summaryrefslogtreecommitdiff
path: root/src/hash.c
blob: 1228307c826e28a22699505cf28547a87a36acbc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
/**
 * Seccomp Library hash code
 *
 * Release under the Public Domain
 * Author: Bob Jenkins <bob_jenkins@burtleburtle.net>
 */

/*
 * lookup3.c, by Bob Jenkins, May 2006, Public Domain.
 *
 * These are functions for producing 32-bit hashes for hash table lookup.
 * jhash_word(), jhash_le(), jhash_be(), mix(), and final() are externally useful
 * functions.  Routines to test the hash are included if SELF_TEST is defined.
 * You can use this free for any purpose.  It's in the public domain.  It has
 * no warranty.
 *
 * You probably want to use jhash_le().  jhash_le() and jhash_be() hash byte
 * arrays.  jhash_le() is is faster than jhash_be() on little-endian machines.
 * Intel and AMD are little-endian machines.
 *
 * If you want to find a hash of, say, exactly 7 integers, do
 *   a = i1;  b = i2;  c = i3;
 *   mix(a,b,c);
 *   a += i4; b += i5; c += i6;
 *   mix(a,b,c);
 *   a += i7;
 *   final(a,b,c);
 *
 * then use c as the hash value.  If you have a variable length array of
 * 4-byte integers to hash, use jhash_word().  If you have a byte array (like
 * a character string), use jhash_le().  If you have several byte arrays, or
 * a mix of things, see the comments above jhash_le().
 *
 * Why is this so big?  I read 12 bytes at a time into 3 4-byte integers, then
 * mix those integers.  This is fast (you can do a lot more thorough mixing
 * with 12*3 instructions on 3 integers than you can with 3 instructions on 1
 * byte), but shoehorning those bytes into integers efficiently is messy.
 */

#include <stdint.h>

#include "arch.h"
#include "hash.h"

#define hashsize(n)	((uint32_t)1<<(n))
#define hashmask(n)	(hashsize(n)-1)
#define rot(x,k)	(((x)<<(k)) | ((x)>>(32-(k))))

/**
 * Mix 3 32-bit values reversibly
 * @param a 32-bit value
 * @param b 32-bit value
 * @param c 32-bit value
 *
 * This is reversible, so any information in (a,b,c) before mix() is still
 * in (a,b,c) after mix().
 *
 * If four pairs of (a,b,c) inputs are run through mix(), or through mix() in
 * reverse, there are at least 32 bits of the output that are sometimes the
 * same for one pair and different for another pair.
 *
 * This was tested for:
 * - pairs that differed by one bit, by two bits, in any combination of top
 *   bits of (a,b,c), or in any combination of bottom bits of (a,b,c).
 * - "differ" is defined as +, -, ^, or ~^.  For + and -, I transformed the
 *   output delta to a Gray code (a^(a>>1)) so a string of 1's (as is commonly
 *   produced by subtraction) look like a single 1-bit difference.
 * - the base values were pseudorandom, all zero but one bit set, or all zero
 *   plus a counter that starts at zero.
 *
 * Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that
 * satisfy this are
 *     4  6  8 16 19  4
 *     9 15  3 18 27 15
 *    14  9  3  7 17  3
 *
 * Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing for "differ"
 * defined as + with a one-bit base and a two-bit delta.  I used
 * http://burtleburtle.net/bob/hash/avalanche.html to choose the operations,
 * constants, and arrangements of the variables.
 *
 * This does not achieve avalanche.  There are input bits of (a,b,c) that fail
 * to affect some output bits of (a,b,c), especially of a.  The most thoroughly
 * mixed value is c, but it doesn't really even achieve avalanche in c.
 *
 * This allows some parallelism.  Read-after-writes are good at doubling the
 * number of bits affected, so the goal of mixing pulls in the opposite
 * direction as the goal of parallelism.  I did what I could.  Rotates seem to
 * cost as much as shifts on every machine I could lay my hands on, and rotates
 * are much kinder to the top and bottom bits, so I used rotates.
 *
 */
#define mix(a,b,c) \
	{ \
		a -= c;  a ^= rot(c, 4);  c += b; \
		b -= a;  b ^= rot(a, 6);  a += c; \
		c -= b;  c ^= rot(b, 8);  b += a; \
		a -= c;  a ^= rot(c,16);  c += b; \
		b -= a;  b ^= rot(a,19);  a += c; \
		c -= b;  c ^= rot(b, 4);  b += a; \
	}

/**
 * Final mixing of 3 32-bit values (a,b,c) into c
 * @param a 32-bit value
 * @param b 32-bit value
 * @param c 32-bit value
 *
 * Pairs of (a,b,c) values differing in only a few bits will usually produce
 * values of c that look totally different.  This was tested for:
 * - pairs that differed by one bit, by two bits, in any combination of top
 *   bits of (a,b,c), or in any combination of bottom bits of (a,b,c).
 * - "differ" is defined as +, -, ^, or ~^.  For + and -, I transformed the
 *   output delta to a Gray code (a^(a>>1)) so a string of 1's (as is commonly
 *   produced by subtraction) look like a single 1-bit difference.
 * - the base values were pseudorandom, all zero but one bit set, or all zero
 *   plus a counter that starts at zero.
 *
 * These constants passed:
 *  14 11 25 16 4 14 24
 *  12 14 25 16 4 14 24
 * and these came close:
 *   4  8 15 26 3 22 24
 *  10  8 15 26 3 22 24
 *  11  8 15 26 3 22 24
 *
 */
#define final(a,b,c) \
	{ \
		c ^= b; c -= rot(b,14); \
		a ^= c; a -= rot(c,11); \
		b ^= a; b -= rot(a,25); \
		c ^= b; c -= rot(b,16); \
		a ^= c; a -= rot(c,4);  \
		b ^= a; b -= rot(a,14); \
		c ^= b; c -= rot(b,24); \
	}

/**
 * Hash an array of 32-bit values
 * @param k the key, an array of uint32_t values
 * @param length the number of array elements
 * @param initval the previous hash, or an arbitrary value
 *
 * This works on all machines.  To be useful, it requires:
 * - that the key be an array of uint32_t's, and
 * - that the length be the number of uint32_t's in the key
 *
 * The function jhash_word() is identical to jhash_le() on little-endian
 * machines, and identical to jhash_be() on big-endian machines, except that
 * the length has to be measured in uint32_ts rather than in bytes.  jhash_le()
 * is more complicated than jhash_word() only because jhash_le() has to dance
 * around fitting the key bytes into registers.
 *
 */
static uint32_t jhash_word(const uint32_t *k, size_t length, uint32_t initval)
{
	uint32_t a, b, c;

	/* set up the internal state */
	a = b = c = 0xdeadbeef + (((uint32_t)length) << 2) + initval;

	/* handle most of the key */
	while (length > 3) {
		a += k[0];
		b += k[1];
		c += k[2];
		mix(a, b, c);
		length -= 3;
		k += 3;
	}

	/* handle the last 3 uint32_t's */
	switch(length) {
	case 3 :
		c += k[2];
	case 2 :
		b += k[1];
	case 1 :
		a += k[0];
		final(a, b, c);
	case 0:
		/* nothing left to add */
		break;
	}

	return c;
}

/**
 * Hash a variable-length key into a 32-bit value
 * @param key the key (the unaligned variable-length array of bytes)
 * @param length the length of the key, counting by bytes
 * @param initval can be any 4-byte value
 *
 * Returns a 32-bit value.  Every bit of the key affects every bit of the
 * return value.  Two keys differing by one or two bits will have totally
 * different hash values.
 *
 * The best hash table sizes are powers of 2.  There is no need to do mod a
 * prime (mod is sooo slow!).  If you need less than 32 bits, use a bitmask.
 * For example, if you need only 10 bits, do:
 *   h = (h & hashmask(10));
 * In which case, the hash table should have hashsize(10) elements.
 *
 * If you are hashing n strings (uint8_t **)k, do it like this:
 *   for (i=0, h=0; i<n; ++i) h = jhash_le( k[i], len[i], h);
 *
 */
static uint32_t jhash_le(const void *key, size_t length, uint32_t initval)
{
	uint32_t a, b, c;
	union {
		const void *ptr;
		size_t i;
	} u;     /* needed for Mac Powerbook G4 */

	/* set up the internal state */
	a = b = c = 0xdeadbeef + ((uint32_t)length) + initval;

	u.ptr = key;
	if ((arch_def_native->endian == ARCH_ENDIAN_LITTLE) &&
	    ((u.i & 0x3) == 0)) {
		/* read 32-bit chunks */
		const uint32_t *k = (const uint32_t *)key;

		while (length > 12) {
			a += k[0];
			b += k[1];
			c += k[2];
			mix(a, b, c);
			length -= 12;
			k += 3;
		}

		/* "k[2]&0xffffff" actually reads beyond the end of the string,
		 * but then masks off the part it's not allowed to read.
		 * Because the string is aligned, the masked-off tail is in the
		 * same word as the rest of the string.  Every machine with
		 * memory protection I've seen does it on word boundaries, so
		 * is OK with this.  But VALGRIND will still catch it and
		 * complain.  The masking trick does make the hash noticably
		 * faster for short strings (like English words). */
#ifndef VALGRIND

		switch(length) {
		case 12:
			c += k[2];
			b += k[1];
			a += k[0];
			break;
		case 11:
			c += k[2] & 0xffffff;
			b += k[1];
			a += k[0];
			break;
		case 10:
			c += k[2] & 0xffff;
			b += k[1];
			a += k[0];
			break;
		case 9 :
			c += k[2] & 0xff;
			b += k[1];
			a += k[0];
			break;
		case 8 :
			b += k[1];
			a += k[0];
			break;
		case 7 :
			b += k[1] & 0xffffff;
			a += k[0];
			break;
		case 6 :
			b += k[1] & 0xffff;
			a += k[0];
			break;
		case 5 :
			b += k[1] & 0xff;
			a += k[0];
			break;
		case 4 :
			a += k[0];
			break;
		case 3 :
			a += k[0] & 0xffffff;
			break;
		case 2 :
			a += k[0] & 0xffff;
			break;
		case 1 :
			a += k[0] & 0xff;
			break;
		case 0 :
			/* zero length strings require no mixing */
			return c;
		}

#else /* make valgrind happy */

		k8 = (const uint8_t *)k;
		switch(length) {
		case 12:
			c += k[2];
			b += k[1];
			a += k[0];
			break;
		case 11:
			c += ((uint32_t)k8[10]) << 16;
		case 10:
			c += ((uint32_t)k8[9]) << 8;
		case 9 :
			c += k8[8];
		case 8 :
			b += k[1];
			a += k[0];
			break;
		case 7 :
			b += ((uint32_t)k8[6]) << 16;
		case 6 :
			b += ((uint32_t)k8[5]) << 8;
		case 5 :
			b += k8[4];
		case 4 :
			a += k[0];
			break;
		case 3 :
			a += ((uint32_t)k8[2]) << 16;
		case 2 :
			a += ((uint32_t)k8[1]) << 8;
		case 1 :
			a += k8[0];
			break;
		case 0 :
			return c;
		}

#endif /* !valgrind */

	} else if ((arch_def_native->endian == ARCH_ENDIAN_LITTLE) &&
		   ((u.i & 0x1) == 0)) {
		/* read 16-bit chunks */
		const uint16_t *k = (const uint16_t *)key;
		const uint8_t  *k8;

		while (length > 12) {
			a += k[0] + (((uint32_t)k[1]) << 16);
			b += k[2] + (((uint32_t)k[3]) << 16);
			c += k[4] + (((uint32_t)k[5]) << 16);
			mix(a, b, c);
			length -= 12;
			k += 6;
		}

		k8 = (const uint8_t *)k;
		switch(length) {
		case 12:
			c += k[4] + (((uint32_t)k[5]) << 16);
			b += k[2] + (((uint32_t)k[3]) << 16);
			a += k[0] + (((uint32_t)k[1]) << 16);
			break;
		case 11:
			c += ((uint32_t)k8[10]) << 16;
		case 10:
			c += k[4];
			b += k[2] + (((uint32_t)k[3]) << 16);
			a += k[0] + (((uint32_t)k[1]) << 16);
			break;
		case 9 :
			c += k8[8];
		case 8 :
			b += k[2] + (((uint32_t)k[3]) << 16);
			a += k[0] + (((uint32_t)k[1]) << 16);
			break;
		case 7 :
			b += ((uint32_t)k8[6]) << 16;
		case 6 :
			b += k[2];
			a += k[0] + (((uint32_t)k[1]) << 16);
			break;
		case 5 :
			b += k8[4];
		case 4 :
			a += k[0] + (((uint32_t)k[1]) << 16);
			break;
		case 3 :
			a += ((uint32_t)k8[2]) << 16;
		case 2 :
			a += k[0];
			break;
		case 1 :
			a += k8[0];
			break;
		case 0 :
			/* zero length requires no mixing */
			return c;
		}

	} else {
		/* need to read the key one byte at a time */
		const uint8_t *k = (const uint8_t *)key;

		while (length > 12) {
			a += k[0];
			a += ((uint32_t)k[1]) << 8;
			a += ((uint32_t)k[2]) << 16;
			a += ((uint32_t)k[3]) << 24;
			b += k[4];
			b += ((uint32_t)k[5]) << 8;
			b += ((uint32_t)k[6]) << 16;
			b += ((uint32_t)k[7]) << 24;
			c += k[8];
			c += ((uint32_t)k[9]) << 8;
			c += ((uint32_t)k[10]) << 16;
			c += ((uint32_t)k[11]) << 24;
			mix(a, b, c);
			length -= 12;
			k += 12;
		}

		switch(length) {
		case 12:
			c += ((uint32_t)k[11]) << 24;
		case 11:
			c += ((uint32_t)k[10]) << 16;
		case 10:
			c += ((uint32_t)k[9]) << 8;
		case 9 :
			c += k[8];
		case 8 :
			b += ((uint32_t)k[7]) << 24;
		case 7 :
			b += ((uint32_t)k[6]) << 16;
		case 6 :
			b += ((uint32_t)k[5]) << 8;
		case 5 :
			b += k[4];
		case 4 :
			a += ((uint32_t)k[3]) << 24;
		case 3 :
			a += ((uint32_t)k[2]) << 16;
		case 2 :
			a += ((uint32_t)k[1]) << 8;
		case 1 :
			a += k[0];
			break;
		case 0 :
			return c;
		}
	}

	final(a, b, c);
	return c;
}

/**
 * Hash a variable-length key into a 32-bit value
 * @param key the key (the unaligned variable-length array of bytes)
 * @param length the length of the key, counting by bytes
 * @param initval can be any 4-byte value
 *
 * This is the same as jhash_word() on big-endian machines.  It is different
 * from jhash_le() on all machines.  jhash_be() takes advantage of big-endian
 * byte ordering.
 *
 */
static uint32_t jhash_be( const void *key, size_t length, uint32_t initval)
{
	uint32_t a, b, c;
	union {
		const void *ptr;
		size_t i;
	} u; /* to cast key to (size_t) happily */

	/* set up the internal state */
	a = b = c = 0xdeadbeef + ((uint32_t)length) + initval;

	u.ptr = key;
	if ((arch_def_native->endian == ARCH_ENDIAN_BIG) &&
	    ((u.i & 0x3) == 0)) {
		/* read 32-bit chunks */
		const uint32_t *k = (const uint32_t *)key;

		while (length > 12) {
			a += k[0];
			b += k[1];
			c += k[2];
			mix(a, b, c);
			length -= 12;
			k += 3;
		}

		/* "k[2]<<8" actually reads beyond the end of the string, but
		 * then shifts out the part it's not allowed to read.  Because
		 * the string is aligned, the illegal read is in the same word
		 * as the rest of the string.  Every machine with memory
		 * protection I've seen does it on word boundaries, so is OK
		 * with this.  But VALGRIND will still catch it and complain.
		 * The masking trick does make the hash noticably faster for
		 * short strings (like English words). */
#ifndef VALGRIND

		switch(length) {
		case 12:
			c += k[2];
			b += k[1];
			a += k[0];
			break;
		case 11:
			c += k[2] & 0xffffff00;
			b += k[1];
			a += k[0];
			break;
		case 10:
			c += k[2] & 0xffff0000;
			b += k[1];
			a += k[0];
			break;
		case 9 :
			c += k[2] & 0xff000000;
			b += k[1];
			a += k[0];
			break;
		case 8 :
			b += k[1];
			a += k[0];
			break;
		case 7 :
			b += k[1] & 0xffffff00;
			a += k[0];
			break;
		case 6 :
			b += k[1] & 0xffff0000;
			a += k[0];
			break;
		case 5 :
			b += k[1] & 0xff000000;
			a += k[0];
			break;
		case 4 :
			a += k[0];
			break;
		case 3 :
			a += k[0] & 0xffffff00;
			break;
		case 2 :
			a += k[0] & 0xffff0000;
			break;
		case 1 :
			a += k[0] & 0xff000000;
			break;
		case 0 :
			/* zero length strings require no mixing */
			return c;
		}

#else  /* make valgrind happy */

		k8 = (const uint8_t *)k;
		switch(length) {
		case 12:
			c += k[2];
			b += k[1];
			a += k[0];
			break;
		case 11:
			c += ((uint32_t)k8[10]) << 8;
		case 10:
			c += ((uint32_t)k8[9]) << 16;
		case 9 :
			c += ((uint32_t)k8[8]) << 24;
		case 8 :
			b += k[1];
			a += k[0];
			break;
		case 7 :
			b += ((uint32_t)k8[6]) << 8;
		case 6 :
			b += ((uint32_t)k8[5]) << 16;
		case 5 :
			b += ((uint32_t)k8[4]) << 24;
		case 4 :
			a += k[0];
			break;
		case 3 :
			a += ((uint32_t)k8[2]) << 8;
		case 2 :
			a += ((uint32_t)k8[1]) << 16;
		case 1 :
			a += ((uint32_t)k8[0]) << 24;
			break;
		case 0 :
			return c;
		}

#endif /* !VALGRIND */

	} else {
		/* need to read the key one byte at a time */
		const uint8_t *k = (const uint8_t *)key;

		while (length > 12) {
			a += ((uint32_t)k[0]) << 24;
			a += ((uint32_t)k[1]) << 16;
			a += ((uint32_t)k[2]) << 8;
			a += ((uint32_t)k[3]);
			b += ((uint32_t)k[4]) << 24;
			b += ((uint32_t)k[5]) << 16;
			b += ((uint32_t)k[6]) << 8;
			b += ((uint32_t)k[7]);
			c += ((uint32_t)k[8]) << 24;
			c += ((uint32_t)k[9]) << 16;
			c += ((uint32_t)k[10]) << 8;
			c += ((uint32_t)k[11]);
			mix(a, b, c);
			length -= 12;
			k += 12;
		}

		switch(length) {
		case 12:
			c += k[11];
		case 11:
			c += ((uint32_t)k[10]) << 8;
		case 10:
			c += ((uint32_t)k[9]) << 16;
		case 9 :
			c += ((uint32_t)k[8]) << 24;
		case 8 :
			b += k[7];
		case 7 :
			b += ((uint32_t)k[6]) << 8;
		case 6 :
			b += ((uint32_t)k[5]) << 16;
		case 5 :
			b += ((uint32_t)k[4]) << 24;
		case 4 :
			a += k[3];
		case 3 :
			a += ((uint32_t)k[2]) << 8;
		case 2 :
			a += ((uint32_t)k[1]) << 16;
		case 1 :
			a += ((uint32_t)k[0]) << 24;
			break;
		case 0 :
			return c;
		}
	}

	final(a, b, c);
	return c;
}

/**
 * Hash a variable-length key into a 32-bit value
 * @param key the key (the unaligned variable-length array of bytes)
 * @param length the length of the key, counting by bytes
 * @param initval can be any 4-byte value
 *
 * A small wrapper function that selects the proper hash function based on the
 * native machine's byte-ordering.
 *
 */
uint32_t jhash(const void *key, size_t length, uint32_t initval)
{
	if (length % sizeof(uint32_t) == 0)
		return jhash_word(key, (length / sizeof(uint32_t)), initval);
	else if (arch_def_native->endian == ARCH_ENDIAN_BIG)
		return jhash_be(key, length, initval);
	else
		return jhash_le(key, length, initval);
}