/* This code is public-domain - it is based on libcrypt * placed in the public domain by Wei Dai and other contributors. */ // gcc -Wall -DSHA1TEST -o sha1test sha1.c && ./sha1test #include #include #ifdef __BIG_ENDIAN__ # define SHA_BIG_ENDIAN #elif defined __LITTLE_ENDIAN__ /* override */ #elif defined __BYTE_ORDER # if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ # define SHA_BIG_ENDIAN # endif #else // ! defined __LITTLE_ENDIAN__ # include // machine/endian.h # if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ # define SHA_BIG_ENDIAN # endif #endif /* header */ #define HASH_LENGTH 20 #define BLOCK_LENGTH 64 typedef struct sha1nfo { uint32_t buffer[BLOCK_LENGTH/4]; uint32_t state[HASH_LENGTH/4]; uint32_t byteCount; uint8_t bufferOffset; uint8_t keyBuffer[BLOCK_LENGTH]; uint8_t innerHash[HASH_LENGTH]; } sha1nfo; /* public API - prototypes - TODO: doxygen*/ /** */ void sha1_init(sha1nfo *s); /** */ void sha1_writebyte(sha1nfo *s, uint8_t data); /** */ void sha1_write(sha1nfo *s, const char *data, size_t len); /** */ uint8_t* sha1_result(sha1nfo *s); /** */ void sha1_initHmac(sha1nfo *s, const uint8_t* key, int keyLength); /** */ uint8_t* sha1_resultHmac(sha1nfo *s); /* code */ #define SHA1_K0 0x5a827999 #define SHA1_K20 0x6ed9eba1 #define SHA1_K40 0x8f1bbcdc #define SHA1_K60 0xca62c1d6 void sha1_init(sha1nfo *s) { s->state[0] = 0x67452301; s->state[1] = 0xefcdab89; s->state[2] = 0x98badcfe; s->state[3] = 0x10325476; s->state[4] = 0xc3d2e1f0; s->byteCount = 0; s->bufferOffset = 0; } uint32_t sha1_rol32(uint32_t number, uint8_t bits) { return ((number << bits) | (number >> (32-bits))); } void sha1_hashBlock(sha1nfo *s) { uint8_t i; uint32_t a,b,c,d,e,t; a=s->state[0]; b=s->state[1]; c=s->state[2]; d=s->state[3]; e=s->state[4]; for (i=0; i<80; i++) { if (i>=16) { t = s->buffer[(i+13)&15] ^ s->buffer[(i+8)&15] ^ s->buffer[(i+2)&15] ^ s->buffer[i&15]; s->buffer[i&15] = sha1_rol32(t,1); } if (i<20) { t = (d ^ (b & (c ^ d))) + SHA1_K0; } else if (i<40) { t = (b ^ c ^ d) + SHA1_K20; } else if (i<60) { t = ((b & c) | (d & (b | c))) + SHA1_K40; } else { t = (b ^ c ^ d) + SHA1_K60; } t+=sha1_rol32(a,5) + e + s->buffer[i&15]; e=d; d=c; c=sha1_rol32(b,30); b=a; a=t; } s->state[0] += a; s->state[1] += b; s->state[2] += c; s->state[3] += d; s->state[4] += e; } void sha1_addUncounted(sha1nfo *s, uint8_t data) { uint8_t * const b = (uint8_t*) s->buffer; #ifdef SHA_BIG_ENDIAN b[s->bufferOffset] = data; #else b[s->bufferOffset ^ 3] = data; #endif s->bufferOffset++; if (s->bufferOffset == BLOCK_LENGTH) { sha1_hashBlock(s); s->bufferOffset = 0; } } void sha1_writebyte(sha1nfo *s, uint8_t data) { ++s->byteCount; sha1_addUncounted(s, data); } void sha1_write(sha1nfo *s, const char *data, size_t len) { for (;len--;) sha1_writebyte(s, (uint8_t) *data++); } void sha1_pad(sha1nfo *s) { // Implement SHA-1 padding (fips180-2 ยง5.1.1) // Pad with 0x80 followed by 0x00 until the end of the block sha1_addUncounted(s, 0x80); while (s->bufferOffset != 56) sha1_addUncounted(s, 0x00); // Append length in the last 8 bytes sha1_addUncounted(s, 0); // We're only using 32 bit lengths sha1_addUncounted(s, 0); // But SHA-1 supports 64 bit lengths sha1_addUncounted(s, 0); // So zero pad the top bits sha1_addUncounted(s, s->byteCount >> 29); // Shifting to multiply by 8 sha1_addUncounted(s, s->byteCount >> 21); // as SHA-1 supports bitstreams as well as sha1_addUncounted(s, s->byteCount >> 13); // byte. sha1_addUncounted(s, s->byteCount >> 5); sha1_addUncounted(s, s->byteCount << 3); } uint8_t* sha1_result(sha1nfo *s) { // Pad to complete the last block sha1_pad(s); #ifndef SHA_BIG_ENDIAN // Swap byte order back int i; for (i=0; i<5; i++) { s->state[i]= (((s->state[i])<<24)& 0xff000000) | (((s->state[i])<<8) & 0x00ff0000) | (((s->state[i])>>8) & 0x0000ff00) | (((s->state[i])>>24)& 0x000000ff); } #endif // Return pointer to hash (20 characters) return (uint8_t*) s->state; } #define HMAC_IPAD 0x36 #define HMAC_OPAD 0x5c void sha1_initHmac(sha1nfo *s, const uint8_t* key, int keyLength) { uint8_t i; memset(s->keyBuffer, 0, BLOCK_LENGTH); if (keyLength > BLOCK_LENGTH) { // Hash long keys sha1_init(s); for (;keyLength--;) sha1_writebyte(s, *key++); memcpy(s->keyBuffer, sha1_result(s), HASH_LENGTH); } else { // Block length keys are used as is memcpy(s->keyBuffer, key, keyLength); } // Start inner hash sha1_init(s); for (i=0; ikeyBuffer[i] ^ HMAC_IPAD); } } uint8_t* sha1_resultHmac(sha1nfo *s) { uint8_t i; // Complete inner hash memcpy(s->innerHash,sha1_result(s),HASH_LENGTH); // Calculate outer hash sha1_init(s); for (i=0; ikeyBuffer[i] ^ HMAC_OPAD); for (i=0; iinnerHash[i]); return sha1_result(s); } /* self-test */ #if SHA1TEST #include uint8_t hmacKey1[]={ 0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0a,0x0b,0x0c,0x0d,0x0e,0x0f, 0x10,0x11,0x12,0x13,0x14,0x15,0x16,0x17,0x18,0x19,0x1a,0x1b,0x1c,0x1d,0x1e,0x1f, 0x20,0x21,0x22,0x23,0x24,0x25,0x26,0x27,0x28,0x29,0x2a,0x2b,0x2c,0x2d,0x2e,0x2f, 0x30,0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39,0x3a,0x3b,0x3c,0x3d,0x3e,0x3f }; uint8_t hmacKey2[]={ 0x30,0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39,0x3a,0x3b,0x3c,0x3d,0x3e,0x3f, 0x40,0x41,0x42,0x43 }; uint8_t hmacKey3[]={ 0x50,0x51,0x52,0x53,0x54,0x55,0x56,0x57,0x58,0x59,0x5a,0x5b,0x5c,0x5d,0x5e,0x5f, 0x60,0x61,0x62,0x63,0x64,0x65,0x66,0x67,0x68,0x69,0x6a,0x6b,0x6c,0x6d,0x6e,0x6f, 0x70,0x71,0x72,0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7a,0x7b,0x7c,0x7d,0x7e,0x7f, 0x80,0x81,0x82,0x83,0x84,0x85,0x86,0x87,0x88,0x89,0x8a,0x8b,0x8c,0x8d,0x8e,0x8f, 0x90,0x91,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9a,0x9b,0x9c,0x9d,0x9e,0x9f, 0xa0,0xa1,0xa2,0xa3,0xa4,0xa5,0xa6,0xa7,0xa8,0xa9,0xaa,0xab,0xac,0xad,0xae,0xaf, 0xb0,0xb1,0xb2,0xb3 }; uint8_t hmacKey4[]={ 0x70,0x71,0x72,0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7a,0x7b,0x7c,0x7d,0x7e,0x7f, 0x80,0x81,0x82,0x83,0x84,0x85,0x86,0x87,0x88,0x89,0x8a,0x8b,0x8c,0x8d,0x8e,0x8f, 0x90,0x91,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9a,0x9b,0x9c,0x9d,0x9e,0x9f, 0xa0 }; void printHash(uint8_t* hash) { int i; for (i=0; i<20; i++) { printf("%02x", hash[i]); } printf("\n"); } int main (int argc, char **argv) { uint32_t a; sha1nfo s; // SHA tests printf("Test: FIPS 180-2 C.1 and RFC3174 7.3 TEST1\n"); printf("Expect:a9993e364706816aba3e25717850c26c9cd0d89d\n"); printf("Result:"); sha1_init(&s); sha1_write(&s, "abc", 3); printHash(sha1_result(&s)); printf("\n\n"); printf("Test: FIPS 180-2 C.2 and RFC3174 7.3 TEST2\n"); printf("Expect:84983e441c3bd26ebaae4aa1f95129e5e54670f1\n"); printf("Result:"); sha1_init(&s); sha1_write(&s, "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", 56); printHash(sha1_result(&s)); printf("\n\n"); printf("Test: RFC3174 7.3 TEST4\n"); printf("Expect:dea356a2cddd90c7a7ecedc5ebb563934f460452\n"); printf("Result:"); sha1_init(&s); for (a=0; a<80; a++) sha1_write(&s, "01234567", 8); printHash(sha1_result(&s)); printf("\n\n"); // HMAC tests printf("Test: FIPS 198a A.1\n"); printf("Expect:4f4ca3d5d68ba7cc0a1208c9c61e9c5da0403c0a\n"); printf("Result:"); sha1_initHmac(&s, hmacKey1, 64); sha1_write(&s, "Sample #1",9); printHash(sha1_resultHmac(&s)); printf("\n\n"); printf("Test: FIPS 198a A.2\n"); printf("Expect:0922d3405faa3d194f82a45830737d5cc6c75d24\n"); printf("Result:"); sha1_initHmac(&s, hmacKey2, 20); sha1_write(&s, "Sample #2", 9); printHash(sha1_resultHmac(&s)); printf("\n\n"); printf("Test: FIPS 198a A.3\n"); printf("Expect:bcf41eab8bb2d802f3d05caf7cb092ecf8d1a3aa\n"); printf("Result:"); sha1_initHmac(&s, hmacKey3,100); sha1_write(&s, "Sample #3", 9); printHash(sha1_resultHmac(&s)); printf("\n\n"); printf("Test: FIPS 198a A.4\n"); printf("Expect:9ea886efe268dbecce420c7524df32e0751a2a26\n"); printf("Result:"); sha1_initHmac(&s, hmacKey4,49); sha1_write(&s, "Sample #4", 9); printHash(sha1_resultHmac(&s)); printf("\n\n"); // Long tests printf("Test: FIPS 180-2 C.3 and RFC3174 7.3 TEST3\n"); printf("Expect:34aa973cd4c4daa4f61eeb2bdbad27316534016f\n"); printf("Result:"); sha1_init(&s); for (a=0; a<1000000; a++) sha1_writebyte(&s, 'a'); printHash(sha1_result(&s)); return 0; } #endif /* self-test */