summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorPaul Moore <pmoore@redhat.com>2013-10-21 16:00:15 -0400
committerPaul Moore <pmoore@redhat.com>2013-10-21 16:00:15 -0400
commitd0a3b33eb62f31954526689042b8d2e6744518b5 (patch)
tree9770e3ea6b1d94feb6c562cf7cc9f433248a7093
parent906ab67d32f75ea783e6f5350ae593241154c7e1 (diff)
downloadlibseccomp-d0a3b33eb62f31954526689042b8d2e6744518b5.tar.gz
hash: cleanup the Jenkins hash source to better match our code
Style improvements as well as a wrapper function to select the "best" hash for a given situation. Some unused functions were also removed. Signed-off-by: Paul Moore <pmoore@redhat.com>
-rw-r--r--src/hash.c805
1 files changed, 240 insertions, 565 deletions
diff --git a/src/hash.c b/src/hash.c
index 5b55679..cb52b3b 100644
--- a/src/hash.c
+++ b/src/hash.c
@@ -1,116 +1,95 @@
+/**
+ * Seccomp Library hash code
+ *
+ * Release under the Public Domain
+ * Author: Bob Jenkins <bob_jenkins@burtleburtle.net>
+ */
+
/*
--------------------------------------------------------------------------------
-lookup3.c, by Bob Jenkins, May 2006, Public Domain.
-
-These are functions for producing 32-bit hashes for hash table lookup.
-hashword(), hashlittle(), hashlittle2(), hashbig(), mix(), and final()
-are externally useful functions. Routines to test the hash are included
-if SELF_TEST is defined. You can use this free for any purpose. It's in
-the public domain. It has no warranty.
-
-You probably want to use hashlittle(). hashlittle() and hashbig()
-hash byte arrays. hashlittle() is is faster than hashbig() on
-little-endian machines. Intel and AMD are little-endian machines.
-On second thought, you probably want hashlittle2(), which is identical to
-hashlittle() except it returns two 32-bit hashes for the price of one.
-You could implement hashbig2() if you wanted but I haven't bothered here.
-
-If you want to find a hash of, say, exactly 7 integers, do
- a = i1; b = i2; c = i3;
- mix(a,b,c);
- a += i4; b += i5; c += i6;
- mix(a,b,c);
- a += i7;
- final(a,b,c);
-then use c as the hash value. If you have a variable length array of
-4-byte integers to hash, use hashword(). If you have a byte array (like
-a character string), use hashlittle(). If you have several byte arrays, or
-a mix of things, see the comments above hashlittle().
-
-Why is this so big? I read 12 bytes at a time into 3 4-byte integers,
-then mix those integers. This is fast (you can do a lot more thorough
-mixing with 12*3 instructions on 3 integers than you can with 3 instructions
-on 1 byte), but shoehorning those bytes into integers efficiently is messy.
--------------------------------------------------------------------------------
-*/
-
-#include <stdint.h> /* defines uint32_t etc */
-#include <sys/param.h> /* attempt to define endianness */
-#ifdef linux
-# include <endian.h> /* attempt to define endianness */
-#endif
+ * lookup3.c, by Bob Jenkins, May 2006, Public Domain.
+ *
+ * These are functions for producing 32-bit hashes for hash table lookup.
+ * jhash_word(), jhash_le(), jhash_be(), mix(), and final() are externally useful
+ * functions. Routines to test the hash are included if SELF_TEST is defined.
+ * You can use this free for any purpose. It's in the public domain. It has
+ * no warranty.
+ *
+ * You probably want to use jhash_le(). jhash_le() and jhash_be() hash byte
+ * arrays. jhash_le() is is faster than jhash_be() on little-endian machines.
+ * Intel and AMD are little-endian machines.
+ *
+ * If you want to find a hash of, say, exactly 7 integers, do
+ * a = i1; b = i2; c = i3;
+ * mix(a,b,c);
+ * a += i4; b += i5; c += i6;
+ * mix(a,b,c);
+ * a += i7;
+ * final(a,b,c);
+ *
+ * then use c as the hash value. If you have a variable length array of
+ * 4-byte integers to hash, use jhash_word(). If you have a byte array (like
+ * a character string), use jhash_le(). If you have several byte arrays, or
+ * a mix of things, see the comments above jhash_le().
+ *
+ * Why is this so big? I read 12 bytes at a time into 3 4-byte integers, then
+ * mix those integers. This is fast (you can do a lot more thorough mixing
+ * with 12*3 instructions on 3 integers than you can with 3 instructions on 1
+ * byte), but shoehorning those bytes into integers efficiently is messy.
+ */
+
+#include <stdint.h>
+#include "arch.h"
#include "hash.h"
-#define hashlittle jhash
-/*
- * My best guess at if you are big-endian or little-endian. This may
- * need adjustment.
- */
-#if (defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && \
- __BYTE_ORDER == __LITTLE_ENDIAN) || \
- (defined(i386) || defined(__i386__) || defined(__i486__) || \
- defined(__i586__) || defined(__i686__) || defined(vax) || defined(MIPSEL))
-# define HASH_LITTLE_ENDIAN 1
-# define HASH_BIG_ENDIAN 0
-#elif (defined(__BYTE_ORDER) && defined(__BIG_ENDIAN) && \
- __BYTE_ORDER == __BIG_ENDIAN) || \
- (defined(sparc) || defined(POWERPC) || defined(mc68000) || defined(sel))
-# define HASH_LITTLE_ENDIAN 0
-# define HASH_BIG_ENDIAN 1
-#else
-# define HASH_LITTLE_ENDIAN 0
-# define HASH_BIG_ENDIAN 0
-#endif
-
-#define hashsize(n) ((uint32_t)1<<(n))
-#define hashmask(n) (hashsize(n)-1)
-#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
+#define hashsize(n) ((uint32_t)1<<(n))
+#define hashmask(n) (hashsize(n)-1)
+#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
-/*
--------------------------------------------------------------------------------
-mix -- mix 3 32-bit values reversibly.
-
-This is reversible, so any information in (a,b,c) before mix() is
-still in (a,b,c) after mix().
-
-If four pairs of (a,b,c) inputs are run through mix(), or through
-mix() in reverse, there are at least 32 bits of the output that
-are sometimes the same for one pair and different for another pair.
-This was tested for:
-* pairs that differed by one bit, by two bits, in any combination
- of top bits of (a,b,c), or in any combination of bottom bits of
- (a,b,c).
-* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
- the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
- is commonly produced by subtraction) look like a single 1-bit
- difference.
-* the base values were pseudorandom, all zero but one bit set, or
- all zero plus a counter that starts at zero.
-
-Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that
-satisfy this are
- 4 6 8 16 19 4
- 9 15 3 18 27 15
- 14 9 3 7 17 3
-Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing
-for "differ" defined as + with a one-bit base and a two-bit delta. I
-used http://burtleburtle.net/bob/hash/avalanche.html to choose
-the operations, constants, and arrangements of the variables.
-
-This does not achieve avalanche. There are input bits of (a,b,c)
-that fail to affect some output bits of (a,b,c), especially of a. The
-most thoroughly mixed value is c, but it doesn't really even achieve
-avalanche in c.
-
-This allows some parallelism. Read-after-writes are good at doubling
-the number of bits affected, so the goal of mixing pulls in the opposite
-direction as the goal of parallelism. I did what I could. Rotates
-seem to cost as much as shifts on every machine I could lay my hands
-on, and rotates are much kinder to the top and bottom bits, so I used
-rotates.
--------------------------------------------------------------------------------
-*/
+/**
+ * Mix 3 32-bit values reversibly
+ * @param a 32-bit value
+ * @param b 32-bit value
+ * @param c 32-bit value
+ *
+ * This is reversible, so any information in (a,b,c) before mix() is still
+ * in (a,b,c) after mix().
+ *
+ * If four pairs of (a,b,c) inputs are run through mix(), or through mix() in
+ * reverse, there are at least 32 bits of the output that are sometimes the
+ * same for one pair and different for another pair.
+ *
+ * This was tested for:
+ * - pairs that differed by one bit, by two bits, in any combination of top
+ * bits of (a,b,c), or in any combination of bottom bits of (a,b,c).
+ * - "differ" is defined as +, -, ^, or ~^. For + and -, I transformed the
+ * output delta to a Gray code (a^(a>>1)) so a string of 1's (as is commonly
+ * produced by subtraction) look like a single 1-bit difference.
+ * - the base values were pseudorandom, all zero but one bit set, or all zero
+ * plus a counter that starts at zero.
+ *
+ * Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that
+ * satisfy this are
+ * 4 6 8 16 19 4
+ * 9 15 3 18 27 15
+ * 14 9 3 7 17 3
+ *
+ * Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing for "differ"
+ * defined as + with a one-bit base and a two-bit delta. I used
+ * http://burtleburtle.net/bob/hash/avalanche.html to choose the operations,
+ * constants, and arrangements of the variables.
+ *
+ * This does not achieve avalanche. There are input bits of (a,b,c) that fail
+ * to affect some output bits of (a,b,c), especially of a. The most thoroughly
+ * mixed value is c, but it doesn't really even achieve avalanche in c.
+ *
+ * This allows some parallelism. Read-after-writes are good at doubling the
+ * number of bits affected, so the goal of mixing pulls in the opposite
+ * direction as the goal of parallelism. I did what I could. Rotates seem to
+ * cost as much as shifts on every machine I could lay my hands on, and rotates
+ * are much kinder to the top and bottom bits, so I used rotates.
+ *
+ */
#define mix(a,b,c) \
{ \
a -= c; a ^= rot(c, 4); c += b; \
@@ -121,31 +100,31 @@ rotates.
c -= b; c ^= rot(b, 4); b += a; \
}
-/*
--------------------------------------------------------------------------------
-final -- final mixing of 3 32-bit values (a,b,c) into c
-
-Pairs of (a,b,c) values differing in only a few bits will usually
-produce values of c that look totally different. This was tested for
-* pairs that differed by one bit, by two bits, in any combination
- of top bits of (a,b,c), or in any combination of bottom bits of
- (a,b,c).
-* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
- the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
- is commonly produced by subtraction) look like a single 1-bit
- difference.
-* the base values were pseudorandom, all zero but one bit set, or
- all zero plus a counter that starts at zero.
-
-These constants passed:
- 14 11 25 16 4 14 24
- 12 14 25 16 4 14 24
-and these came close:
- 4 8 15 26 3 22 24
- 10 8 15 26 3 22 24
- 11 8 15 26 3 22 24
--------------------------------------------------------------------------------
-*/
+/**
+ * Final mixing of 3 32-bit values (a,b,c) into c
+ * @param a 32-bit value
+ * @param b 32-bit value
+ * @param c 32-bit value
+ *
+ * Pairs of (a,b,c) values differing in only a few bits will usually produce
+ * values of c that look totally different. This was tested for:
+ * - pairs that differed by one bit, by two bits, in any combination of top
+ * bits of (a,b,c), or in any combination of bottom bits of (a,b,c).
+ * - "differ" is defined as +, -, ^, or ~^. For + and -, I transformed the
+ * output delta to a Gray code (a^(a>>1)) so a string of 1's (as is commonly
+ * produced by subtraction) look like a single 1-bit difference.
+ * - the base values were pseudorandom, all zero but one bit set, or all zero
+ * plus a counter that starts at zero.
+ *
+ * These constants passed:
+ * 14 11 25 16 4 14 24
+ * 12 14 25 16 4 14 24
+ * and these came close:
+ * 4 8 15 26 3 22 24
+ * 10 8 15 26 3 22 24
+ * 11 8 15 26 3 22 24
+ *
+ */
#define final(a,b,c) \
{ \
c ^= b; c -= rot(b,14); \
@@ -157,30 +136,31 @@ and these came close:
c ^= b; c -= rot(b,24); \
}
-/*
---------------------------------------------------------------------
- This works on all machines. To be useful, it requires
- -- that the key be an array of uint32_t's, and
- -- that the length be the number of uint32_t's in the key
-
- The function hashword() is identical to hashlittle() on little-endian
- machines, and identical to hashbig() on big-endian machines,
- except that the length has to be measured in uint32_ts rather than in
- bytes. hashlittle() is more complicated than hashword() only because
- hashlittle() has to dance around fitting the key bytes into registers.
---------------------------------------------------------------------
-*/
-uint32_t hashword(
- const uint32_t *k, /* the key, an array of uint32_t values */
- size_t length, /* the length of the key, in uint32_ts */
- uint32_t initval) /* the previous hash, or an arbitrary value */
+/**
+ * Hash an array of 32-bit values
+ * @param k the key, an array of uint32_t values
+ * @param length the number of array elements
+ * @param initval the previous hash, or an arbitrary value
+ *
+ * This works on all machines. To be useful, it requires:
+ * - that the key be an array of uint32_t's, and
+ * - that the length be the number of uint32_t's in the key
+ *
+ * The function jhash_word() is identical to jhash_le() on little-endian
+ * machines, and identical to jhash_be() on big-endian machines, except that
+ * the length has to be measured in uint32_ts rather than in bytes. jhash_le()
+ * is more complicated than jhash_word() only because jhash_le() has to dance
+ * around fitting the key bytes into registers.
+ *
+ */
+static uint32_t jhash_word(const uint32_t *k, size_t length, uint32_t initval)
{
uint32_t a, b, c;
- /* Set up the internal state */
+ /* set up the internal state */
a = b = c = 0xdeadbeef + (((uint32_t)length) << 2) + initval;
- /*-------------------------------------------- handle most of the key */
+ /* handle most of the key */
while (length > 3) {
a += k[0];
b += k[1];
@@ -190,8 +170,8 @@ uint32_t hashword(
k += 3;
}
- /*-------------------------------------- handle the last 3 uint32_t's */
- switch(length) { /* all the case statements fall through */
+ /* handle the last 3 uint32_t's */
+ switch(length) {
case 3 :
c += k[2];
case 2 :
@@ -199,103 +179,51 @@ uint32_t hashword(
case 1 :
a += k[0];
final(a, b, c);
- case 0: /* case 0: nothing left to add */
+ case 0:
+ /* nothing left to add */
break;
}
- /*------------------------------------------------- report the result */
+
return c;
}
-/*
---------------------------------------------------------------------
-hashword2() -- same as hashword(), but take two seeds and return two
-32-bit values. pc and pb must both be nonnull, and *pc and *pb must
-both be initialized with seeds. If you pass in (*pb)==0, the output
-(*pc) will be the same as the return value from hashword().
---------------------------------------------------------------------
-*/
-void hashword2 (
- const uint32_t *k, /* the key, an array of uint32_t values */
- size_t length, /* the length of the key, in uint32_ts */
- uint32_t *pc, /* IN: seed OUT: primary hash value */
- uint32_t *pb) /* IN: more seed OUT: secondary hash value */
+/**
+ * Hash a variable-length key into a 32-bit value
+ * @param k the key (the unaligned variable-length array of bytes)
+ * @param length the length of the key, counting by bytes
+ * @param initval can be any 4-byte value
+ *
+ * Returns a 32-bit value. Every bit of the key affects every bit of the
+ * return value. Two keys differing by one or two bits will have totally
+ * different hash values.
+ *
+ * The best hash table sizes are powers of 2. There is no need to do mod a
+ * prime (mod is sooo slow!). If you need less than 32 bits, use a bitmask.
+ * For example, if you need only 10 bits, do:
+ * h = (h & hashmask(10));
+ * In which case, the hash table should have hashsize(10) elements.
+ *
+ * If you are hashing n strings (uint8_t **)k, do it like this:
+ * for (i=0, h=0; i<n; ++i) h = jhash_le( k[i], len[i], h);
+ *
+ */
+static uint32_t jhash_le(const void *key, size_t length, uint32_t initval)
{
uint32_t a, b, c;
-
- /* Set up the internal state */
- a = b = c = 0xdeadbeef + ((uint32_t)(length << 2)) + *pc;
- c += *pb;
-
- /*-------------------------------------------- handle most of the key */
- while (length > 3) {
- a += k[0];
- b += k[1];
- c += k[2];
- mix(a, b, c);
- length -= 3;
- k += 3;
- }
-
- /*-------------------------------------- handle the last 3 uint32_t's */
- switch(length) { /* all the case statements fall through */
- case 3 :
- c += k[2];
- case 2 :
- b += k[1];
- case 1 :
- a += k[0];
- final(a, b, c);
- case 0: /* case 0: nothing left to add */
- break;
- }
- /*------------------------------------------------- report the result */
- *pc = c;
- *pb = b;
-}
-
-/*
--------------------------------------------------------------------------------
-hashlittle() -- hash a variable-length key into a 32-bit value
- k : the key (the unaligned variable-length array of bytes)
- length : the length of the key, counting by bytes
- initval : can be any 4-byte value
-Returns a 32-bit value. Every bit of the key affects every bit of
-the return value. Two keys differing by one or two bits will have
-totally different hash values.
-
-The best hash table sizes are powers of 2. There is no need to do
-mod a prime (mod is sooo slow!). If you need less than 32 bits,
-use a bitmask. For example, if you need only 10 bits, do
- h = (h & hashmask(10));
-In which case, the hash table should have hashsize(10) elements.
-
-If you are hashing n strings (uint8_t **)k, do it like this:
- for (i=0, h=0; i<n; ++i) h = hashlittle( k[i], len[i], h);
-
-By Bob Jenkins, 2006. bob_jenkins@burtleburtle.net. You may use this
-code any way you wish, private, educational, or commercial. It's free.
-
-Use for hash table lookup, or anything where one collision in 2^^32 is
-acceptable. Do NOT use for cryptographic purposes.
--------------------------------------------------------------------------------
-*/
-uint32_t hashlittle( const void *key, size_t length, uint32_t initval)
-{
- uint32_t a, b, c; /* internal state */
union {
const void *ptr;
size_t i;
} u; /* needed for Mac Powerbook G4 */
- /* Set up the internal state */
+ /* set up the internal state */
a = b = c = 0xdeadbeef + ((uint32_t)length) + initval;
u.ptr = key;
- if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) {
- const uint32_t *k = (const uint32_t *)key; /* read 32b chunks */
+ if ((arch_def_native->endian == ARCH_ENDIAN_LITTLE) &&
+ ((u.i & 0x3) == 0)) {
+ /* read 32-bit chunks */
+ const uint32_t *k = (const uint32_t *)key;
- /* all but last block: aligned reads and affect 32-bits
- * of (a,b,c) */
while (length > 12) {
a += k[0];
b += k[1];
@@ -305,17 +233,14 @@ uint32_t hashlittle( const void *key, size_t length, uint32_t initval)
k += 3;
}
- /*------------------ handle the last (probably partial) block */
- /*
- * "k[2]&0xffffff" actually reads beyond the end of the string,
+ /* "k[2]&0xffffff" actually reads beyond the end of the string,
* but then masks off the part it's not allowed to read.
* Because the string is aligned, the masked-off tail is in the
* same word as the rest of the string. Every machine with
* memory protection I've seen does it on word boundaries, so
* is OK with this. But VALGRIND will still catch it and
* complain. The masking trick does make the hash noticably
- * faster for short strings (like English words).
- */
+ * faster for short strings (like English words). */
#ifndef VALGRIND
switch(length) {
@@ -368,7 +293,8 @@ uint32_t hashlittle( const void *key, size_t length, uint32_t initval)
a += k[0] & 0xff;
break;
case 0 :
- return c; /* zero length strings require no mixing */
+ /* zero length strings require no mixing */
+ return c;
}
#else /* make valgrind happy */
@@ -381,28 +307,28 @@ uint32_t hashlittle( const void *key, size_t length, uint32_t initval)
a += k[0];
break;
case 11:
- c += ((uint32_t)k8[10]) << 16; /* fall through */
+ c += ((uint32_t)k8[10]) << 16;
case 10:
- c += ((uint32_t)k8[9]) << 8; /* fall through */
+ c += ((uint32_t)k8[9]) << 8;
case 9 :
- c += k8[8]; /* fall through */
+ c += k8[8];
case 8 :
b += k[1];
a += k[0];
break;
case 7 :
- b += ((uint32_t)k8[6]) << 16; /* fall through */
+ b += ((uint32_t)k8[6]) << 16;
case 6 :
- b += ((uint32_t)k8[5]) << 8; /* fall through */
+ b += ((uint32_t)k8[5]) << 8;
case 5 :
- b += k8[4]; /* fall through */
+ b += k8[4];
case 4 :
a += k[0];
break;
case 3 :
- a += ((uint32_t)k8[2]) << 16; /* fall through */
+ a += ((uint32_t)k8[2]) << 16;
case 2 :
- a += ((uint32_t)k8[1]) << 8; /* fall through */
+ a += ((uint32_t)k8[1]) << 8;
case 1 :
a += k8[0];
break;
@@ -412,11 +338,12 @@ uint32_t hashlittle( const void *key, size_t length, uint32_t initval)
#endif /* !valgrind */
- } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) {
- const uint16_t *k = (const uint16_t *)key; /* read 16b chunks */
+ } else if ((arch_def_native->endian == ARCH_ENDIAN_LITTLE) &&
+ ((u.i & 0x1) == 0)) {
+ /* read 16-bit chunks */
+ const uint16_t *k = (const uint16_t *)key;
const uint8_t *k8;
- /*---- all but last block: aligned reads and different mixing */
while (length > 12) {
a += k[0] + (((uint32_t)k[1]) << 16);
b += k[2] + (((uint32_t)k[3]) << 16);
@@ -426,7 +353,6 @@ uint32_t hashlittle( const void *key, size_t length, uint32_t initval)
k += 6;
}
- /*------------------ handle the last (probably partial) block */
k8 = (const uint8_t *)k;
switch(length) {
case 12:
@@ -435,31 +361,31 @@ uint32_t hashlittle( const void *key, size_t length, uint32_t initval)
a += k[0] + (((uint32_t)k[1]) << 16);
break;
case 11:
- c += ((uint32_t)k8[10]) << 16; /* fall through */
+ c += ((uint32_t)k8[10]) << 16;
case 10:
c += k[4];
b += k[2] + (((uint32_t)k[3]) << 16);
a += k[0] + (((uint32_t)k[1]) << 16);
break;
case 9 :
- c += k8[8]; /* fall through */
+ c += k8[8];
case 8 :
b += k[2] + (((uint32_t)k[3]) << 16);
a += k[0] + (((uint32_t)k[1]) << 16);
break;
case 7 :
- b += ((uint32_t)k8[6]) << 16; /* fall through */
+ b += ((uint32_t)k8[6]) << 16;
case 6 :
b += k[2];
a += k[0] + (((uint32_t)k[1]) << 16);
break;
case 5 :
- b += k8[4]; /* fall through */
+ b += k8[4];
case 4 :
a += k[0] + (((uint32_t)k[1]) << 16);
break;
case 3 :
- a += ((uint32_t)k8[2]) << 16; /* fall through */
+ a += ((uint32_t)k8[2]) << 16;
case 2 :
a += k[0];
break;
@@ -467,13 +393,14 @@ uint32_t hashlittle( const void *key, size_t length, uint32_t initval)
a += k8[0];
break;
case 0 :
- return c; /* zero length requires no mixing */
+ /* zero length requires no mixing */
+ return c;
}
- } else { /* need to read the key one byte at a time */
+ } else {
+ /* need to read the key one byte at a time */
const uint8_t *k = (const uint8_t *)key;
- /*---- all but the last block: affect some 32 bits of (a,b,c) */
while (length > 12) {
a += k[0];
a += ((uint32_t)k[1]) << 8;
@@ -492,8 +419,7 @@ uint32_t hashlittle( const void *key, size_t length, uint32_t initval)
k += 12;
}
- /*--------------------- last block: affect all 32 bits of (c) */
- switch(length) { /* all the case statements fall through */
+ switch(length) {
case 12:
c += ((uint32_t)k[11]) << 24;
case 11:
@@ -528,286 +454,18 @@ uint32_t hashlittle( const void *key, size_t length, uint32_t initval)
return c;
}
-/*
- * hashlittle2: return 2 32-bit hash values
+/**
+ * Hash a variable-length key into a 32-bit value
+ * @param k the key (the unaligned variable-length array of bytes)
+ * @param length the length of the key, counting by bytes
+ * @param initval can be any 4-byte value
+ *
+ * This is the same as jhash_word() on big-endian machines. It is different
+ * from jhash_le() on all machines. jhash_be() takes advantage of big-endian
+ * byte ordering.
*
- * This is identical to hashlittle(), except it returns two 32-bit hash
- * values instead of just one. This is good enough for hash table
- * lookup with 2^^64 buckets, or if you want a second hash if you're not
- * happy with the first, or if you want a probably-unique 64-bit ID for
- * the key. *pc is better mixed than *pb, so use *pc first. If you want
- * a 64-bit value do something like "*pc + (((uint64_t)*pb)<<32)".
- */
-void hashlittle2(
- const void *key, /* the key to hash */
- size_t length, /* length of the key */
- uint32_t *pc, /* IN: primary initval, OUT: primary hash */
- uint32_t *pb) /* IN: secondary initval, OUT: secondary hash */
-{
- uint32_t a, b, c; /* internal state */
- union {
- const void *ptr;
- size_t i;
- } u; /* needed for Mac Powerbook G4 */
-
- /* Set up the internal state */
- a = b = c = 0xdeadbeef + ((uint32_t)length) + *pc;
- c += *pb;
-
- u.ptr = key;
- if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) {
- const uint32_t *k = (const uint32_t *)key; /* read 32b chunks */
-
- /* all but last block: aligned reads and affect 32 bits
- * of (a,b,c) */
- while (length > 12) {
- a += k[0];
- b += k[1];
- c += k[2];
- mix(a, b, c);
- length -= 12;
- k += 3;
- }
-
- /*------------------ handle the last (probably partial) block */
- /*
- * "k[2]&0xffffff" actually reads beyond the end of the string,
- * but then masks off the part it's not allowed to read.
- * Because the string is aligned, the masked-off tail is in the
- * same word as the rest of the string. Every machine with
- * memory protection I've seen does it on word boundaries, so
- * is OK with this. But VALGRIND will still catch it and
- * complain. The masking trick does make the hash noticably
- * faster for short strings (like English words).
- */
-#ifndef VALGRIND
-
- switch(length) {
- case 12:
- c += k[2];
- b += k[1];
- a += k[0];
- break;
- case 11:
- c += k[2] & 0xffffff;
- b += k[1];
- a += k[0];
- break;
- case 10:
- c += k[2] & 0xffff;
- b += k[1];
- a += k[0];
- break;
- case 9 :
- c += k[2] & 0xff;
- b += k[1];
- a += k[0];
- break;
- case 8 :
- b += k[1];
- a += k[0];
- break;
- case 7 :
- b += k[1] & 0xffffff;
- a += k[0];
- break;
- case 6 :
- b += k[1] & 0xffff;
- a += k[0];
- break;
- case 5 :
- b += k[1] & 0xff;
- a += k[0];
- break;
- case 4 :
- a += k[0];
- break;
- case 3 :
- a += k[0] & 0xffffff;
- break;
- case 2 :
- a += k[0] & 0xffff;
- break;
- case 1 :
- a += k[0] & 0xff;
- break;
- case 0 :
- *pc = c;
- *pb = b;
- return; /* zero length strings require no mixing */
- }
-
-#else /* make valgrind happy */
-
- k8 = (const uint8_t *)k;
- switch(length) {
- case 12:
- c += k[2];
- b += k[1];
- a += k[0];
- break;
- case 11:
- c += ((uint32_t)k8[10]) << 16; /* fall through */
- case 10:
- c += ((uint32_t)k8[9]) << 8; /* fall through */
- case 9 :
- c += k8[8]; /* fall through */
- case 8 :
- b += k[1];
- a += k[0];
- break;
- case 7 :
- b += ((uint32_t)k8[6]) << 16; /* fall through */
- case 6 :
- b += ((uint32_t)k8[5]) << 8; /* fall through */
- case 5 :
- b += k8[4]; /* fall through */
- case 4 :
- a += k[0];
- break;
- case 3 :
- a += ((uint32_t)k8[2]) << 16; /* fall through */
- case 2 :
- a += ((uint32_t)k8[1]) << 8; /* fall through */
- case 1 :
- a += k8[0];
- break;
- case 0 :
- *pc = c;
- *pb = b;
- return; /* zero length strings require no mixing */
- }
-
-#endif /* !valgrind */
-
- } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) {
- const uint16_t *k = (const uint16_t *)key; /* read 16b chunks */
- const uint8_t *k8;
-
- /*---- all but last block: aligned reads and different mixing */
- while (length > 12) {
- a += k[0] + (((uint32_t)k[1]) << 16);
- b += k[2] + (((uint32_t)k[3]) << 16);
- c += k[4] + (((uint32_t)k[5]) << 16);
- mix(a, b, c);
- length -= 12;
- k += 6;
- }
-
- /*------------------ handle the last (probably partial) block */
- k8 = (const uint8_t *)k;
- switch(length) {
- case 12:
- c += k[4] + (((uint32_t)k[5]) << 16);
- b += k[2] + (((uint32_t)k[3]) << 16);
- a += k[0] + (((uint32_t)k[1]) << 16);
- break;
- case 11:
- c += ((uint32_t)k8[10]) << 16; /* fall through */
- case 10:
- c += k[4];
- b += k[2] + (((uint32_t)k[3]) << 16);
- a += k[0] + (((uint32_t)k[1]) << 16);
- break;
- case 9 :
- c += k8[8]; /* fall through */
- case 8 :
- b += k[2] + (((uint32_t)k[3]) << 16);
- a += k[0] + (((uint32_t)k[1]) << 16);
- break;
- case 7 :
- b += ((uint32_t)k8[6]) << 16; /* fall through */
- case 6 :
- b += k[2];
- a += k[0] + (((uint32_t)k[1]) << 16);
- break;
- case 5 :
- b += k8[4]; /* fall through */
- case 4 :
- a += k[0] + (((uint32_t)k[1]) << 16);
- break;
- case 3 :
- a += ((uint32_t)k8[2]) << 16; /* fall through */
- case 2 :
- a += k[0];
- break;
- case 1 :
- a += k8[0];
- break;
- case 0 :
- *pc = c;
- *pb = b;
- return; /* zero length strings require no mixing */
- }
-
- } else { /* need to read the key one byte at a time */
- const uint8_t *k = (const uint8_t *)key;
-
- /*---- all but the last block: affect some 32 bits of (a,b,c) */
- while (length > 12) {
- a += k[0];
- a += ((uint32_t)k[1]) << 8;
- a += ((uint32_t)k[2]) << 16;
- a += ((uint32_t)k[3]) << 24;
- b += k[4];
- b += ((uint32_t)k[5]) << 8;
- b += ((uint32_t)k[6]) << 16;
- b += ((uint32_t)k[7]) << 24;
- c += k[8];
- c += ((uint32_t)k[9]) << 8;
- c += ((uint32_t)k[10]) << 16;
- c += ((uint32_t)k[11]) << 24;
- mix(a, b, c);
- length -= 12;
- k += 12;
- }
-
- /*--------------------- last block: affect all 32 bits of (c) */
- switch(length) { /* all the case statements fall through */
- case 12:
- c += ((uint32_t)k[11]) << 24;
- case 11:
- c += ((uint32_t)k[10]) << 16;
- case 10:
- c += ((uint32_t)k[9]) << 8;
- case 9 :
- c += k[8];
- case 8 :
- b += ((uint32_t)k[7]) << 24;
- case 7 :
- b += ((uint32_t)k[6]) << 16;
- case 6 :
- b += ((uint32_t)k[5]) << 8;
- case 5 :
- b += k[4];
- case 4 :
- a += ((uint32_t)k[3]) << 24;
- case 3 :
- a += ((uint32_t)k[2]) << 16;
- case 2 :
- a += ((uint32_t)k[1]) << 8;
- case 1 :
- a += k[0];
- break;
- case 0 :
- *pc = c;
- *pb = b;
- return; /* zero length strings require no mixing */
- }
- }
-
- final(a, b, c);
- *pc = c;
- *pb = b;
-}
-
-/*
- * hashbig():
- * This is the same as hashword() on big-endian machines. It is different
- * from hashlittle() on all machines. hashbig() takes advantage of
- * big-endian byte ordering.
*/
-uint32_t hashbig( const void *key, size_t length, uint32_t initval)
+static uint32_t jhash_be( const void *key, size_t length, uint32_t initval)
{
uint32_t a, b, c;
union {
@@ -815,15 +473,15 @@ uint32_t hashbig( const void *key, size_t length, uint32_t initval)
size_t i;
} u; /* to cast key to (size_t) happily */
- /* Set up the internal state */
+ /* set up the internal state */
a = b = c = 0xdeadbeef + ((uint32_t)length) + initval;
u.ptr = key;
- if (HASH_BIG_ENDIAN && ((u.i & 0x3) == 0)) {
- const uint32_t *k = (const uint32_t *)key; /* read 32b chunks */
+ if ((arch_def_native->endian == ARCH_ENDIAN_BIG) &&
+ ((u.i & 0x3) == 0)) {
+ /* read 32-bit chunks */
+ const uint32_t *k = (const uint32_t *)key;
- /* all but last block: aligned reads and affect 32 bits
- * of (a,b,c) */
while (length > 12) {
a += k[0];
b += k[1];
@@ -833,17 +491,14 @@ uint32_t hashbig( const void *key, size_t length, uint32_t initval)
k += 3;
}
- /*------------------ handle the last (probably partial) block */
- /*
- * "k[2]<<8" actually reads beyond the end of the string, but
+ /* "k[2]<<8" actually reads beyond the end of the string, but
* then shifts out the part it's not allowed to read. Because
* the string is aligned, the illegal read is in the same word
* as the rest of the string. Every machine with memory
* protection I've seen does it on word boundaries, so is OK
* with this. But VALGRIND will still catch it and complain.
* The masking trick does make the hash noticably faster for
- * short strings (like English words).
- */
+ * short strings (like English words). */
#ifndef VALGRIND
switch(length) {
@@ -896,41 +551,42 @@ uint32_t hashbig( const void *key, size_t length, uint32_t initval)
a += k[0] & 0xff000000;
break;
case 0 :
- return c; /* zero length strings require no mixing */
+ /* zero length strings require no mixing */
+ return c;
}
#else /* make valgrind happy */
k8 = (const uint8_t *)k;
- switch(length) { /* all the case statements fall through */
+ switch(length) {
case 12:
c += k[2];
b += k[1];
a += k[0];
break;
case 11:
- c += ((uint32_t)k8[10]) << 8; /* fall through */
+ c += ((uint32_t)k8[10]) << 8;
case 10:
- c += ((uint32_t)k8[9]) << 16; /* fall through */
+ c += ((uint32_t)k8[9]) << 16;
case 9 :
- c += ((uint32_t)k8[8]) << 24; /* fall through */
+ c += ((uint32_t)k8[8]) << 24;
case 8 :
b += k[1];
a += k[0];
break;
case 7 :
- b += ((uint32_t)k8[6]) << 8; /* fall through */
+ b += ((uint32_t)k8[6]) << 8;
case 6 :
- b += ((uint32_t)k8[5]) << 16; /* fall through */
+ b += ((uint32_t)k8[5]) << 16;
case 5 :
- b += ((uint32_t)k8[4]) << 24; /* fall through */
+ b += ((uint32_t)k8[4]) << 24;
case 4 :
a += k[0];
break;
case 3 :
- a += ((uint32_t)k8[2]) << 8; /* fall through */
+ a += ((uint32_t)k8[2]) << 8;
case 2 :
- a += ((uint32_t)k8[1]) << 16; /* fall through */
+ a += ((uint32_t)k8[1]) << 16;
case 1 :
a += ((uint32_t)k8[0]) << 24;
break;
@@ -940,10 +596,10 @@ uint32_t hashbig( const void *key, size_t length, uint32_t initval)
#endif /* !VALGRIND */
- } else { /* need to read the key one byte at a time */
+ } else {
+ /* need to read the key one byte at a time */
const uint8_t *k = (const uint8_t *)key;
- /*---- all but the last block: affect some 32 bits of (a,b,c) */
while (length > 12) {
a += ((uint32_t)k[0]) << 24;
a += ((uint32_t)k[1]) << 16;
@@ -962,8 +618,7 @@ uint32_t hashbig( const void *key, size_t length, uint32_t initval)
k += 12;
}
- /*--------------------- last block: affect all 32 bits of (c) */
- switch(length) { /* all the case statements fall through */
+ switch(length) {
case 12:
c += k[11];
case 11:
@@ -997,3 +652,23 @@ uint32_t hashbig( const void *key, size_t length, uint32_t initval)
final(a, b, c);
return c;
}
+
+/**
+ * Hash a variable-length key into a 32-bit value
+ * @param k the key (the unaligned variable-length array of bytes)
+ * @param length the length of the key, counting by bytes
+ * @param initval can be any 4-byte value
+ *
+ * A small wrapper function that selects the proper hash function based on the
+ * native machine's byte-ordering.
+ *
+ */
+uint32_t jhash(const void *key, size_t length, uint32_t initval)
+{
+ if (length % sizeof(uint32_t) == 0)
+ return jhash_word(key, (length / sizeof(uint32_t)), initval);
+ else if (arch_def_native->endian == ARCH_ENDIAN_BIG)
+ return jhash_be(key, length, initval);
+ else
+ return jhash_le(key, length, initval);
+}