any other message which needs to be related to the original message. + +The counter can be used directly with the function nl_socket_use_seq() +which will return the current value of the counter and increment it by +one afterwards. + +\code +#include + +unsigned int nl_socket_use_seq(struct nl_sock *sk); +\endcode + +Most applications will not want to deal with sequence number handling +themselves though. When using nl_send_auto() the sequence number is +filled out automatically and matched again on the receiving side. See +\ref core_send_recv for more information. + +This behaviour can and must be disabled if the netlink protocol +implemented does not use a request/reply model, e.g. when a socket is +used to receive notification messages. + +\code +#include + +void nl_socket_disable_seq_check(struct nl_sock *sk); +\endcode + +\subsection core_sk_groups 2.3 Multicast Group Subscriptions + +Each socket can subscribe to any number of multicast groups of the +netlink protocol it is connected to. The socket will then receive a copy +of each message sent to any of the groups. Multicast groups are commonly +used to implement event notifications. + +Prior to kernel 2.6.14 the group subscription was performed using a bitmask +which limited the number of groups per protocol family to 32. This outdated +interface can still be accessed via the function nl_join_groups even though +it is not recommended for new code. + +\code +#include + +void nl_join_groups(struct nl_sock *sk, int bitmask); +\endcode + +Starting with 2.6.14 a new method was introduced which supports subscribing +to an almost infinite number of multicast groups. + +\code +#include + +int nl_socket_add_memberships(struct nl_sock *sk, int group, ...); +int nl_socket_drop_memberships(struct nl_sock *sk, int group, ...); +\endcode + +\subsubsection core_sk_group_example 2.3.1 Multicast Example + +\include sk_group_example.c + +\subsection core_sk_cb 2.4 Modifiying Socket Callback Configuration + +See \ref core_cb for more information on callback hooks and overwriting +capabilities + +Each socket is assigned a callback configuration which controls the +behaviour of the socket. This is f.e. required to have a separate message +receive function per socket. It is perfectly legal to share callback +configurations between sockets though. + +The following functions can be used to access and set the callback +configuration of a socket: + +\code +#include + +struct nl_cb *nl_socket_get_cb(const struct nl_sock *sk); +void nl_socket_set_cb(struct nl_sock *sk, struct nl_cb *cb); +\endcode + +Additionaly a shortcut exists to modify the callback configuration assigned +to a socket directly: + +\code +#include + +int nl_socket_modify_cb(struct nl_sock *sk, enum nl_cb_type type, enum nl_cb_kind kind, + nl_recvmsg_msg_cb_t func, void *arg); +\endcode + +Example: +\code +#include + +// Call my_input() for all valid messages received in socket sk +nl_socket_modify_cb(sk, NL_CB_VALID, NL_CB_CUSTOM, my_input, NULL); +\endcode + +\subsection core_sk_attrs 2.5 Socket Attributes -\subsection core_sk_local_port 2.2 Local Port +\subsubsection core_sk_local_port 2.5.1 Local Port The local port number uniquely identifies the socket and is used to address it. A unique local port is generated automatically when the socket @@ -172,6 +582,8 @@ is allocated. It will consist of the Process ID (22 bits) and a random number (10 bits) thus allowing up to 1024 sockets per process. \code +#include + uint32_t nl_socket_get_local_port(const struct nl_sock *sk); void nl_socket_set_local_port(struct nl_sock *sk, uint32_t port); \endcode @@ -180,7 +592,7 @@ void nl_socket_set_local_port(struct nl_sock *sk, uint32_t port); that the provided value is unique and no other socket in any other application is using the same value. -\subsection core_sk_peer_port 2.3 Peer Port +\subsubsection core_sk_peer_port 2.5.2 Peer Port A peer port can be assigned to the socket which will result in all unicast messages sent over the socket to be addresses to the peer. If no peer is @@ -190,16 +602,20 @@ It is common practice not to bind the socket to a peer port as typically only one kernel side socket exists per netlink protocol family. \code +#include + uint32_t nl_socket_get_peer_port(const struct nl_sock *sk); void nl_socket_set_peer_port(struct nl_sock *sk, uint32_t port); \endcode -\subsection core_sk_fd 2.4 File Descriptor +\subsubsection core_sk_fd 2.5.3 File Descriptor Netlink uses the BSD socket interface, therefore a file descriptor is behind each socket and you may use it directly. \code +#include + int nl_socket_get_fd(const struct nl_sock *sk); \endcode @@ -208,10 +624,12 @@ to put the socket in non-blocking mode and periodically poll for new notifications. \code +#include + int nl_socket_set_nonblocking(const struct nl_sock *sk); \endcode -\subsection core_sk_buffer_size 2.5 Buffer Size +\subsubsection core_sk_buffer_size 2.5.4 Send/Receive Buffer Size The socket buffer is used to queue netlink messages between sender and receiver. The size of these buffers specifies the maximum size @@ -219,142 +637,64 @@ you will be able to write() to a netlink socket, i.e. it will indirectly define the maximum message size. The default is 32KiB. \code +#include + int nl_socket_set_buffer_size(struct nl_sock *sk, int rx, int tx); \endcode -\subsection core_sk_seq_num 2.6 Sequence Numbers -The library will automatically take care of sequence number handling for -the application. A sequence number counter is stored in struct nl_sock which -is meant to be used when sending messages which will produce a reply. +\subsubsection core_sk_cred 2.5.5 Enable/Disable Credentials -The following function will return the sequence number counter and increment -it afterwards. +TODO \code -unsigned int nl_socket_use_seq(struct nl_sock *sk); -\endcode - - -if nl_send_auto_complete() is used to send messages. - -See \ref core_send_recv. - - +#include -It will return the current sequence number and increment the counter -afterwards. - -When receiving netlink messages on a socket, the sequence number of -each received message will be automatically compared to the last -sequence number used, therefore ensuring that each reply relates to -a request. - -This behaviour can and must be disabled if the netlink protocol -implemented does not use a request/reply model: - -\code -void nl_socket_disable_seq_check(struct nl_sock *sk); +int nl_socket_set_passcred(struct nl_sock *sk, int state); \endcode -\subsection core_sk_groups 2.6 Multicast Groups - -Each socket can subscribe to any number of multicast groups of the -netlink protocol it is connected to. The socket will then receive a copy -of each message sent to any of the groups. Multicast groups are commonly -used to implement event notifications. +\subsubsection core_sk_auto_ack 2.5.6 Enable/Disable Auto-ACK Mode -Prior to kernel 2.6.14 the group subscription was performed using a bitmask -which limited the number of groups per protocol family to 32. This outdated -interface can still be accessed via the function nl_join_groups even though -it is not recommended for new code. +The following functions allow to enable/disable Auto-ACK mode on a +socket. See \ref core_auto_ack for more information on what implications +that has. Auto-ACK mode is enabled by default. \code -void nl_join_groups(struct nl_sock *sk, int bitmask); /* obsolete */ -\endcode +#include -Starting with 2.6.14 a new method was introduced which supports subscribing -to an almost infinite number of multicast groups. - -\code -int nl_socket_add_memberships(struct nl_sock *sk, int group, ...); -int nl_socket_drop_memberships(struct nl_sock *sk, int group, ...); +void nl_socket_enable_auto_ack(struct nl_sock *sk); +void nl_socket_disable_auto_ack(struct nl_sock *sk); \endcode -\subsubsection core_sk_group_example 2.6.1 Multicast Example - -\code -// This function will be called for each valid netlink message received -// in nl_recvmsgs_default() -static int my_func(struct nl_msg *msg, void *arg) -{ - return 0; -} - -struct nl_sock *sk; - -// Allocate a new socket -sk = nl_socket_alloc(); - -// Notifications do not use sequence numbers, disable sequence number -// checking. -nl_socket_disable_seq_check(sk); - -// Define a callback function, which will be called for each notification -// received -nl_socket_modify_cb(sk, NL_CB_VALID, NL_CB_CUSTOM, my_func, NULL); +\subsubsection core_sk_msg_peek 2.5.7 Enable/Disable Message Peeking -// Connect to routing netlink protocol -nl_connect(sk, NETLINK_ROUTE); +If enabled, message peeking causes nl_recv() to try and use MSG_PEEK to +retrieve the size of the next message received and allocate a buffer +of that size. Message peeking is enabled by default but can be disabled +using the following function: -// Subscribe to link notifications group -nl_socket_add_memberships(sk, RTNLGRP_LINK); +\code +#include -// Start receiving messages. The function nl_recvmsgs_default() will block -// until one or more netlink messages (notification) are received which -// will be passed on to my_func(). -while (1) - nl_recvmsgs_default(sock); +void nl_socket_enable_msg_peek(struct nl_sock *sk); +void nl_socket_disable_msg_peek(struct nl_sock *sk); \endcode +\subsubsection core_sk_pktinfo 2.5.8 Enable/Disable Receival of Packet Information -\subsection core_sk_cb 2.7 Callback Configuration -Every socket is associated a callback configuration which enables the -applications to hook into various internal functions and control the -receiving and sendings semantics. For more information, see section -\ref core_cb. +If enabled, each received netlink message from the kernel will include an +additional struct nl_pktinfo in the control message. The following function +can be used to enable/disable receival of packet information. \code -nl_socket_alloc_cb(cb) Allocate socket based on callback set. -nl_socket_get_cb(sk) Return callback configuration. -nl_socket_set_cb(sk, cb) Replace callback configuration. -nl_socket_modify_cb(sk, ...) Modify a specific callback function. -\endcode +#include -\subsection core_sk_cred 2.8 Credentials - -\subsection sk_other Other Functions -\code -nl_socket_enable_auto_ack(sock) Enable automatic request of ACK. -nl_socket_disable_auto_ack(sock) Disable automatic request of ACK. -nl_socket_enable_msg_peek(sock) Enable message peeking. -nl_socket_disable_msg_peek(sock) Disable message peeking. -nl_socket_set_passcred(sk, state) Enable/disable credential passing. -nl_socket_recv_pktinfo(sk, state) Enable/disable packet information. +int nl_socket_recv_pktinfo(struct nl_sock *sk, int state); \endcode -\section core_send_recv 3. Sending and Receiving of Messages / Data +\b Note: Processing of NETLINK_PKTINFO has not been implemented yet. -- \ref core_send - - \ref core_nl_send - - \ref core_nl_send_iovec - - \ref core_nl_sendmsg - - \ref core_send_raw - - \ref core_send_simple -- \ref core_recv - - \ref core_nl_recvmsgs - - \ref core_recvmsgs - - \ref core_recv_parse +\section core_send_recv 3. Sending and Receiving of Messages / Data \subsection core_send 3.1 Sending Netlink Messages @@ -362,7 +702,7 @@ The standard method of sending a netlink message over a netlink socket is to use the function nl_send_auto(). It will automatically complete the netlink message by filling the missing bits and pieces in the netlink message header and will deal with addressing based on the -options and address set in the netlink socket. The message is then based +options and address set in the netlink socket. The message is then passed on to nl_send(). If the default sending semantics implemented by nl_send() do not suit the @@ -419,11 +759,6 @@ The message is then passed on to nl_sendmsg(). | v nl_sendmsg(sk, msg, msghdr) - |- - - - - - - - - - - - - - - - - - - - v - | NL_CB_MSG_OUT() - |<- - - - - - - - - - - - - - - - - - - -+ - v - sendmsg() \endcode \subsubsection core_nl_sendmsg 3.1.3 Using nl_sendmsg() @@ -436,6 +771,15 @@ message header. At this point, construction of the message finished and it is ready to be sent. +\code + nl_sendmsg(sk, msg, msghdr) + |- - - - - - - - - - - - - - - - - - - - v + | NL_CB_MSG_OUT() + |<- - - - - - - - - - - - - - - - - - - -+ + v + sendmsg() +\endcode + Before sending the application has one last chance to modify the message. It is passed to the NL_CB_MSG_OUT callback function which may inspect or modify the message and return an error code. If this error code is NL_OK @@ -450,6 +794,8 @@ If you wish to send raw data over a netlink socket, the following function will pass on any buffer provided to it directly to sendto(): \code +#include + int nl_sendto(struct nl_sock *sk, void *buf, size_t size); \endcode @@ -459,6 +805,8 @@ A special interface exists for sending of trivial messages. The function expects the netlink message type, optional netlink message flags, and an optional data buffer and data length. \code +#include + int nl_send_simple(struct nl_sock *sk, int type, int flags, void *buf, size_t size); \endcode @@ -469,17 +817,7 @@ newly constructed message is sent with nl_send_auto(). The following example will send a netlink request message causing the kernel to dump a list of all network links to userspace: -\code -struct nl_sock *sk; -struct rtgenmsg rt_hdr = { - .rtgen_family = AF_UNSPEC, -}; - -sk = nl_socket_alloc(); -nl_connect(sk, NETLINK_ROUTE); - -nl_send_simple(sock, RTM_GETLINK, NLM_F_DUMP, &rt_hdr, sizeof(rt_hdr)); -\endcode +\include nl_send_simple.c \subsection core_recv 3.2 Receiving Netlink Messages @@ -619,29 +957,962 @@ an ACK message back to the sender (see \ref core_ack). Handle Message Type \endcode -\section core_msg 4. Message Construction & Parsing +\subsection core_auto_ack 3.3 Auto-ACK Mode + +TODO + +\section core_msg 4. Netlink Message Parsing & Construction \subsection core_msg_format 4.1 Message Format -\section core_cb 5. Callback Configurations +See \ref proto_fund for an introduction to the netlink protocol and its +message format. -Callback hooks and overwriting capabilities are provided in various places -inside library code to control the behaviour of several functions. All -the callback and overwrite functions are packed together in struct nl_cb -which is attached to a netlink socket or passed on to functions directly. +\subsubsection core_msg_fmt_align 4.1.1 Alignment + +Most netlink protocols enforce a strict alignment policy for all boundries. +The alignment value is defined by NLMSG_ALIGNTO and is fixed to 4 bytes. +Therefore all netlink message headers, begin of payload sections, protocol +specific headers, and attribute sections must start at an offset which is +a multiple of NLMSG_ALIGNTO. + +\code +#include + +int nlmsg_size(int payloadlen); +int nlmsg_total_size(int payloadlen); +\endcode + +The library provides a set of function to handle alignment requirements +automatically. The function nlmsg_total_size() returns the total size +of a netlink message including the padding to ensure the next message +header is aligned correctly. + +\code + <----------- nlmsg_total_size(len) ------------> + <----------- nlmsg_size(len) ------------> + +-------------------+- - -+- - - - - - - - +- - -+-------------------+- - - + | struct nlmsghdr | Pad | Payload | Pad | struct nlsmghdr | + +-------------------+- - -+- - - - - - - - +- - -+-------------------+- - - + <---- NLMSG_HDRLEN -----> <- NLMSG_ALIGN(len) -> <---- NLMSG_HDRLEN --- +\endcode + +If you need to know if padding needs to be added at the end of a message, +nlmsg_padlen() returns the number of padding bytes that need to be added +for a specific payload length. + +\code +#include +int nlmsg_padlen(int payloadlen); +\endcode + +\subsection core_msg_parse 4.2 Parsing a Message + +The library offers two different methods of parsing netlink messages. +It offers a low level interface for applications which want to do all +the parsing manually. This method is described below. Alternatively +the library also offers an interface to implement a parser as part of +a cache operations set which is especially useful when your protocol +deals with objects of any sort such as network links, routes, etc. +This high level interface is described in \ref core_cache. + +\subsubsection core_msg_split 4.2.1 Splitting a byte stream into separate messages + +What you receive from a netlink socket is typically a stream of +messages. You will be given a buffer and its length, the buffer may +contain any number of netlink messages. + +The first message header starts at the beginning of message stream. Any +subsequent message headers are access by calling nlmsg_next() on the +previous header. + +\code +#include + +struct nlmsghdr *nlmsg_next(struct nlmsghdr *hdr, int *remaining); +\endcode + +The function nlmsg_next() will automatically substract the size of +the previous message from the remaining number of bytes. + +Please note, there is no indication in the previous message whether +another message follows or not. You must assume that more messages +follow until all bytes of the message stream have been processed. + +To simplify this, the function nlmsg_ok() exists which returns true if +another message fits into the remaining number of bytes in the message +stream. nlmsg_valid_hdr() is similar, it checks whether a specific +netlink message contains at least a minimum of payload. + +\code +#include + +int nlmsg_valid_hdr(const struct nlmsghdr *hdr, int payloadlen); +int nlmsg_ok(const struct nlmsghdr *hdr, int remaining); +\endcode + +A typical use of these functions looks like this: + +\include my_parse.c + +\b Note: nlmsg_ok() only returns true if the \b complete message including + the message payload fits into the remaining buffer length. It will + return false if only a part of it fits. + +The above can also be written using the iterator nlmsg_for_each(): + +\include nlmsg_for_each.c + + +\subsubsection core_msg_payload 4.2.2 Message Payload + +The message payload is appended to the message header and is guranteed +to start at a multiple of NLMSG_ALIGNTO. Padding at the end of the +message header is added if necessary to ensure this. The function +nlmsg_data() will calculate the necessary offset based on the message +and returns a pointer to the start of the message payload. + +\code +#include + +void *nlmsg_data(const struct nlmsghdr *nlh); +void *nlmsg_tail(const struct nlmsghdr *nlh); +int nlmsg_datalen(const struct nlmsghdr *nlh); +\endcode + +The length of the message payload is returned by nlmsg_datalen(). + +\code + <--- nlmsg_datalen(nlh) ---> + +-------------------+- - -+----------------------------+- - -+ + | struct nlmsghdr | Pad | Payload | Pad | + +-------------------+- - -+----------------------------+- - -+ +nlmsg_data(nlh) ---------------^ ^ +nlmsg_tail(nlh) --------------------------------------------------^ +\endcode + +The payload may consist of arbitary data but may have strict alignment +and formatting rules depening on the actual netlink protocol. + +\subsubsection core_msg_parse_attr 4.2.3 Message Attributes + +Most netlink protocols use netlink attributes. It not only makes the +protocol self documenting but also gives flexibility in expanding +the protocol at a later point. New attributes can be added at any time +and older attributes can be obsoleted by newer ones without breaking +binary compatibility of the protocol. + +\code + <---------------------- payload -------------------------> + <----- hdrlen ----> <- nlmsg_attrlen(nlh, hdrlen) -> + +-------------------+- - -+----- ------------+- - -+--------------------------------+- - -+ + | struct nlmsghdr | Pad | Protocol Header | Pad | Attributes | Pad | + +-------------------+- - -+-------------------+- - -+--------------------------------+- - -+ +nlmsg_attrdata(nlh, hdrlen) -----------------------------^ +\endcode + +The function nlmsg_attrdata() returns a pointer to the begin of the +attributes section. The length of the attributes section is returned +by the function nlmsg_attrlen(). + +\code +#include + +struct nlattr *nlmsg_attrdata(const struct nlmsghdr *hdr, int hdrlen); +int nlmsg_attrlen(const struct nlmsghdr *hdr, int hdrlen); +\endcode + +See \ref core_attr for more information on how to use netlink attributes. + +\subsubsection core_nlmsg_parse 4.2.4 Parsing a Message the Easy Way + +The function nlmsg_parse() validate a complete netlink message in +one step. If \p hdrlen > 0 it will first call nlmsg_valid_hdr() to +check if the protocol header fits into the message. If there is +more payload to parse, it will assume it to be attributes and parse +the payload accordingly. The function behaves exactly like nla_parse() +when parsing attributes, see \ref core_attr_nla_parse. + +\code +int nlmsg_parse(struct nlmsghdr *hdr, int hdrlen, struct nlattr **attrs, + int maxtype, struct nla_policy *policy); +\endcode + +The function nlmsg_validate() is based on nla_validate() and behaves +exactly the same as nlmsg_parse() except that it only validates and will +not fill a array with pointers to each attribute. + +\code +int nlmsg_validate(struct nlmsghdr *hdr, int hdrlen, intmaxtype, + struct nla_policy *policy); +\endcode + +See \ref core_attr_nla_parse for an example and more information on +attribute parsing. + +\subsection core_msg_constr 4.3 Construction of a Message + +See \ref core_msg_format for information on the netlink message format +and alignment requirements. + +Message construction is based on struct nl_msg which uses an internal +buffer to store the actual netlink message. struct nl_msg \b does \b not +point to the netlink message header. Use nlmsg_hdr() to retrieve a +pointer to the netlink message header. + +At allocation time, a maximum message size is specified. It defaults to +a page (PAGE_SIZE). The application constructing the message will reserve +space out of this maximum message size repeatedly for each header or +attribute added. This allows construction of messages across various +layers of code where lower layers do not need to know about the space +requirements of upper layers. + +Why is setting the maximum message size necessary? This question +is often raised in combination with the proposed solution of reallocating +the message payload buffer on the fly using realloc(). While it is +possible to reallocate the buffer during construction using nlmsg_expand() +it will make all pointers into the message buffer become stale. This +breaks usage of nlmsg_hdr(), nla_nest_start(), and nla_nest_end() and is +therefore not acceptable as default behaviour. + +\subsubsection core_msg_alloc 4.3.1 Allocating struct nl_msg + +The first step in constructing a new netlink message it to allocate a +\c struct \c nl_msg to hold the message header and payload. Several +functions exist to simplify various tasks. + +\code +#include + +struct nl_msg *nlmsg_alloc(void); +void nlmsg_free(struct nl_msg *msg); +\endcode + +The function nlmsg_alloc() is the default message allocation function. +It allocates a new message using the default maximum message size which +equals to one page (PAGE_SIZE). The application can change the default +size for messages by calling nlmsg_set_default_size(): + +\code +void nlmsg_set_default_size(size_t); +\endcode + +\b Note: Calling nlmsg_set_default_size() does not change the maximum + message size of already allocated messages. + +\code +struct nl_msg *nlmsg_alloc_size(size_t max); +\endcode + +Instead of changing the default message size, the function +nlmsg_alloc_size() can be used to allocate a message with a individual +maximum message size. + + +If the netlink message header is already known at allocation time, the +application may sue nlmsg_inherit(). It will allocate a message using +the default maximum message size and copy the header into the message. +Calling nlmsg_inherit with \p set to NULL is equivalent to calling +nlmsg_alloc(). + +\code +struct nl_msg *nlmsg_inherit(struct nlmsghdr *hdr); +\endcode + +Alternatively nlmsg_alloc_simple() takes a netlink message type and +netlink message flags. It is equivalent to nlmsg_inherit() except that it +takes the two common header fields as arguments instead of a complete +header. + +\code +#include + +struct nl_msg *nlmsg_alloc_simple(int nlmsg_type, int flags); +\endcode + +\subsubsection core_msg_nlmsg_put 4.3.2 Appending the netlink message header + +After allocating struct nl_msg, the netlink message header needs to be +added unless one of the function nlmsg_alloc_simple() or nlmsg_inherit() +have been used for allocation in which case this step will replace the +netlink message header already in place. + +\code +#include + +struct nlmsghdr *nlmsg_put(struct nl_msg *msg, uint32_t port, uint32_t seqnr, + int nlmsg_type, int payload, int nlmsg_flags); +\endcode + +The function nlmsg_put() will build a netlink message header out of +\p nlmsg_type, \p nlmsg_flags, \p seqnr, and \p port and copy it into +the netlink message. \p seqnr can be set to \p NL_AUTO_SEQ to indiciate +that the next possible sequence number should be used automatically. To +use this feature, the message must be sent using the function +nl_send_auto(). Like \p port, the argument \p seqnr can be set to +\c NL_AUTO_PORT indicating that the local port assigned to the socket +should be used as source port. This is generally a good idea unless you +are replying to a request. See \ref proto_fund for more information on +how to fill the header. + +The argument \p payload can be used by the application to reserve room +for additional data after the header. A value of > 0 is equivalent to +calling nlmsg_reserve(msg, payload, NLMSG_ALIGNTO). See +\ref core_msg_reserve for more information on reserving room for data. + +\b Example: +\include nlmsg_put.c + +\subsubsection core_msg_reserve 4.3.3 Reserving room at the end of the message + +Most functions described later on will automatically take care of +reserving room for the data that is added to the end of the netlink +message. In some situations it may be requried for the application +to reserve room directly though. + +\code +#include + +void *nlmsg_reserve(struct nl_msg *msg, size_t len, int pad); +\endcode + +The function nlmsg_reserve() reserves \p len bytes at the end of the +netlink message and returns a pointer to the start of the reserved area. +The \p pad argument can be used to request \p len to be aligned to any +number of bytes prior to reservation. + +The following example requests to reserve a 17 bytes area at the end of +message aligned to 4 bytes. Therefore a total of 20 bytes will be +reserved. + +\code +#include + +void *buf = nlmsg_reserve(msg, 17, 4); +\endcode + +\b Note: nlmsg_reserve() will \b not align the start of the buffer. Any + alignment requirements must be provided by the owner of the + previous message section. + +\subsubsection core_msg_append 4.3.4 Appending data at the end of the message + +The function nlmsg_append() appends \p len bytes at the end of the message, +padding it if requested and necessary. + +\code +#include + +int nlmsg_append(struct nl_msg *msg, void *data, size_t len, int pad); +\endcode + +It is equivalent to calling nlmsg_reserve() and memcpy()ing the data into +the freshly reserved data section. + +\b Note: nlmsg_append() will \b not align the start of the data. Any + alignment requirements must be provided by the owner of the + previous message section. + +\subsubsection core_msg_put_attr 4.3.5 Adding attribtues to a message + +Construction of attributes and addition of attribtues to the message is +covereted in section \ref core_attr. + +\section core_attr 5. Netlink Attributes + +Any form of payload should be encoded as netlink attributes whenever +possible. Use of attributes allows to extend any netlink protocol in +the future without breaking binary compatibility. F.e. Suppose your +device may currently be using 32 bit counters for statistics but years +later the device switches to maintaining 64 bit counters to account +for faster network hardware. If your protocol is using attributes the +move to 64 bit counters is trivial and only involves in sending an +additional attribute containing the 64 bit variants while still +providing the old legacy 32 bit counters. If your protocol is not using +attributes you will not be able to switch data types without breaking +all existing users of the protocol. + +The concept of nested attributes also allows for subsystems of your +protocol to implement and maintain their own attribute schemas. Suppose +a new generation of network device is introduced which requires a +completely new set of configuration settings which was unthinkable when +the netlink protocol was initially designed. Using attributes the new +generation of devices may define a new attribute and fill it with its +own new structure of attributes which extend or even obsolete the old +attributes. + +Therefore, \e always use attributes even if you are almost certain that +the message format will never ever change in the future. + +\subsection core_attr_format 5.1 Attribute Format + +Netlink attributes allow for any number of data chunks of arbitary +length to be attached to a netlink message. See \ref core_msg_parse_attr +for more information on where attributes are stored in the message. + +The format of the attributes data returned by nlmsg_attrdata() is as +follows: + +\code + <----------- nla_total_size(payload) -----------> + <---------- nla_size(payload) -----------> + +-----------------+- - -+- - - - - - - - - +- - -+-----------------+- - - + | struct nlattr | Pad | Payload | Pad | struct nlattr | + +-----------------+- - -+- - - - - - - - - +- - -+-----------------+- - - + <---- NLA_HDRLEN -----> <--- NLA_ALIGN(len) ---> <---- NLA_HDRLEN --- +\endcode + +Every attribute must start at an offset which is a multiple of +\c NLA_ALIGNTO (4 bytes). If you need to know whether an attribute needs +to be padded at the end, the function nla_padlen() returns the number +of padding bytes that will or need to be added. + +\code +0 1 2 3 +0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 ++-------------------------------------------------------------+ +| Length | Type | ++------------------------------+------------------------------+ +| Attribute Payload | +. . +. . ++-------------------------------------------------------------+ +\endcode + +Every attribute is encoded with a type and length field, both 16 bits, +stored in the attribute header (struct nlattr) preceding the attribute +payload. The length of an attribute is used to calculate the offset to +the next attribute. + +\subsection core_attr_parse 5.2 Parsing Attributes + +\subsubsection core_attr_parse_split 5.2.1 Splitting an Attributes Stream into Attributes + +Although most applications will use one of the functions from the +nlmsg_parse() family (See \ref core_attr_nla_parse) an interface +exists to split the attributes stream manually. + +As described in \ref core_attr_format the attributes section contains a +infinite sequence or stream of attributes. The pointer returned by +nlmsg_attrdata() (See \ref core_msg_parse_attr) points to the first +attribute header. Any subsequent attribute is accessed with the function +nla_next() based on the previous header. + +\code +#include + +struct nlattr *nla_next(const struct nlattr *attr, int *remaining); +\endcode + +The semantics are equivalent to nlmsg_next() and thus nla_next() will also +subtract the size of the previous attribute from the remaining number of +bytes in the attributes stream. + +Like messages, attributes do not contain an indicator whether another +attribute follows or not. The only indication is the number of bytes left +in the attribute stream. The function nla_ok() exists to determine whether +another attribute fits into the remaining number of bytes or not. + +\code +#include + +int nla_ok(const struct nlattr *attr, int remaining); +\endcode + +A typical use of nla_ok() and nla_next() looks like this: + +\include nla_ok.c + +\b Note: nla_ok() only returns true if the \b complete attributes + including the attribute payload fits into the remaining number + of bytes. + +\subsubsection core_attr_payload 5.2.2 Accessing Attribute Header and Payload + +Once the individual attributes have been sorted out by either splitting +the attributes stream or using another interface the attribute header +and payload can be accessed. + +\code + <- nla_len(hdr) -> + +-----------------+- - -+- - - - - - - - - +- - -+ + | struct nlattr | Pad | Payload | Pad | + +-----------------+- - -+- - - - - - - - - +- - -+ +nla_data(hdr) ---------------^ +\endcode + +The functions nla_len() and nla_type() can be used to access the attribute +header. nla_len() will return the length of the payload not including +eventual padding bytes. nla_type returns the attribute type. + +\code +#include + +int nla_len(const struct nlattr *hdr); +int nla_type(const struct nlattr *hdr); +\endcode + +The function nla_data() will return a pointer to the attribute payload. +Please note that due to NLA_ALIGNTO being 4 bytes it may not be safe to +cast and dereference the pointer for any datatype larger than 32 bit +depending on the architecture the application is run on. + +\code +#include + +void *nla_data(const struct nlattr *hdr); +\endcode + +\b Note: Never rely on the size of a payload being what you expect it to + be. \e Always verify the payload size and make sure that it + matches your expectations. See \ref core_attr_validation. + +\subsubsection core_attr_validation 5.2.3 Attribute Validation + +When receiving netlink attributes, the receiver has certain expections +on how the attributes should look like. These expectations must be +defined to make sure the sending side meets our expecations. For this +purpose, a attribute validation interface exists which must be used +prior to accessing any payload. + +All functions providing attribute validation functionality are based +on struct nla_policy: + +\code +struct nla_policy { + uint16_t type; + uint16_t minlen; + uint16_t maxlen; +}; +\endcode + +The \p type member specifies the datatype of the attribute, e.g. +NLA_U32, NLA_STRING, NLA_FLAG. The default is NLA_UNSPEC. The \p minlen +member defines the minmum payload length of an attribute to be +considered a valid attribute. The value for \p minlen is implicit for +most basic datatypes such as integers or flags. The \p maxlen member +can be used to define a maximum payload length for an attribute to +still be considered valid. + +\b Note: Specyfing a maximum payload length is not recommended when +encoding structures in an attribute as it will prevent any extension of +the structure in the future. Something that is frequently done in +netlink protocols and does not break backwards compatibility. + +One of the functions which use struct nla_policy is nla_validate(). +The function expects an array of struct nla_policy and will access the +array using the attribute type as index. If an attribute type is out +of bounds the attribute is assumed to be valid. This is intentional +behaviour to allow older applications not yet aware of recently +introduced attributes to continue functioning. + +\code +#include + +int nla_validate(struct nlattr *head, int len, int maxtype, + struct nla_policy *policy); +\endcode + +The function nla_validate() returns 0 if all attributes are valid, +otherwise a validation failure specific error code is returned. + +Most applications will rarely use nla_validate() directly but use +nla_parse() instead which takes care of validation in the same way but +also parses the the attributes in the same step. See +\ref core_attr_nla_parse for an example and more information. + +The validation process in detail: +-# If attribute type is 0 or exceeds \p maxtype attribute is + considered valid, 0 is returned. +-# If payload length is < \p minlen, -NLE_ERANGE is returned. +-# If \p maxlen is defined and payload exceeds it, NLE_ERANGE + is returned. +-# Datatype specific requirements rules, see \ref core_attr_data_type. +-# If all is ok, 0 is returned. + +\subsubsection core_attr_nla_parse 5.2.4 Parsing Attributes the Easy Way + +Most applications will not want to deal with splitting attribute streams +themselves as described in \ref core_attr_parse_split. A much easier +method is to use nla_parse(). + +\code +#include + +int nla_parse(struct nlattr **attrs, int maxtype, struct nlattr *head, + int len, struct nla_policy *policy); +\endcode + +The function nla_parse() will iterate over a stream of attributes, +validate each attribute as described in \ref core_attr_validation. If +the validation of all attributes succeeds, a pointer to each attribute +is stored in the \p attrs array at \c attrs[nla_type(attr)]. + +As an alernative to nla_parse() the function nlmsg_parse() can be used +to parse the message and its attributes in one step. See +\ref core_nlmsg_parse for information on how to use these functions. + +\b Example: + +The following example demonstrates how to parse a netlink message sent +over a netlink protocol which does not use protocol headers. The example +does enforce a attribute policy however, the attribute MY_ATTR_FOO must +be a 32 bit integer, and the attribute MY_ATTR_BAR must be a string with +a maximum length of 16 characters. + +\include nlmsg_parse.c + +\subsubsection core_attr_find 5.2.5 Locating a Single Attribute + +An application only interested in a single attribute can use one of the +functions nla_find() or nlmsg_find_attr(). These function will iterate +over all attributes, search for a matching attribute and return a pointer +to the corresponding attribute header. + +\code +#include + +struct nlattr *nla_find(struct nlattr *head, int len, int attrtype); +\endcode + +\code +#include + +struct nlattr *nlmsg_find_attr(struct nlmsghdr *hdr, int hdrlen, int attrtype); +\endcode + +\b Note: nla_find() and nlmsg_find_attr() will \b not search in nested + attributes recursively, see \ref core_attr_nested. + +\subsubsection core_attr_iterate 5.2.6 Iterating over a Stream of Attributes + +In some situations it does not make sense to assign a unique attribute +type to each attribute in the attribute stream. For example a list may +be transferd using a stream of attributes and even if the attribute type +is incremented for each attribute it may not make sense to use the +nlmsg_parse() or nla_parse() function to fill an array. + +Therefore methods exist to iterate over a stream of attributes: + +\code +#include + +nla_for_each_attr(attr, head, len, remaining) +\endcode + +nla_for_each_attr() is a macro which can be used in front of a code +block: + +\include nla_for_each_attr.c + +\subsection core_attr_constr 5.3 Attribute Construction + +The interface to add attributes to a netlink message is based on the +regular message construction interface. It assumes that the message +header and an eventual protocol header has been added to the message +already. + +\code +struct nlattr *nla_reserve(struct nl_msg *msg, int attrtype, int len); +\endcode + +The function nla_reserve() adds an attribute header at the end of the +message and reserves room for \p len bytes of payload. The function +returns a pointer to the attribute payload section inside the message. +Padding is added at the end of the attribute to ensure the next +attribute is properly aligned. + +\code +int nla_put(struct nl_msg *msg, int attrtype, int attrlen, const void *data); +\endcode + +The function nla_put() is base don nla_reserve() but takes an additional +pointer \p data pointing to a buffer containing the attribute payload. +It will copy the buffer into the message automatically. + +\b Example: + +\include nla_put.c + +See \ref core_attr_data_type for datatype specific attribute construction +functions. + +\subsubsection core_attr_exception 5.3.1 Exception Based Attribute Construction + +Like in the kernel API an exception based construction interface is +provided. The behaviour of the macros is identical to their regular +function counterparts except that in case of an error, the target +\c nla_put_failure is jumped. + +\b Example: + +\include NLA_PUT.c + +See \ref core_attr_data_type for more information on the datatype +specific exception based variants. + +\subsection core_attr_data_type 5.4 Attribute Data Types + +A number of basic data types have been defined to simplify access and +validation of attributes. The datatype is not encoded in the attribute, +therefore bthe sender and receiver are required to use the same +definition on what attribute is of what type. -\subsection cb_func 5.1 Callback Function Formats +Besides simplified access to the payload of such datatypes, the major +advantage is the automatic validation of each attribute based on a +policy. The validation ensures safe access to the payload by checking +for minimal payload size and can also be used to enforce maximum +payload size for some datatypes. -\subsubsection cb_func_recvmsgs 5.1.1 Callbacks for nl_recvmsgs() and nl_sendmsg() +\subsubsection core_attr_int 5.4.1 Integer Attributes -Both nl_recvmsgs() and nl_sendmsg() provide callback hooks for functions to -control their behaviour. Every callback function must have the following -prototype: +The most frequently used datatypes are integers. Integers come in four +different sizes: +- \c NLA_U8 - 8bit integer +- \c NLA_U16 - 16bit integer +- \c NLA_U32 - 32bit integer +- \c NLA_U64 - 64bit integer + +Note that due to the alignment requirements of attributes the integer +attribtue \c NLA_u8 and \c NLA_U16 will not result in space savings in +the netlink message. Their use is intended to limit the range of values. + +Parsing Integer Attributes + +\code +#include + +uint8_t nla_get_u8(struct nlattr *hdr); +uint16_t nla_get_u16(struct nlattr *hdr); +uint32_t nla_get_u32(struct nlattr *hdr); +uint64_t nla_get_u64(struct nlattr *hdr); +\endcode + +Example: \code -typedef int(* nl_recvmsg_msg_cb_t)(struct nl_msg *msg, void *arg); +if (attrs[MY_ATTR_FOO]) + uint32_t val = nla_get_u32(attrs[MY_ATTR_FOO]); \endcode +Constructing Integer Attributes + +\code +#include + +int nla_put_u8(struct nl_msg *msg, int attrtype, uint8_t value); +int nla_put_u16(struct nl_msg *msg, int attrtype, uint16_t value); +int nla_put_u32(struct nl_msg *msg, int attrtype, uint32_t value); +int nla_put_u64(struct nl_msg *msg, int attrtype, uint64_t value); +\endcode + +Exception based: + +\code +NLA_PUT_U8(msg, attrtype, value) +NLA_PUT_U16(msg, attrtype, value) +NLA_PUT_U32(msg, attrtype, value) +NLA_PUT_U64(msg, attrtype, value) +\endcode + +Validation + +Use \p NLA_U8, \p NLA_U16, \p NLA_U32, or \p NLA_U64 to define the type +of integer when filling out a struct nla_policy array. It will +automatically enforce the correct minimum payload length policy. + +Validation does not differ between signed and unsigned integers, only +the size matters. If the appliaction wishes to enforce particular value +ranges it must do so itself. + +\code +static struct nla_policy my_policy[ATTR_MAX+1] = { + [ATTR_FOO] = { .type = NLA_U32 }, + [ATTR_BAR] = { .type = NLA_U8 }, +}; +\endcode + +The above is equivalent to: +\code +static struct nla_policy my_policy[ATTR_MAX+1] = { + [ATTR_FOO] = { .minlen = sizeof(uint32_t) }, + [ATTR_BAR] = { .minlen = sizeof(uint8_t) }, +}; +\endcode + +\subsubsection core_attr_string 5.4.2 String Attributes + +The string datatype represents a NUL termianted character string of +variable length. It is not intended for binary data streams. + +The payload of string attributes can be accessed with the function +nla_get_string(). nla_strdup() calls strdup() on the payload and returns +the newly allocated string. + +\code +#include + +char *nla_get_string(struct nlattr *hdr); +char *nla_strdup(struct nlattr *hdr); +\endcode + +String attributes are constructed with the function nla_put_string() +respectively NLA_PUT_STRING(). The length of the payload will be strlen()+1, +the trailing NUL byte is included. + +\code +int nla_put_string(struct nl_msg *msg, int attrtype, const char *data); + +NLA_PUT_STRING(msg, attrtype, data) +\endcode + +For validation purposes the type \p NLA_STRING can be used in +struct nla_policy definitions. It implies a minimum payload length of 1 +byte and checks for a trailing NUL byte. Optionally the \p maxlen member +defines the maximum length of a character string (including the trailing +NUL byte). + +\code +static struct nla_policy my_policy[] = { + [ATTR_FOO] = { .type = NLA_STRING, + .maxlen = IFNAMSIZ }, +}; +\endcode + +\subsubsection core_attr_flag 5.4.3 Flag Attributes + +The flag attribute represents a boolean datatype. The presence of the +attribute implies a value of \p true, the absence of the attribute +implies the value \p false. Therefore the payload length of flag +attributes is always 0. + +\code +int nla_get_flag(struct nlattr *hdr); +int nla_put_flag(struct nl_msg *msg, int attrtype); +\endcode + +The type \p NLA_FLAG is used for validation purposes. It implies a +\p maxlen value of 0 and thus enforces a maximum payload length of 0. + +\b Example: + +\include nla_flag.c + +\subsubsection core_attr_nested 5.4.4 Nested Attributes + +As described in \ref core_attr, attributes can be nested allowing for +complex tree structures of attributes. It is commonly used to delegate +the responsibility of a subsection of the message to a subsystem. +Nested attributes are also commonly used for transmitting list of +objects. + +When nesting attributes, the nested attributes are included as payload +of a container attribute. + +IMPORTANT NOTICE: When validating the attributes using +nlmsg_validate(), nlmsg_parse(), nla_validate(), or nla_parse() only +the attributes on the first level are being validated. None of these +functions will validate attributes recursively. Therefore you must +explicitely call nla_validate() or use nla_parse_nested() for each +level of nested attributes. + +The type \p NLA_NESTED should be used when defining nested attributes +in a struct nla_policy definition. It will not enforce any minimum +payload length unless \p minlen is specified explicitely. This is +because some netlink protocols implicitely allow empty container +attributes. + +\code +static struct nla_policy my_policy[] = { + [ATTR_OPTS] = { .type = NLA_NESTED }, +}; +\endcode + +Parsing of Nested Attributes + +The function nla_parse_nested() is used to parse nested attributes. +Its behaviour is identical to nla_parse() except that it takes a +struct nlattr as argument and will use the payload as stream of +attributes. + +\include nla_parse_nested.c + +Construction of Nested Attributes + +Attributes are nested by surrounding them with calls to nla_nest_start() +and nla_nest_end(). nla_nest_start() will add a attribute header to +the message but no actual payload. All data added to the message from +this point on will be part of the container attribute until nla_nest_end() +is called which "closes" the attribute, correcting its payload length to +include all data length. + +\include nla_nest_start.c + +\subsubsection core_attr_unspec 5.4.5 Unspecified Attribute + +This is the default attribute type and used when none of the basic +datatypes is suitable. It represents data of arbitary type and length. + +See \ref core_abstract_addr_alloc for a more information on a special +interface allowing the allocation of abstract address object based on +netlink attributes which carry some form of network address. + +See \ref core_abstract_data_alloc for more information on how to +allocate abstract data objects based on netlink attributes. + +Use the function nla_get() and nla_put() to access the payload and +construct attributes. See \ref core_attr_constr for an example. + +\subsection core_attr_examples 5.5 Examples + +\subsubsection core_attr_example_constr 5.5.1 Constructing a Netlink Message with Attributes + +\include msg_constr_attr.c + +\subsubsection core_attr_example_parse 5.5.2 Parsing a Netlink Message with Attributes + +\include msg_parse_attr.c + +\section core_cb 6. Callback Configurations + +Callback hooks and overwriting capabilities are provided in various places +inside library to control the behaviour of several functions. All the +callback and overwrite functions are packed together in struct nl_cb which +is attached to a netlink socket or passed on to functions directly. + +\subsection core_cb_hooks 6.1 Callback Hooks + +Callback hooks are spread across the library to provide entry points for +message processing and to take action upon certain events. + +Callback functions may return the following return codes: +\code +Return Code | Description +------------------------------------------------------------------------- +NL_OK | Proceed. +NL_SKIP | Skip message currently being processed and continue + | parsing the receive buffer. +NL_STOP | Stop parsing and discard all remaining data in the + | receive buffer. +\endcode + +\subsubsection core_cb_default 6.1.1 Default Callback Implementations + +The library provides three sets of default callback implementations: +- \b NL_CB_DEFAULT This is the default set. It implets the default behaviour. + See the table below for more information on the return codes of each + function. +- \b NL_CB_VERBOSE This set is based on the default set but will cause an + error message to be printed to stderr for error messages, invalid + messages, message overruns and unhandled valid messages. The \p arg + pointer in nl_cb_set() and nl_cb_err() can be used to provide a FILE * + which overwrites stderr. +- \b NL_CB_DEBUG This set is intended for debugging purposes. It is based + on the verbose set but will decode and dump each message sent or + received to the console. + +\subsubsection core_cb_msg_proc 6.1.2 Message Processing Callbacks + nl_sendmsg() callback hooks: \code Callback ID | Description | Default Return Value @@ -667,58 +1938,109 @@ NL_CB_ACK | ACK Messages | NL_STOP NL_CB_VALID | Each valid message | NL_OK \endcode -All these callback hooks can control the flow of the callee by returning -appropriate error codes: +Any of these functions may return NL_OK, NL_SKIP, or NL_STOP. + +Message processing callback functions are set with nl_cb_set(): \code -Return Code | Description -------------------------------------------------------------------------- -NL_OK | Proceed. -NL_SKIP | Skip message currently being processed and continue - | parsing the receive buffer. -NL_STOP | Stop parsing and discard all remaining data in the - | receive buffer. +#include + +int nl_cb_set(struct nl_cb *cb, enum nl_cb_type type, enum nl_cb_kind kind, + nl_recvmsg_msg_cb_t func, void *cb); + +typedef int (*nl_recvmsg_msg_cb_t)(struct nl_msg *msg, void *arg); \endcode -\subsubsection cb_func_error 5.1.2 Callback for Error Messages +\subsubsection core_cb_errmsg 6.1.4 Callback for Error Messages A special function prototype is used for the error message callback hook: \code +#include + +int nl_cb_err(struct nl_cb *cb, enum nl_cb_kind kind, nl_recvmsg_err_cb_t func, void * arg); + typedef int(* nl_recvmsg_err_cb_t)(struct sockaddr_nl *nla, struct nlmsgerr *nlerr, void *arg); \endcode -\subsubsection cb_cb_set 5.1.3 Setting Callback Functions +\subsubsection core_cb_example 6.1.4 Example: Setting up a callback set +\include nl_cb_set.c + +\subsection core_cb_overwrite 6.2 Overwriting of Internal Functions + +When the library needs to send or receive netlink messages in high level +interfaces it does so by calling its own low level API. In the case the +default characteristics are not sufficient for the application, it may +overwrite several internal function calls with own implementations. + +\subsubsection core_cb_ow_recvmsgs 6.2.1 Overwriting recvmsgs() + +See \ref core_recv for more information on how and when recvmsgs() is +called internally. -In order to simplify typical usages of the library, different sets of -default callback implementations exist: \code -NL_CB_DEFAULT: No additional actions -NL_CB_VERBOSE: Automatically print warning and error messages to a file - descriptor as appropriate. This is useful for CLI based - applications. -NL_CB_DEBUG: Print informal debugging information for each message - received. This will result in every message beint sent or - received to be printed to the screen in a decoded, - human-readable format. +#include + +void nl_cb_overwrite_recvmsgs(struct nl_cb *cb, + int (*func)(struct nl_sock *sk, struct nl_cb *cb)); \endcode -\subsubsection core_cb_example 5.1.4 Example: Setting up a callback set +The following criteras must be met if a recvmsgs() implementation is +supposed to work with high level interfaces: +- MUST respect the callback configuration in \c cb, therefore: + - MUST call NL_CB_VALID for all valid messages, passing on + - MUST call NL_CB_ACK for all ACK messages + - MUST correctly handle multipart messages, calling NL_CB_VALID for + each message until a NLMSG_DONE message is received. +- MUST report error code if a NLMSG_ERROR or NLMSG_OVERRUN mesasge is + received. + +\subsubsection core_cb_ow_recv 6.2.2 Overwriting nl_recv() + +Often it is sufficient to overwrite nl_recv() which is responsible from +receiving the actual data from the socket instead of replacing the complete +recvmsgs() logic. + +See \ref core_recvmsgs for more information on how and when nl_recv() +is called internally. + \code -// Allocate a callback set and initialize it to the verbose default set -struct nl_cb *cb = nl_cb_alloc(NL_CB_VERBOSE); +#include + +void nl_cb_overwrite_recv(struct nl_cb *cb, + int (*func)(struct nl_sock * sk, + struct sockaddr_nl *addr, + unsigned char **buf, + struct ucred **cred)); +\endcode + +The following criteras must be met for an own nl_recv() implementation: +- MUST return the number of bytes read or a negative error code if an + error occured. The function may also return 0 to indicate that no + data has been read. +- MUST set \c *buf to a buffer containing the data read. It must be safe + for the caller to access the number of bytes read returned as return code. +- MAY fill out \c *addr with the netlink address of the peer the data + has been received from. +- MAY set \c *cred to a newly allocated struct ucred containg credentials. -// Modify the set to call my_func() for all valid messages -nl_cb_set(cb, NL_CB_VALID, NL_CB_CUSTOM, my_func, NULL); +\subsubsection core_cb_ow_send 6.2.3 Overwriting nl_send() -// Set the error message handler to the verbose default implementation -// and direct it to print all errors to the given file descriptor. -FILE *file = fopen(...); -nl_cb_err(cb, NL_CB_VERBOSE, NULL, file); +See \ref core_send for more information on how and when nl_send() is +called internally. + +\code +#include + +void nl_cb_overwrite_send(struct nl_cb *cb, int (*func)(struct nl_sock *sk, + struct nl_msg *msg)); \endcode -\section remarks Remarks +Own implementations must send the netlink message and return 0 on success +or a negative error code. + +\section core_cache 7. Cache System -\subsection cache_alloc Allocation of Caches +\subsection cache_alloc 7.1 Allocation of Caches Almost all subsystem provide a function to allocate a new cache of some form. The function usually looks like this: @@ -737,76 +2059,245 @@ to further specify what will be part of the cache. All such functions return a newly allocated cache or NULL in case of an error. -\subsection addr Setting of Addresses +\section core_abstract_types 8. Abstract Data Types + +A few high level abstract data types which are used by a majority netlink +protocols are implemented in the core library. More may be added in the +future if the need arises. + +\subsection core_abstract_addr 8.1 Abstract Address + +Most netlink protocols deal with networking related topics and thus +dealing with network addresses is a common task. + +Currently the following address families are supported: +- AF_INET +- AF_INET6 +- AF_LLC +- AF_DECnet +- AF_UNSPEC + +\subsubsection core_abstract_addr_alloc 8.1.1 Address Allocation + +The function nl_addr_alloc() allocates a new empty address. The +\p maxsize argument defines the maximum length of an address in bytes. +The size of an address is address family specific. If the address +family and address data are known at allocation time the function +nl_addr_build() can be used alternatively. You may also clone +an address by calling nl_addr_clone() + \code -int _set_addr(struct nl_object *, struct nl_addr *) +#include + +struct nl_addr *nl_addr_alloc(size_t maxsize); +struct nl_addr *nl_addr_clone(struct nl_addr *addr); +struct nl_addr *nl_addr_build(int family, void *addr, size_t size); \endcode -All attribute functions avaiable for assigning addresses to objects -take a struct nl_addr argument. The provided address object is -validated against the address family of the object if known already. -The assignment fails if the address families mismatch. In case the -address family has not been specified yet, the address family of -the new address is elected to be the new requirement. +If the address is transported in a netlink attribute, the function +nl_addr_alloc_attr() allocates a new address based on the payload +of the attribute provided. The \p family argument is used to specify +the address family of the address, set to \p AF_UNSPEC if unknown. -The function will acquire a new reference on the address object -before assignment, the caller is NOT responsible for this. +\code +#include -All functions return 0 on success or a negative error code. +struct nl_addr *nl_addr_alloc_attr(struct nlattr *attr, int family); +\endcode -\subsection flags Flags to Character StringTranslations -All functions converting a set of flags to a character string follow -the same principles, therefore, the following information applies -to all functions convertings flags to a character string and vice versa. +If the address is provided by a user, it is usually stored in a human +readable format. The function nl_addr_parse() parses a character +string representing an address and allocates a new address based on +it. -\subsubsection flags2str Flags to Character String \code -char *_flags2str(int flags, char *buf, size_t len) +#include + +int nl_addr_parse(const char *addr, int hint, struct nl_addr **result); \endcode -\arg flags Flags. -\arg buf Destination buffer. -\arg len Buffer length. -Converts the specified flags to a character string separated by -commas and stores it in the specified destination buffer. +If parsing succeeds the function returns 0 and the allocated address +is stored in \p *result. -\return The destination buffer +\b Note: Make sure to return the reference to an address using + nl_addr_put() after usage to allow memory being freed. + +\subsubsection core_abstract_addr_ref 8.1.2 Address References + +Abstract addresses use reference counting to account for all users of +a particular address. After the last user has returned the reference +the address is freed. + +If you pass on a address object to another function and you are not +sure how long it will be used, make sure to call nl_addr_get() to +acquire an additional reference and have that function or code path +call nl_addr_put() as soon as it has finished using the address. -\subsubsection str2flags Character String to Flags \code -int _str2flags(const char *name) +#include + +struct nl_addr *nl_addr_get(struct nl_addr *addr); +void nl_addr_put(struct nl_addr *addr); +int nl_addr_shared(struct nl_addr *addr); \endcode -\arg name Name of flag. -Converts the provided character string specifying a flag -to the corresponding numeric value. +You may call nl_addr_shared() at any time to check if you are the only +user of an address. -\return Link flag or a negative value if none was found. +\subsubsection core_abstract_addr_attr 8.1.3 Address Attributes + +The address is usually set at allocation time. If it was unknown at that +time it can be specified later by calling nl_addr_set_family() and is +accessed with the function nl_addr_get_family(). -\subsubsection type2str Type to Character String \code -char *_2str(int type, char *buf, size_t len) +#include + +void nl_addr_set_family(struct nl_addr *addr, int family); +int nl_addr_get_family(struct nl_addr *addr); \endcode -\arg type Type as numeric value -\arg buf Destination buffer. -\arg len Buffer length. -Converts an identifier (type) to a character string and stores -it in the specified destination buffer. +The same is true for the actual address data. It is typically present +at allocation time. For exceptions it can be specified later or +overwritten with the function nl_addr_set_binary_addr(). Beware that +the length of the address may not exceed \p maxlen specified at +allocation time. The address data is returned by the function +nl_addr_get_binary_addr() and its length by the function +nl_addr_get_len(). -\return The destination buffer or the type encoded in hexidecimal - form if the identifier is unknown. +\code +#include + +int nl_addr_set_binary_addr(struct nl_addr *addr, void *data, size_t size); +void *nl_addr_get_binary_addr(struct nl_addr *addr); +unsigned int nl_addr_get_len(struct nl_addr *addr); +\endcode + +If you only want to check if the address data consists of all zeros +the function nl_addr_iszero() is a shortcut to that. -\subsubsection str2type Character String to Type \code -int _str2(const char *name) +#include + +int nl_addr_iszero(struct nl_addr *addr); \endcode -\arg name Name of identifier (type). -Converts the provided character string specifying a identifier -to the corresponding numeric value. +\subsubsection core_abstract_addr_prefix 8.1.4 Address Prefix Length -\return Identifier as numeric value or a negative value if none was found. +Although this functionality is somewhat specific to routing it has +been implemented here. Addresses can have a prefix length assigned +which implies that only the first n bits are of importance. This +is f.e. used to implement subnets. + +Use set functions nl_addr_set_prefixlen() and nl_addr_get_prefixlen() +to work with prefix lengths. + +\code +#include + +void nl_addr_set_prefixlen(struct nl_addr *addr, int n); +unsigned int nl_addr_get_prefixlen(struct nl_addr *addr); +\endcode + +\b Note: The default prefix length is set to (address length * 8) + +\subsubsection core_abstract_addr_helpers 8.1.5 Address Helpers + +Several functions exist to help when dealing with addresses. The +function nl_addr_cmp() compares two addresses and returns an integer +less than, equal to or greater than zero without considering the prefix +length at all. If you want to consider the prefix length, use the +function nl_addr_cmp_prefix(). + +\code +#include + +int nl_addr_cmp(struct nl_addr *addr, struct nl_addr *addr); +int nl_addr_cmp_prefix(struct nl_addr *addr, struct nl_addr *addr); +\endcode + +If an abstract address needs to presented to the user it should be done +in a human readable format which differs depending on the address +family. The function nl_addr2str() takes care of this by calling the +appropriate conversion functions internaly. It expects a \p buf of +length \p size to write the character string into and returns a pointer +to \p buf for easy printf() usage. + +\code +#include + +char *nl_addr2str(struct nl_addr *addr, char *buf, size_t size); +\endcode + +If the address family is unknown, the address data will be printed in +hexadecimal format AA:BB:CC:DD:... +Often the only way to figure out the address family is by looking at +the length of the address. The function nl_addr_guess_family() does just +this and returns the address family guessed based on the address size. + +\code +#include + +int nl_addr_guess_family(struct nl_addr *addr); +\endcode + +Before allocating an address you may want to check if the character +string actually represents a valid address of the address family you are +expecting. The function nl_addr_valid() can be used for that, it returns +1 if the supplised \p addr is a valid address in the context of \p family. +See inet_pton(3), dnet_pton(3) for more information on valid adddress +formats. + +\code +#include + +int nl_addr_valid(char *addr, int family); +\endcode + +\subsection core_abstract_data 8.2 Abstract Data + +The abstract data type is a trivial datatype with the primary purpose +to simplify usage of netlink attributes of arbitary length. + +\subsubsection core_abstract_data_alloc 8.2.1 Allocation of a Data Object + +The function nl_data_alloc() alloctes a new abstract data object and +fill it with the provided data. nl_data_alloc_attr() does the same but +bases the data on the payload of a netlink attribute. New data objects +can also be allocated by cloning existing ones by using nl_data_clone(). + +\code +struct nl_data *nl_data_alloc(void *buf, size_t size); +struct nl_data *nl_data_alloc_attr(struct nlattr *attr); +struct nl_data *nl_data_clone(struct nl_data *data); +void nl_data_free(struct nl_data *data); +\endcode + +\subsubsection core_abstract_data_access 8.2.2 Access to Data + +The function nl_data_get() returns a pointer to the data, the size of +data is returned by nl_data_get_size(). + +\code +void *nl_data_get(struct nl_data *data); +size_t nl_data_get_size(struct nl_data *data); +\endcode + +\subsubsection core_abstract_data_helpers 8.2.3 Data Helpers + +The function nl_data_append() reallocates the internal data buffers and +appends the specified \p buf to the existing data. + +\code +int nl_data_append(struct nl_data *data, void *buf, size_t size); +\endcode + +\b Note: Call nl_data_append() invalidates all pointers returned by + nl_data_get(). + +\code +int nl_data_cmp(struct nl_data *data, struct nl_data *data); +\endcode */ diff --git a/doc/src/examples/NLA_PUT.c b/doc/src/examples/NLA_PUT.c new file mode 100644 index 0000000..c3afb47 --- /dev/null +++ b/doc/src/examples/NLA_PUT.c @@ -0,0 +1,15 @@ +#include +#include + +void construct_attrs(struct nl_msg *msg) +{ + NLA_PUT_STRING(msg, MY_ATTR_FOO1, "some text"); + NLA_PUT_U32(msg, MY_ATTR_FOO1, 0x1010); + NLA_PUT_FLAG(msg, MY_ATTR_FOO3, 1); + + return 0; + +nla_put_failure: + /* NLA_PUT* macros jump here in case of an error */ + return -EMSGSIZE; +} diff --git a/doc/src/examples/msg_constr_attr.c b/doc/src/examples/msg_constr_attr.c new file mode 100644 index 0000000..bfa00fe --- /dev/null +++ b/doc/src/examples/msg_constr_attr.c @@ -0,0 +1,51 @@ +struct nl_msg *build_msg(int ifindex, struct nl_addr *lladdr, int mtu) +{ + struct nl_msg *msg; + struct nlattr *info, *vlan; + struct ifinfomsg ifi = { + .ifi_family = AF_INET, + .ifi_index = ifindex, + }; + + /* Allocate a default sized netlink message */ + if (!(msg = nlmsg_alloc_simple(RTM_SETLINK, 0))) + return NULL; + + /* Append the protocol specific header (struct ifinfomsg)*/ + if (nlmsg_append(msg, &ifi, sizeof(ifi), NLMSG_ALIGNTO) < 0) + goto nla_put_failure + + /* Append a 32 bit integer attribute to carry the MTU */ + NLA_PUT_U32(msg, IFLA_MTU, mtu); + + /* Append a unspecific attribute to carry the link layer address */ + NLA_PUT_ADDR(msg, IFLA_ADDRESS, lladdr); + + /* Append a container for nested attributes to carry link information */ + if (!(info = nla_nest_start(msg, IFLA_LINKINFO))) + goto nla_put_failure; + + /* Put a string attribute into the container */ + NLA_PUT_STRING(msg, IFLA_INFO_KIND, "vlan"); + + /* + * Append another container inside the open container to carry + * vlan specific attributes + */ + if (!(vlan = nla_nest_start(msg, IFLA_INFO_DATA))) + goto nla_put_failure; + + /* add vlan specific info attributes here... */ + + /* Finish nesting the vlan attributes and close the second container. */ + nla_nest_end(msg, vlan); + + /* Finish nesting the link info attribute and close the first container. */ + nla_nest_end(msg, info); + + return msg; + +nla_put_failure: + nlmsg_free(msg); + return NULL; +} diff --git a/doc/src/examples/msg_parse_attr.c b/doc/src/examples/msg_parse_attr.c new file mode 100644 index 0000000..6e275e9 --- /dev/null +++ b/doc/src/examples/msg_parse_attr.c @@ -0,0 +1,50 @@ +int parse_message(struct nlmsghdr *hdr) +{ + /* + * The policy defines two attributes: a 32 bit integer and a container + * for nested attributes. + */ + struct nla_policy attr_policy[] = { + [ATTR_FOO] = { .type = NLA_U32 }, + [ATTR_BAR] = { .type = NLA_NESTED }, + }; + struct nlattr *attrs[ATTR_MAX+1]; + int err; + + /* + * The nlmsg_parse() function will make sure that the message contains + * enough payload to hold the header (struct my_hdr), validates any + * attributes attached to the messages and stores a pointer to each + * attribute in the attrs[] array accessable by attribute type. + */ + if ((err = nlmsg_parse(hdr, sizeof(struct my_hdr), attrs, ATTR_MAX, + attr_policy)) < 0) + goto errout; + + if (attrs[ATTR_FOO]) { + /* + * It is safe to directly access the attribute payload without + * any further checks since nlmsg_parse() enforced the policy. + */ + uint32_t foo = nla_get_u32(attrs[ATTR_FOO]); + } + + if (attrs[ATTR_BAR]) { + struct *nested[NESTED_MAX+1]; + + /* + * Attributes nested in a container can be parsed the same way + * as top level attributes. + */ + err = nla_parse_nested(nested, NESTED_MAX, attrs[ATTR_BAR], + nested_policy); + if (err < 0) + goto errout; + + // Process nested attributes here. + } + + err = 0; +errout: + return err; +} diff --git a/doc/src/examples/my_parse.c b/doc/src/examples/my_parse.c new file mode 100644 index 0000000..c1ff637 --- /dev/null +++ b/doc/src/examples/my_parse.c @@ -0,0 +1,11 @@ +#include + +void my_parse(void *stream, int length) +{ + struct nlmsghdr *hdr = stream; + + while (nlmsg_ok(hdr, length)) { + // Parse message here + hdr = nlmsg_next(hdr, &length); + } +} diff --git a/doc/src/examples/nl_cb_set.c b/doc/src/examples/nl_cb_set.c new file mode 100644 index 0000000..4fbaefc --- /dev/null +++ b/doc/src/examples/nl_cb_set.c @@ -0,0 +1,14 @@ +#include + +/* Allocate a callback set and initialize it to the verbose default set */ +struct nl_cb *cb = nl_cb_alloc(NL_CB_VERBOSE); + +/* Modify the set to call my_func() for all valid messages */ +nl_cb_set(cb, NL_CB_VALID, NL_CB_CUSTOM, my_func, NULL); + +/* + * Set the error message handler to the verbose default implementation + * and direct it to print all errors to the given file descriptor. + */ +FILE *file = fopen(...); +nl_cb_err(cb, NL_CB_VERBOSE, NULL, file); diff --git a/doc/src/examples/nl_send_simple.c b/doc/src/examples/nl_send_simple.c new file mode 100644 index 0000000..afbed7a --- /dev/null +++ b/doc/src/examples/nl_send_simple.c @@ -0,0 +1,11 @@ +#include + +struct nl_sock *sk; +struct rtgenmsg rt_hdr = { + .rtgen_family = AF_UNSPEC, +}; + +sk = nl_socket_alloc(); +nl_connect(sk, NETLINK_ROUTE); + +nl_send_simple(sock, RTM_GETLINK, NLM_F_DUMP, &rt_hdr, sizeof(rt_hdr)); diff --git a/doc/src/examples/nla_flag.c b/doc/src/examples/nla_flag.c new file mode 100644 index 0000000..dc3d0f9 --- /dev/null +++ b/doc/src/examples/nla_flag.c @@ -0,0 +1,7 @@ +/* nla_put_flag() appends a zero sized attribute to the message. */ +nla_put_flag(msg, ATTR_FLAG); + + +/* There is no need for a receival function, the presence is the value. */ +if (attrs[ATTR_FLAG]) + /* flag is present */ diff --git a/doc/src/examples/nla_for_each_attr.c b/doc/src/examples/nla_for_each_attr.c new file mode 100644 index 0000000..9d81835 --- /dev/null +++ b/doc/src/examples/nla_for_each_attr.c @@ -0,0 +1,11 @@ +#include + +struct nalttr *nla; +int rem; + +nla_for_each_attr(nla, attrstream, streamlen, rem) { + /* validate & parse attribute */ +} + +if (rem > 0) + /* unparsed attribute data */ diff --git a/doc/src/examples/nla_nest_start.c b/doc/src/examples/nla_nest_start.c new file mode 100644 index 0000000..51cd616 --- /dev/null +++ b/doc/src/examples/nla_nest_start.c @@ -0,0 +1,16 @@ +int put_opts(struct nl_msg *msg) +{ + struct nlattr *opts; + + if (!(opts = nla_nest_start(msg, ATTR_OPTS))) + goto nla_put_failure; + + NLA_PUT_U32(msg, NESTED_FOO, 123); + NLA_PUT_STRING(msg, NESTED_BAR, "some text"); + + nla_nest_end(msg, opts); + return 0; + +nla_put_failure: + return -EMSGSIZE; +} diff --git a/doc/src/examples/nla_ok.c b/doc/src/examples/nla_ok.c new file mode 100644 index 0000000..4485a96 --- /dev/null +++ b/doc/src/examples/nla_ok.c @@ -0,0 +1,10 @@ +#include +#include + +struct nlattr *hdr = nlmsg_attrdata(msg, 0); +int remaining = nlmsg_attrlen(msg, 0); + +while (nla_ok(hdr, remaining)) { + /* parse attribute here */ + hdr = nla_next(hdr, &remaining); +}; diff --git a/doc/src/examples/nla_parse_nested.c b/doc/src/examples/nla_parse_nested.c new file mode 100644 index 0000000..563bfc8 --- /dev/null +++ b/doc/src/examples/nla_parse_nested.c @@ -0,0 +1,12 @@ +if (attrs[ATTR_OPTS]) { + struct nlattr *nested[NESTED_MAX+1]; + struct nla_policy nested_policy[] = { + [NESTED_FOO] = { .type = NLA_U32 }, + }; + + if (nla_parse_nested(nested, NESTED_MAX, attrs[ATTR_OPTS], nested_policy) < 0) + /* error */ + + if (nested[NESTED_FOO]) + uint32_t val = nla_get_u32(nested[NESTED_FOO]); +} diff --git a/doc/src/examples/nla_put.c b/doc/src/examples/nla_put.c new file mode 100644 index 0000000..0683fa5 --- /dev/null +++ b/doc/src/examples/nla_put.c @@ -0,0 +1,14 @@ +struct my_attr_struct { + uint32_t a; + uint32_t b; +}; + +int my_put(struct nl_msg *msg) +{ + struct my_attr_struct obj = { + .a = 10, + .b = 20, + }; + + return nla_put(msg, ATTR_MY_STRUCT, sizeof(obj), &obj); +} diff --git a/doc/src/examples/nlmsg_for_each.c b/doc/src/examples/nlmsg_for_each.c new file mode 100644 index 0000000..ae2ee66 --- /dev/null +++ b/doc/src/examples/nlmsg_for_each.c @@ -0,0 +1,7 @@ +#include + +struct nlmsghdr *hdr; + +nlmsg_for_each(hdr, stream, length) { + /* do something with message */ +} diff --git a/doc/src/examples/nlmsg_parse.c b/doc/src/examples/nlmsg_parse.c new file mode 100644 index 0000000..ac6acb3 --- /dev/null +++ b/doc/src/examples/nlmsg_parse.c @@ -0,0 +1,29 @@ +#include +#include + +enum { + MY_ATTR_FOO = 1, + MY_ATTR_BAR, + __MY_ATTR_MAX, +}; + +#define MY_ATTR_MAX (__MY_ATTR_MAX - 1) + +static struct nla_policy my_policy[MY_ATTR_MAX+1] = { + [MY_ATTR_FOO] = { .type = NLA_U32 }, + [MY_ATTR_BAR] = { .type = NLA_STRING, + .maxlen = 16 }, +}; + +void parse_msg(struct nlmsghdr *nlh) +{ + struct nlattr *attrs[MY_ATTR_MAX+1]; + + if (nlmsg_parse(nlh, 0, attrs, MY_ATTR_MAX, my_policy) < 0) + /* error */ + + if (attrs[MY_ATTR_FOO]) { + /* MY_ATTR_FOO is present in message */ + printf("value: %u\n", nla_get_u32(attrs[MY_ATTR_FOO])); + } +} diff --git a/doc/src/examples/nlmsg_put.c b/doc/src/examples/nlmsg_put.c new file mode 100644 index 0000000..5e609c6 --- /dev/null +++ b/doc/src/examples/nlmsg_put.c @@ -0,0 +1,31 @@ +#include + +struct nlmsghdr *hdr; +struct nl_msg *msg; +struct myhdr { + uint32_t foo1, foo2; +} hdr = { 10, 20 }; + +/* Allocate a message with the default maximum message size */ +msg = nlmsg_alloc(); + +/* + * Add header with message type MY_MSGTYPE, the flag NLM_F_CREATE, + * let library fill port and sequence number, and reserve room for + * struct myhdr + */ +hdr = nlmsg_put(msg, NL_AUTO_PORT, NL_AUTO_SEQ, MY_MSGTYPE, sizeof(hdr), NLM_F_CREATE); + +/* Copy own header into newly reserved payload section */ +memcpy(nlmsg_data(hdr), &hdr, sizeof(hdr)); + +/* + * The message will now look like this: + * +-------------------+- - -+----------------+- - -+ + * | struct nlmsghdr | Pad | struct myhdr | Pad | + * +-------------------+-----+----------------+- - -+ + * nlh -^ / \ + * +--------+---------+ + * | foo1 | foo2 | + * +--------+---------+ + */ diff --git a/doc/src/examples/sk_group_example.c b/doc/src/examples/sk_group_example.c new file mode 100644 index 0000000..f948e18 --- /dev/null +++ b/doc/src/examples/sk_group_example.c @@ -0,0 +1,43 @@ +#include +#include +#include + +/* + * This function will be called for each valid netlink message received + * in nl_recvmsgs_default() + */ +static int my_func(struct nl_msg *msg, void *arg) +{ + return 0; +} + +struct nl_sock *sk; + +/* Allocate a new socket */ +sk = nl_socket_alloc(); + +/* + * Notifications do not use sequence numbers, disable sequence number + * checking. + */ +nl_socket_disable_seq_check(sk); + +/* + * Define a callback function, which will be called for each notification + * received + */ +nl_socket_modify_cb(sk, NL_CB_VALID, NL_CB_CUSTOM, my_func, NULL); + +/* Connect to routing netlink protocol */ +nl_connect(sk, NETLINK_ROUTE); + +/* Subscribe to link notifications group */ +nl_socket_add_memberships(sk, RTNLGRP_LINK); + +/* + * Start receiving messages. The function nl_recvmsgs_default() will block + * until one or more netlink messages (notification) are received which + * will be passed on to my_func(). + */ +while (1) + nl_recvmsgs_default(sock); diff --git a/include/linux/netlink.h b/include/linux/netlink.h index 893686f..971a94f 100644 --- a/include/linux/netlink.h +++ b/include/linux/netlink.h @@ -29,52 +29,6 @@ struct net; -struct sockaddr_nl { - sa_family_t nl_family; /* AF_NETLINK */ - unsigned short nl_pad; /* zero */ - __u32 nl_pid; /* port ID */ - __u32 nl_groups; /* multicast groups mask */ -}; - -struct nlmsghdr { - __u32 nlmsg_len; /* Length of message including header */ - __u16 nlmsg_type; /* Message content */ - __u16 nlmsg_flags; /* Additional flags */ - __u32 nlmsg_seq; /* Sequence number */ - __u32 nlmsg_pid; /* Sending process port ID */ -}; - -/* Flags values */ - -#define NLM_F_REQUEST 1 /* It is request message. */ -#define NLM_F_MULTI 2 /* Multipart message, terminated by NLMSG_DONE */ -#define NLM_F_ACK 4 /* Reply with ack, with zero or error code */ -#define NLM_F_ECHO 8 /* Echo this request */ - -/* Modifiers to GET request */ -#define NLM_F_ROOT 0x100 /* specify tree root */ -#define NLM_F_MATCH 0x200 /* return all matching */ -#define NLM_F_ATOMIC 0x400 /* atomic GET */ -#define NLM_F_DUMP (NLM_F_ROOT|NLM_F_MATCH) - -/* Modifiers to NEW request */ -#define NLM_F_REPLACE 0x100 /* Override existing */ -#define NLM_F_EXCL 0x200 /* Do not touch, if it exists */ -#define NLM_F_CREATE 0x400 /* Create, if it does not exist */ -#define NLM_F_APPEND 0x800 /* Add to end of list */ - -/* - 4.4BSD ADD NLM_F_CREATE|NLM_F_EXCL - 4.4BSD CHANGE NLM_F_REPLACE - - True CHANGE NLM_F_CREATE|NLM_F_REPLACE - Append NLM_F_CREATE - Check NLM_F_EXCL - */ - -#define NLMSG_ALIGNTO 4 -#define NLMSG_ALIGN(len) ( ((len)+NLMSG_ALIGNTO-1) & ~(NLMSG_ALIGNTO-1) ) -#define NLMSG_HDRLEN ((int) NLMSG_ALIGN(sizeof(struct nlmsghdr))) #define NLMSG_LENGTH(len) ((len)+NLMSG_ALIGN(NLMSG_HDRLEN)) #define NLMSG_SPACE(len) NLMSG_ALIGN(NLMSG_LENGTH(len)) #define NLMSG_DATA(nlh) ((void*)(((char*)nlh) + NLMSG_LENGTH(0))) @@ -85,28 +39,12 @@ struct nlmsghdr { (nlh)->nlmsg_len <= (len)) #define NLMSG_PAYLOAD(nlh,len) ((nlh)->nlmsg_len - NLMSG_SPACE((len))) -#define NLMSG_NOOP 0x1 /* Nothing. */ -#define NLMSG_ERROR 0x2 /* Error */ -#define NLMSG_DONE 0x3 /* End of a dump */ -#define NLMSG_OVERRUN 0x4 /* Data lost */ - -#define NLMSG_MIN_TYPE 0x10 /* < 0x10: reserved control messages */ - -struct nlmsgerr { - int error; - struct nlmsghdr msg; -}; - #define NETLINK_ADD_MEMBERSHIP 1 #define NETLINK_DROP_MEMBERSHIP 2 #define NETLINK_PKTINFO 3 #define NETLINK_BROADCAST_ERROR 4 #define NETLINK_NO_ENOBUFS 5 -struct nl_pktinfo { - __u32 group; -}; - #define NET_MAJOR 36 /* Major 36 is reserved for networking */ enum { @@ -114,36 +52,4 @@ enum { NETLINK_CONNECTED, }; -/* - * <------- NLA_HDRLEN ------> <-- NLA_ALIGN(payload)--> - * +---------------------+- - -+- - - - - - - - - -+- - -+ - * | Header | Pad | Payload | Pad | - * | (struct nlattr) | ing | | ing | - * +---------------------+- - -+- - - - - - - - - -+- - -+ - * <-------------- nlattr->nla_len --------------> - */ - -struct nlattr { - __u16 nla_len; - __u16 nla_type; -}; - -/* - * nla_type (16 bits) - * +---+---+-------------------------------+ - * | N | O | Attribute Type | - * +---+---+-------------------------------+ - * N := Carries nested attributes - * O := Payload stored in network byte order - * - * Note: The N and O flag are mutually exclusive. - */ -#define NLA_F_NESTED (1 << 15) -#define NLA_F_NET_BYTEORDER (1 << 14) -#define NLA_TYPE_MASK ~(NLA_F_NESTED | NLA_F_NET_BYTEORDER) - -#define NLA_ALIGNTO 4 -#define NLA_ALIGN(len) (((len) + NLA_ALIGNTO - 1) & ~(NLA_ALIGNTO - 1)) -#define NLA_HDRLEN ((int) NLA_ALIGN(sizeof(struct nlattr))) - #endif /* __LINUX_NETLINK_H */ diff --git a/include/netlink/netlink-kernel.h b/include/netlink/netlink-kernel.h index a0f5535..d3a4128 100644 --- a/include/netlink/netlink-kernel.h +++ b/include/netlink/netlink-kernel.h @@ -1,5 +1,5 @@ -#ifndef __LINUX_NETLINK_H -#define __LINUX_NETLINK_H +#ifndef __NETLINK_KERNEL_H_ +#define __NETLINK_KERNEL_H_ /** * Netlink socket address @@ -20,35 +20,30 @@ struct sockaddr_nl uint32_t nl_groups; }; +/** + * @addtogroup msg + * @{ + */ + + /** * Netlink message header - * @ingroup msg */ struct nlmsghdr { - /** - * Length of message including header. - */ + /** Length of message including header and padding. */ uint32_t nlmsg_len; - /** - * Message type (content type) - */ + /** Message type (content type) */ uint16_t nlmsg_type; - /** - * Message flags - */ + /** Message flags */ uint16_t nlmsg_flags; - /** - * Sequence number - */ + /** Sequence number of message \see core_sk_seq_num. */ uint32_t nlmsg_seq; - /** - * Netlink PID of the proccess sending the message. - */ + /** Netlink port */ uint32_t nlmsg_pid; }; @@ -60,7 +55,6 @@ struct nlmsghdr /** * Must be set on all request messages (typically from user space to * kernel space). - * @ingroup msg */ #define NLM_F_REQUEST 1 @@ -89,7 +83,6 @@ struct nlmsghdr /** * Return the complete table instead of a single entry. - * @ingroup msg */ #define NLM_F_ROOT 0x100 @@ -119,7 +112,6 @@ struct nlmsghdr /** * Replace existing matching config object with this request. - * @ingroup msg */ #define NLM_F_REPLACE 0x100 @@ -147,7 +139,6 @@ struct nlmsghdr /** * No operation, message must be ignored - * @ingroup msg */ #define NLMSG_NOOP 0x1 @@ -176,8 +167,7 @@ struct nlmsghdr /** @} */ /** - * Netlink error message - * @ingroup msg + * Netlink error message header */ struct nlmsgerr { @@ -193,4 +183,102 @@ struct nl_pktinfo __u32 group; }; +/** + * Netlink alignment constant, all boundries within messages must be align to this. + * + * See \ref core_msg_fmt_align for more information on message alignment. + */ +#define NLMSG_ALIGNTO 4 + +/** + * Returns \p len properly aligned to NLMSG_ALIGNTO. + * + * See \ref core_msg_fmt_align for more information on message alignment. + */ +#define NLMSG_ALIGN(len) ( ((len)+NLMSG_ALIGNTO-1) & ~(NLMSG_ALIGNTO-1) ) + +/** + * Length of a netlink message header including padding. + * + * See \ref core_msg_fmt_align for more information on message alignment. + */ +#define NLMSG_HDRLEN ((int) NLMSG_ALIGN(sizeof(struct nlmsghdr))) + +/** @} */ + +/** + * @addtogroup attr + * @{ + */ + +/* + */ + +/** + * Netlink attribute structure + * + * @code + * <------- NLA_HDRLEN ------> <-- NLA_ALIGN(payload)--> + * +---------------------+- - -+- - - - - - - - - -+- - -+ + * | Header | Pad | Payload | Pad | + * | (struct nlattr) | ing | | ing | + * +---------------------+- - -+- - - - - - - - - -+- - -+ + * <-------------- nlattr->nla_len --------------> + * @endcode + */ +struct nlattr { + /** + * Attribute length in bytes including header + */ + __u16 nla_len; + + /** + * Netlink attribute type + */ + __u16 nla_type; +}; + +/** + * @name Attribute Type Flags + * + * @code + * nla_type (16 bits) + * +---+---+-------------------------------+ + * | N | O | Attribute Type | + * +---+---+-------------------------------+ + * N := Carries nested attributes + * O := Payload stored in network byte order + * @endcode + * + * @note The N and O flag are mutually exclusive. + * + * @{ + */ + +/* + */ +#define NLA_F_NESTED (1 << 15) +#define NLA_F_NET_BYTEORDER (1 << 14) +#define NLA_TYPE_MASK ~(NLA_F_NESTED | NLA_F_NET_BYTEORDER) + +/** @} */ + +#define NLA_ALIGNTO 4 + +/** + * Returns \p len properly aligned to NLA_ALIGNTO. + * + * See \ref core_msg_fmt_align for more information on message alignment. + */ +#define NLA_ALIGN(len) (((len) + NLA_ALIGNTO - 1) & ~(NLA_ALIGNTO - 1)) + +/** + * Length of a netlink attribute header including padding. + * + * See \ref core_msg_fmt_align for more information on message alignment. + */ +#define NLA_HDRLEN ((int) NLA_ALIGN(sizeof(struct nlattr))) + +/** @} */ + #endif /* __LINUX_NETLINK_H */ -- cgit v1.2.1