/* -------------------------------------------------------------------- */ /* * lookup3.c, by Bob Jenkins, May 2006, Public Domain. * * These are functions for producing 32-bit hashes for hash table lookup. * jlu32w(), jlu32l(), jlu32lpair(), jlu32b(), _JLU3_MIX(), and _JLU3_FINAL() * are externally useful functions. Routines to test the hash are included * if SELF_TEST is defined. You can use this free for any purpose. It's in * the public domain. It has no warranty. * * You probably want to use jlu32l(). jlu32l() and jlu32b() * hash byte arrays. jlu32l() is is faster than jlu32b() on * little-endian machines. Intel and AMD are little-endian machines. * On second thought, you probably want jlu32lpair(), which is identical to * jlu32l() except it returns two 32-bit hashes for the price of one. * You could implement jlu32bpair() if you wanted but I haven't bothered here. * * If you want to find a hash of, say, exactly 7 integers, do * a = i1; b = i2; c = i3; * _JLU3_MIX(a,b,c); * a += i4; b += i5; c += i6; * _JLU3_MIX(a,b,c); * a += i7; * _JLU3_FINAL(a,b,c); * then use c as the hash value. If you have a variable size array of * 4-byte integers to hash, use jlu32w(). If you have a byte array (like * a character string), use jlu32l(). If you have several byte arrays, or * a mix of things, see the comments above jlu32l(). * * Why is this so big? I read 12 bytes at a time into 3 4-byte integers, * then mix those integers. This is fast (you can do a lot more thorough * mixing with 12*3 instructions on 3 integers than you can with 3 instructions * on 1 byte), but shoehorning those bytes into integers efficiently is messy. */ /* -------------------------------------------------------------------- */ #include #if defined(_JLU3_SELFTEST) # define _JLU3_jlu32w 1 # define _JLU3_jlu32l 1 # define _JLU3_jlu32lpair 1 # define _JLU3_jlu32b 1 #endif /*@-redef@*/ /*@unchecked@*/ static const union _dbswap { const uint32_t ui; const unsigned char uc[4]; } endian = { 0x11223344 }; # define HASH_LITTLE_ENDIAN (endian.uc[0] == (unsigned char) 0x44) # define HASH_BIG_ENDIAN (endian.uc[0] == (unsigned char) 0x11) /*@=redef@*/ #ifndef ROTL32 # define ROTL32(x, s) (((x) << (s)) | ((x) >> (32 - (s)))) #endif /* NOTE: The _size parameter should be in bytes. */ #define _JLU3_INIT(_h, _size) (0xdeadbeef + ((uint32_t)(_size)) + (_h)) /* -------------------------------------------------------------------- */ /* * _JLU3_MIX -- mix 3 32-bit values reversibly. * * This is reversible, so any information in (a,b,c) before _JLU3_MIX() is * still in (a,b,c) after _JLU3_MIX(). * * If four pairs of (a,b,c) inputs are run through _JLU3_MIX(), or through * _JLU3_MIX() in reverse, there are at least 32 bits of the output that * are sometimes the same for one pair and different for another pair. * This was tested for: * * pairs that differed by one bit, by two bits, in any combination * of top bits of (a,b,c), or in any combination of bottom bits of * (a,b,c). * * "differ" is defined as +, -, ^, or ~^. For + and -, I transformed * the output delta to a Gray code (a^(a>>1)) so a string of 1's (as * is commonly produced by subtraction) look like a single 1-bit * difference. * * the base values were pseudorandom, all zero but one bit set, or * all zero plus a counter that starts at zero. * * Some k values for my "a-=c; a^=ROTL32(c,k); c+=b;" arrangement that * satisfy this are * 4 6 8 16 19 4 * 9 15 3 18 27 15 * 14 9 3 7 17 3 * Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing * for "differ" defined as + with a one-bit base and a two-bit delta. I * used http://burtleburtle.net/bob/hash/avalanche.html to choose * the operations, constants, and arrangements of the variables. * * This does not achieve avalanche. There are input bits of (a,b,c) * that fail to affect some output bits of (a,b,c), especially of a. The * most thoroughly mixed value is c, but it doesn't really even achieve * avalanche in c. * * This allows some parallelism. Read-after-writes are good at doubling * the number of bits affected, so the goal of mixing pulls in the opposite * direction as the goal of parallelism. I did what I could. Rotates * seem to cost as much as shifts on every machine I could lay my hands * on, and rotates are much kinder to the top and bottom bits, so I used * rotates. */ /* -------------------------------------------------------------------- */ #define _JLU3_MIX(a,b,c) \ { \ a -= c; a ^= ROTL32(c, 4); c += b; \ b -= a; b ^= ROTL32(a, 6); a += c; \ c -= b; c ^= ROTL32(b, 8); b += a; \ a -= c; a ^= ROTL32(c,16); c += b; \ b -= a; b ^= ROTL32(a,19); a += c; \ c -= b; c ^= ROTL32(b, 4); b += a; \ } /* -------------------------------------------------------------------- */ /** * _JLU3_FINAL -- final mixing of 3 32-bit values (a,b,c) into c * * Pairs of (a,b,c) values differing in only a few bits will usually * produce values of c that look totally different. This was tested for * * pairs that differed by one bit, by two bits, in any combination * of top bits of (a,b,c), or in any combination of bottom bits of * (a,b,c). * * "differ" is defined as +, -, ^, or ~^. For + and -, I transformed * the output delta to a Gray code (a^(a>>1)) so a string of 1's (as * is commonly produced by subtraction) look like a single 1-bit * difference. * * the base values were pseudorandom, all zero but one bit set, or * all zero plus a counter that starts at zero. * * These constants passed: * 14 11 25 16 4 14 24 * 12 14 25 16 4 14 24 * and these came close: * 4 8 15 26 3 22 24 * 10 8 15 26 3 22 24 * 11 8 15 26 3 22 24 */ /* -------------------------------------------------------------------- */ #define _JLU3_FINAL(a,b,c) \ { \ c ^= b; c -= ROTL32(b,14); \ a ^= c; a -= ROTL32(c,11); \ b ^= a; b -= ROTL32(a,25); \ c ^= b; c -= ROTL32(b,16); \ a ^= c; a -= ROTL32(c,4); \ b ^= a; b -= ROTL32(a,14); \ c ^= b; c -= ROTL32(b,24); \ } #if defined(_JLU3_jlu32w) uint32_t jlu32w(uint32_t h, /*@null@*/ const uint32_t *k, size_t size) /*@*/; /* -------------------------------------------------------------------- */ /** * This works on all machines. To be useful, it requires * -- that the key be an array of uint32_t's, and * -- that the size be the number of uint32_t's in the key * * The function jlu32w() is identical to jlu32l() on little-endian * machines, and identical to jlu32b() on big-endian machines, * except that the size has to be measured in uint32_ts rather than in * bytes. jlu32l() is more complicated than jlu32w() only because * jlu32l() has to dance around fitting the key bytes into registers. * * @param h the previous hash, or an arbitrary value * @param *k the key, an array of uint32_t values * @param size the size of the key, in uint32_ts * @return the lookup3 hash */ /* -------------------------------------------------------------------- */ uint32_t jlu32w(uint32_t h, const uint32_t *k, size_t size) { uint32_t a = _JLU3_INIT(h, (size * sizeof(*k))); uint32_t b = a; uint32_t c = a; if (k == NULL) goto exit; /*----------------------------------------------- handle most of the key */ while (size > 3) { a += k[0]; b += k[1]; c += k[2]; _JLU3_MIX(a,b,c); size -= 3; k += 3; } /*----------------------------------------- handle the last 3 uint32_t's */ switch (size) { case 3 : c+=k[2]; case 2 : b+=k[1]; case 1 : a+=k[0]; _JLU3_FINAL(a,b,c); /*@fallthrough@*/ case 0: break; } /*---------------------------------------------------- report the result */ exit: return c; } #endif /* defined(_JLU3_jlu32w) */ #if defined(_JLU3_jlu32l) uint32_t jlu32l(uint32_t h, const void *key, size_t size) /*@*/; /* -------------------------------------------------------------------- */ /* * jlu32l() -- hash a variable-length key into a 32-bit value * h : can be any 4-byte value * k : the key (the unaligned variable-length array of bytes) * size : the size of the key, counting by bytes * Returns a 32-bit value. Every bit of the key affects every bit of * the return value. Two keys differing by one or two bits will have * totally different hash values. * * The best hash table sizes are powers of 2. There is no need to do * mod a prime (mod is sooo slow!). If you need less than 32 bits, * use a bitmask. For example, if you need only 10 bits, do * h = (h & hashmask(10)); * In which case, the hash table should have hashsize(10) elements. * * If you are hashing n strings (uint8_t **)k, do it like this: * for (i=0, h=0; i 12) { a += k[0]; b += k[1]; c += k[2]; _JLU3_MIX(a,b,c); size -= 12; k += 3; } /*------------------------- handle the last (probably partial) block */ /* * "k[2]&0xffffff" actually reads beyond the end of the string, but * then masks off the part it's not allowed to read. Because the * string is aligned, the masked-off tail is in the same word as the * rest of the string. Every machine with memory protection I've seen * does it on word boundaries, so is OK with this. But VALGRIND will * still catch it and complain. The masking trick does make the hash * noticeably faster for short strings (like English words). */ #ifndef VALGRIND switch (size) { case 12: c += k[2]; b+=k[1]; a+=k[0]; break; case 11: c += k[2]&0xffffff; b+=k[1]; a+=k[0]; break; case 10: c += k[2]&0xffff; b+=k[1]; a+=k[0]; break; case 9: c += k[2]&0xff; b+=k[1]; a+=k[0]; break; case 8: b += k[1]; a+=k[0]; break; case 7: b += k[1]&0xffffff; a+=k[0]; break; case 6: b += k[1]&0xffff; a+=k[0]; break; case 5: b += k[1]&0xff; a+=k[0]; break; case 4: a += k[0]; break; case 3: a += k[0]&0xffffff; break; case 2: a += k[0]&0xffff; break; case 1: a += k[0]&0xff; break; case 0: goto exit; } #else /* make valgrind happy */ k8 = (const uint8_t *)k; switch (size) { case 12: c += k[2]; b+=k[1]; a+=k[0] break; case 11: c += ((uint32_t)k8[10])<<16; /*@fallthrough@*/ case 10: c += ((uint32_t)k8[9])<<8; /*@fallthrough@*/ case 9: c += k8[8]; /*@fallthrough@*/ case 8: b += k[1]; a+=k[0]; break; case 7: b += ((uint32_t)k8[6])<<16; /*@fallthrough@*/ case 6: b += ((uint32_t)k8[5])<<8; /*@fallthrough@*/ case 5: b += k8[4]; /*@fallthrough@*/ case 4: a += k[0]; break; case 3: a += ((uint32_t)k8[2])<<16; /*@fallthrough@*/ case 2: a += ((uint32_t)k8[1])<<8; /*@fallthrough@*/ case 1: a += k8[0]; break; case 0: goto exit; } #endif /* !valgrind */ } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) { const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */ const uint8_t *k8; /*----------- all but last block: aligned reads and different mixing */ while (size > 12) { a += k[0] + (((uint32_t)k[1])<<16); b += k[2] + (((uint32_t)k[3])<<16); c += k[4] + (((uint32_t)k[5])<<16); _JLU3_MIX(a,b,c); size -= 12; k += 6; } /*------------------------- handle the last (probably partial) block */ k8 = (const uint8_t *)k; switch (size) { case 12: c += k[4]+(((uint32_t)k[5])<<16); b += k[2]+(((uint32_t)k[3])<<16); a += k[0]+(((uint32_t)k[1])<<16); break; case 11: c += ((uint32_t)k8[10])<<16; /*@fallthrough@*/ case 10: c += (uint32_t)k[4]; b += k[2]+(((uint32_t)k[3])<<16); a += k[0]+(((uint32_t)k[1])<<16); break; case 9: c += (uint32_t)k8[8]; /*@fallthrough@*/ case 8: b += k[2]+(((uint32_t)k[3])<<16); a += k[0]+(((uint32_t)k[1])<<16); break; case 7: b += ((uint32_t)k8[6])<<16; /*@fallthrough@*/ case 6: b += (uint32_t)k[2]; a += k[0]+(((uint32_t)k[1])<<16); break; case 5: b += (uint32_t)k8[4]; /*@fallthrough@*/ case 4: a += k[0]+(((uint32_t)k[1])<<16); break; case 3: a += ((uint32_t)k8[2])<<16; /*@fallthrough@*/ case 2: a += (uint32_t)k[0]; break; case 1: a += (uint32_t)k8[0]; break; case 0: goto exit; } } else { /* need to read the key one byte at a time */ const uint8_t *k = (const uint8_t *)key; /*----------- all but the last block: affect some 32 bits of (a,b,c) */ while (size > 12) { a += (uint32_t)k[0]; a += ((uint32_t)k[1])<<8; a += ((uint32_t)k[2])<<16; a += ((uint32_t)k[3])<<24; b += (uint32_t)k[4]; b += ((uint32_t)k[5])<<8; b += ((uint32_t)k[6])<<16; b += ((uint32_t)k[7])<<24; c += (uint32_t)k[8]; c += ((uint32_t)k[9])<<8; c += ((uint32_t)k[10])<<16; c += ((uint32_t)k[11])<<24; _JLU3_MIX(a,b,c); size -= 12; k += 12; } /*---------------------------- last block: affect all 32 bits of (c) */ switch (size) { case 12: c += ((uint32_t)k[11])<<24; /*@fallthrough@*/ case 11: c += ((uint32_t)k[10])<<16; /*@fallthrough@*/ case 10: c += ((uint32_t)k[9])<<8; /*@fallthrough@*/ case 9: c += (uint32_t)k[8]; /*@fallthrough@*/ case 8: b += ((uint32_t)k[7])<<24; /*@fallthrough@*/ case 7: b += ((uint32_t)k[6])<<16; /*@fallthrough@*/ case 6: b += ((uint32_t)k[5])<<8; /*@fallthrough@*/ case 5: b += (uint32_t)k[4]; /*@fallthrough@*/ case 4: a += ((uint32_t)k[3])<<24; /*@fallthrough@*/ case 3: a += ((uint32_t)k[2])<<16; /*@fallthrough@*/ case 2: a += ((uint32_t)k[1])<<8; /*@fallthrough@*/ case 1: a += (uint32_t)k[0]; break; case 0: goto exit; } } _JLU3_FINAL(a,b,c); exit: return c; } #endif /* defined(_JLU3_jlu32l) */ #if defined(_JLU3_jlu32lpair) /** * jlu32lpair: return 2 32-bit hash values. * * This is identical to jlu32l(), except it returns two 32-bit hash * values instead of just one. This is good enough for hash table * lookup with 2^^64 buckets, or if you want a second hash if you're not * happy with the first, or if you want a probably-unique 64-bit ID for * the key. *pc is better mixed than *pb, so use *pc first. If you want * a 64-bit value do something like "*pc + (((uint64_t)*pb)<<32)". * * @param h the previous hash, or an arbitrary value * @param *key the key, an array of uint8_t values * @param size the size of the key in bytes * @retval *pc, IN: primary initval, OUT: primary hash * *retval *pb IN: secondary initval, OUT: secondary hash */ void jlu32lpair(const void *key, size_t size, uint32_t *pc, uint32_t *pb) { union { const void *ptr; size_t i; } u; uint32_t a = _JLU3_INIT(*pc, size); uint32_t b = a; uint32_t c = a; if (key == NULL) goto exit; c += *pb; /* Add the secondary hash. */ u.ptr = key; if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) { const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */ #ifdef VALGRIND const uint8_t *k8; #endif /*-- all but last block: aligned reads and affect 32 bits of (a,b,c) */ while (size > (size_t)12) { a += k[0]; b += k[1]; c += k[2]; _JLU3_MIX(a,b,c); size -= 12; k += 3; } /*------------------------- handle the last (probably partial) block */ /* * "k[2]&0xffffff" actually reads beyond the end of the string, but * then masks off the part it's not allowed to read. Because the * string is aligned, the masked-off tail is in the same word as the * rest of the string. Every machine with memory protection I've seen * does it on word boundaries, so is OK with this. But VALGRIND will * still catch it and complain. The masking trick does make the hash * noticeably faster for short strings (like English words). */ #ifndef VALGRIND switch (size) { case 12: c += k[2]; b+=k[1]; a+=k[0]; break; case 11: c += k[2]&0xffffff; b+=k[1]; a+=k[0]; break; case 10: c += k[2]&0xffff; b+=k[1]; a+=k[0]; break; case 9: c += k[2]&0xff; b+=k[1]; a+=k[0]; break; case 8: b += k[1]; a+=k[0]; break; case 7: b += k[1]&0xffffff; a+=k[0]; break; case 6: b += k[1]&0xffff; a+=k[0]; break; case 5: b += k[1]&0xff; a+=k[0]; break; case 4: a += k[0]; break; case 3: a += k[0]&0xffffff; break; case 2: a += k[0]&0xffff; break; case 1: a += k[0]&0xff; break; case 0: goto exit; } #else /* make valgrind happy */ k8 = (const uint8_t *)k; switch (size) { case 12: c += k[2]; b+=k[1]; a+=k[0]; break; case 11: c += ((uint32_t)k8[10])<<16; /*@fallthrough@*/ case 10: c += ((uint32_t)k8[9])<<8; /*@fallthrough@*/ case 9: c += k8[8]; /*@fallthrough@*/ case 8: b += k[1]; a+=k[0]; break; case 7: b += ((uint32_t)k8[6])<<16; /*@fallthrough@*/ case 6: b += ((uint32_t)k8[5])<<8; /*@fallthrough@*/ case 5: b += k8[4]; /*@fallthrough@*/ case 4: a += k[0]; break; case 3: a += ((uint32_t)k8[2])<<16; /*@fallthrough@*/ case 2: a += ((uint32_t)k8[1])<<8; /*@fallthrough@*/ case 1: a += k8[0]; break; case 0: goto exit; } #endif /* !valgrind */ } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) { const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */ const uint8_t *k8; /*----------- all but last block: aligned reads and different mixing */ while (size > (size_t)12) { a += k[0] + (((uint32_t)k[1])<<16); b += k[2] + (((uint32_t)k[3])<<16); c += k[4] + (((uint32_t)k[5])<<16); _JLU3_MIX(a,b,c); size -= 12; k += 6; } /*------------------------- handle the last (probably partial) block */ k8 = (const uint8_t *)k; switch (size) { case 12: c += k[4]+(((uint32_t)k[5])<<16); b += k[2]+(((uint32_t)k[3])<<16); a += k[0]+(((uint32_t)k[1])<<16); break; case 11: c += ((uint32_t)k8[10])<<16; /*@fallthrough@*/ case 10: c += k[4]; b += k[2]+(((uint32_t)k[3])<<16); a += k[0]+(((uint32_t)k[1])<<16); break; case 9: c += k8[8]; /*@fallthrough@*/ case 8: b += k[2]+(((uint32_t)k[3])<<16); a += k[0]+(((uint32_t)k[1])<<16); break; case 7: b += ((uint32_t)k8[6])<<16; /*@fallthrough@*/ case 6: b += k[2]; a += k[0]+(((uint32_t)k[1])<<16); break; case 5: b += k8[4]; /*@fallthrough@*/ case 4: a += k[0]+(((uint32_t)k[1])<<16); break; case 3: a += ((uint32_t)k8[2])<<16; /*@fallthrough@*/ case 2: a += k[0]; break; case 1: a += k8[0]; break; case 0: goto exit; } } else { /* need to read the key one byte at a time */ const uint8_t *k = (const uint8_t *)key; /*----------- all but the last block: affect some 32 bits of (a,b,c) */ while (size > (size_t)12) { a += k[0]; a += ((uint32_t)k[1])<<8; a += ((uint32_t)k[2])<<16; a += ((uint32_t)k[3])<<24; b += k[4]; b += ((uint32_t)k[5])<<8; b += ((uint32_t)k[6])<<16; b += ((uint32_t)k[7])<<24; c += k[8]; c += ((uint32_t)k[9])<<8; c += ((uint32_t)k[10])<<16; c += ((uint32_t)k[11])<<24; _JLU3_MIX(a,b,c); size -= 12; k += 12; } /*---------------------------- last block: affect all 32 bits of (c) */ switch (size) { case 12: c += ((uint32_t)k[11])<<24; /*@fallthrough@*/ case 11: c += ((uint32_t)k[10])<<16; /*@fallthrough@*/ case 10: c += ((uint32_t)k[9])<<8; /*@fallthrough@*/ case 9: c += k[8]; /*@fallthrough@*/ case 8: b += ((uint32_t)k[7])<<24; /*@fallthrough@*/ case 7: b += ((uint32_t)k[6])<<16; /*@fallthrough@*/ case 6: b += ((uint32_t)k[5])<<8; /*@fallthrough@*/ case 5: b += k[4]; /*@fallthrough@*/ case 4: a += ((uint32_t)k[3])<<24; /*@fallthrough@*/ case 3: a += ((uint32_t)k[2])<<16; /*@fallthrough@*/ case 2: a += ((uint32_t)k[1])<<8; /*@fallthrough@*/ case 1: a += k[0]; break; case 0: goto exit; } } _JLU3_FINAL(a,b,c); exit: *pc = c; *pb = b; return; } #endif /* defined(_JLU3_jlu32lpair) */ #if defined(_JLU3_jlu32b) uint32_t jlu32b(uint32_t h, /*@null@*/ const void *key, size_t size) /*@*/; /* * jlu32b(): * This is the same as jlu32w() on big-endian machines. It is different * from jlu32l() on all machines. jlu32b() takes advantage of * big-endian byte ordering. * * @param h the previous hash, or an arbitrary value * @param *k the key, an array of uint8_t values * @param size the size of the key * @return the lookup3 hash */ uint32_t jlu32b(uint32_t h, const void *key, size_t size) { union { const void *ptr; size_t i; } u; uint32_t a = _JLU3_INIT(h, size); uint32_t b = a; uint32_t c = a; if (key == NULL) return h; u.ptr = key; if (HASH_BIG_ENDIAN && ((u.i & 0x3) == 0)) { const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */ #ifdef VALGRIND const uint8_t *k8; #endif /*-- all but last block: aligned reads and affect 32 bits of (a,b,c) */ while (size > 12) { a += k[0]; b += k[1]; c += k[2]; _JLU3_MIX(a,b,c); size -= 12; k += 3; } /*------------------------- handle the last (probably partial) block */ /* * "k[2]<<8" actually reads beyond the end of the string, but * then shifts out the part it's not allowed to read. Because the * string is aligned, the illegal read is in the same word as the * rest of the string. Every machine with memory protection I've seen * does it on word boundaries, so is OK with this. But VALGRIND will * still catch it and complain. The masking trick does make the hash * noticeably faster for short strings (like English words). */ #ifndef VALGRIND switch (size) { case 12: c += k[2]; b+=k[1]; a+=k[0]; break; case 11: c += k[2]&0xffffff00; b+=k[1]; a+=k[0]; break; case 10: c += k[2]&0xffff0000; b+=k[1]; a+=k[0]; break; case 9: c += k[2]&0xff000000; b+=k[1]; a+=k[0]; break; case 8: b += k[1]; a+=k[0]; break; case 7: b += k[1]&0xffffff00; a+=k[0]; break; case 6: b += k[1]&0xffff0000; a+=k[0]; break; case 5: b += k[1]&0xff000000; a+=k[0]; break; case 4: a += k[0]; break; case 3: a += k[0]&0xffffff00; break; case 2: a += k[0]&0xffff0000; break; case 1: a += k[0]&0xff000000; break; case 0: goto exit; } #else /* make valgrind happy */ k8 = (const uint8_t *)k; switch (size) { /* all the case statements fall through */ case 12: c += k[2]; b+=k[1]; a+=k[0]; break; case 11: c += ((uint32_t)k8[10])<<8; /*@fallthrough@*/ case 10: c += ((uint32_t)k8[9])<<16; /*@fallthrough@*/ case 9: c += ((uint32_t)k8[8])<<24; /*@fallthrough@*/ case 8: b += k[1]; a+=k[0]; break; case 7: b += ((uint32_t)k8[6])<<8; /*@fallthrough@*/ case 6: b += ((uint32_t)k8[5])<<16; /*@fallthrough@*/ case 5: b += ((uint32_t)k8[4])<<24; /*@fallthrough@*/ case 4: a += k[0]; break; case 3: a += ((uint32_t)k8[2])<<8; /*@fallthrough@*/ case 2: a += ((uint32_t)k8[1])<<16; /*@fallthrough@*/ case 1: a += ((uint32_t)k8[0])<<24; break; case 0: goto exit; } #endif /* !VALGRIND */ } else { /* need to read the key one byte at a time */ const uint8_t *k = (const uint8_t *)key; /*----------- all but the last block: affect some 32 bits of (a,b,c) */ while (size > 12) { a += ((uint32_t)k[0])<<24; a += ((uint32_t)k[1])<<16; a += ((uint32_t)k[2])<<8; a += ((uint32_t)k[3]); b += ((uint32_t)k[4])<<24; b += ((uint32_t)k[5])<<16; b += ((uint32_t)k[6])<<8; b += ((uint32_t)k[7]); c += ((uint32_t)k[8])<<24; c += ((uint32_t)k[9])<<16; c += ((uint32_t)k[10])<<8; c += ((uint32_t)k[11]); _JLU3_MIX(a,b,c); size -= 12; k += 12; } /*---------------------------- last block: affect all 32 bits of (c) */ switch (size) { /* all the case statements fall through */ case 12: c += k[11]; /*@fallthrough@*/ case 11: c += ((uint32_t)k[10])<<8; /*@fallthrough@*/ case 10: c += ((uint32_t)k[9])<<16; /*@fallthrough@*/ case 9: c += ((uint32_t)k[8])<<24; /*@fallthrough@*/ case 8: b += k[7]; /*@fallthrough@*/ case 7: b += ((uint32_t)k[6])<<8; /*@fallthrough@*/ case 6: b += ((uint32_t)k[5])<<16; /*@fallthrough@*/ case 5: b += ((uint32_t)k[4])<<24; /*@fallthrough@*/ case 4: a += k[3]; /*@fallthrough@*/ case 3: a += ((uint32_t)k[2])<<8; /*@fallthrough@*/ case 2: a += ((uint32_t)k[1])<<16; /*@fallthrough@*/ case 1: a += ((uint32_t)k[0])<<24; /*@fallthrough@*/ break; case 0: goto exit; } } _JLU3_FINAL(a,b,c); exit: return c; } #endif /* defined(_JLU3_jlu32b) */ #if defined(_JLU3_SELFTEST) /* used for timings */ static void driver1(void) /*@*/ { uint8_t buf[256]; uint32_t i; uint32_t h=0; time_t a,z; time(&a); for (i=0; i<256; ++i) buf[i] = 'x'; for (i=0; i<1; ++i) { h = jlu32l(h, &buf[0], sizeof(buf[0])); } time(&z); if (z-a > 0) printf("time %d %.8x\n", (int)(z-a), h); } /* check that every input bit changes every output bit half the time */ #define HASHSTATE 1 #define HASHLEN 1 #define MAXPAIR 60 #define MAXLEN 70 static void driver2(void) /*@*/ { uint8_t qa[MAXLEN+1], qb[MAXLEN+2], *a = &qa[0], *b = &qb[1]; uint32_t c[HASHSTATE], d[HASHSTATE], i=0, j=0, k, l, m=0, z; uint32_t e[HASHSTATE],f[HASHSTATE],g[HASHSTATE],h[HASHSTATE]; uint32_t x[HASHSTATE],y[HASHSTATE]; uint32_t hlen; printf("No more than %d trials should ever be needed \n",MAXPAIR/2); for (hlen=0; hlen < MAXLEN; ++hlen) { z=0; for (i=0; i>(8-j)); c[0] = jlu32l(m, a, hlen); b[i] ^= ((k+1)<>(8-j)); d[0] = jlu32l(m, b, hlen); /* check every bit is 1, 0, set, and not set at least once */ for (l=0; lz) z=k; if (k == MAXPAIR) { printf("Some bit didn't change: "); printf("%.8x %.8x %.8x %.8x %.8x %.8x ", e[0],f[0],g[0],h[0],x[0],y[0]); printf("i %u j %u m %u len %d\n", i, j, m, hlen); } if (z == MAXPAIR) goto done; } } } done: if (z < MAXPAIR) { printf("Mix success %2u bytes %2u initvals ",i,m); printf("required %d trials\n", z/2); } } printf("\n"); } /* Check for reading beyond the end of the buffer and alignment problems */ static void driver3(void) /*@*/ { uint8_t buf[MAXLEN+20], *b; uint32_t len; uint8_t q[] = "This is the time for all good men to come to the aid of their country..."; uint32_t h; uint8_t qq[] = "xThis is the time for all good men to come to the aid of their country..."; uint32_t i; uint8_t qqq[] = "xxThis is the time for all good men to come to the aid of their country..."; uint32_t j; uint8_t qqqq[] = "xxxThis is the time for all good men to come to the aid of their country..."; uint32_t ref,x,y; uint8_t *p; uint32_t m = 13; printf("Endianness. These lines should all be the same (for values filled in):\n"); printf("%.8x %.8x %.8x\n", jlu32w(m, (const uint32_t *)q, (sizeof(q)-1)/4), jlu32w(m, (const uint32_t *)q, (sizeof(q)-5)/4), jlu32w(m, (const uint32_t *)q, (sizeof(q)-9)/4)); p = q; printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n", jlu32l(m, p, sizeof(q)-1), jlu32l(m, p, sizeof(q)-2), jlu32l(m, p, sizeof(q)-3), jlu32l(m, p, sizeof(q)-4), jlu32l(m, p, sizeof(q)-5), jlu32l(m, p, sizeof(q)-6), jlu32l(m, p, sizeof(q)-7), jlu32l(m, p, sizeof(q)-8), jlu32l(m, p, sizeof(q)-9), jlu32l(m, p, sizeof(q)-10), jlu32l(m, p, sizeof(q)-11), jlu32l(m, p, sizeof(q)-12)); p = &qq[1]; printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n", jlu32l(m, p, sizeof(q)-1), jlu32l(m, p, sizeof(q)-2), jlu32l(m, p, sizeof(q)-3), jlu32l(m, p, sizeof(q)-4), jlu32l(m, p, sizeof(q)-5), jlu32l(m, p, sizeof(q)-6), jlu32l(m, p, sizeof(q)-7), jlu32l(m, p, sizeof(q)-8), jlu32l(m, p, sizeof(q)-9), jlu32l(m, p, sizeof(q)-10), jlu32l(m, p, sizeof(q)-11), jlu32l(m, p, sizeof(q)-12)); p = &qqq[2]; printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n", jlu32l(m, p, sizeof(q)-1), jlu32l(m, p, sizeof(q)-2), jlu32l(m, p, sizeof(q)-3), jlu32l(m, p, sizeof(q)-4), jlu32l(m, p, sizeof(q)-5), jlu32l(m, p, sizeof(q)-6), jlu32l(m, p, sizeof(q)-7), jlu32l(m, p, sizeof(q)-8), jlu32l(m, p, sizeof(q)-9), jlu32l(m, p, sizeof(q)-10), jlu32l(m, p, sizeof(q)-11), jlu32l(m, p, sizeof(q)-12)); p = &qqqq[3]; printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n", jlu32l(m, p, sizeof(q)-1), jlu32l(m, p, sizeof(q)-2), jlu32l(m, p, sizeof(q)-3), jlu32l(m, p, sizeof(q)-4), jlu32l(m, p, sizeof(q)-5), jlu32l(m, p, sizeof(q)-6), jlu32l(m, p, sizeof(q)-7), jlu32l(m, p, sizeof(q)-8), jlu32l(m, p, sizeof(q)-9), jlu32l(m, p, sizeof(q)-10), jlu32l(m, p, sizeof(q)-11), jlu32l(m, p, sizeof(q)-12)); printf("\n"); for (h=0, b=buf+1; h<8; ++h, ++b) { for (i=0; i