summaryrefslogtreecommitdiff
path: root/libtiff/tif_getimage.c
diff options
context:
space:
mode:
Diffstat (limited to 'libtiff/tif_getimage.c')
-rw-r--r--libtiff/tif_getimage.c1850
1 files changed, 1850 insertions, 0 deletions
diff --git a/libtiff/tif_getimage.c b/libtiff/tif_getimage.c
new file mode 100644
index 00000000..c07fdbca
--- /dev/null
+++ b/libtiff/tif_getimage.c
@@ -0,0 +1,1850 @@
+/* $Header: /cvs/maptools/cvsroot/libtiff/libtiff/tif_getimage.c,v 1.1 1999-07-27 21:50:27 mike Exp $ */
+
+/*
+ * Copyright (c) 1991-1997 Sam Leffler
+ * Copyright (c) 1991-1997 Silicon Graphics, Inc.
+ *
+ * Permission to use, copy, modify, distribute, and sell this software and
+ * its documentation for any purpose is hereby granted without fee, provided
+ * that (i) the above copyright notices and this permission notice appear in
+ * all copies of the software and related documentation, and (ii) the names of
+ * Sam Leffler and Silicon Graphics may not be used in any advertising or
+ * publicity relating to the software without the specific, prior written
+ * permission of Sam Leffler and Silicon Graphics.
+ *
+ * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
+ * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
+ *
+ * IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR
+ * ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND,
+ * OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
+ * WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
+ * LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
+ * OF THIS SOFTWARE.
+ */
+
+/*
+ * TIFF Library
+ *
+ * Read and return a packed RGBA image.
+ */
+#include "tiffiop.h"
+#include <assert.h>
+#include <stdio.h>
+
+static int gtTileContig(TIFFRGBAImage*, uint32*, uint32, uint32);
+static int gtTileSeparate(TIFFRGBAImage*, uint32*, uint32, uint32);
+static int gtStripContig(TIFFRGBAImage*, uint32*, uint32, uint32);
+static int gtStripSeparate(TIFFRGBAImage*, uint32*, uint32, uint32);
+static int pickTileContigCase(TIFFRGBAImage*);
+static int pickTileSeparateCase(TIFFRGBAImage*);
+
+static const char photoTag[] = "PhotometricInterpretation";
+
+/*
+ * Check the image to see if TIFFReadRGBAImage can deal with it.
+ * 1/0 is returned according to whether or not the image can
+ * be handled. If 0 is returned, emsg contains the reason
+ * why it is being rejected.
+ */
+int
+TIFFRGBAImageOK(TIFF* tif, char emsg[1024])
+{
+ TIFFDirectory* td = &tif->tif_dir;
+ uint16 photometric;
+ int colorchannels;
+
+ switch (td->td_bitspersample) {
+ case 1: case 2: case 4:
+ case 8: case 16:
+ break;
+ default:
+ sprintf(emsg, "Sorry, can not handle images with %d-bit samples",
+ td->td_bitspersample);
+ return (0);
+ }
+ colorchannels = td->td_samplesperpixel - td->td_extrasamples;
+ if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &photometric)) {
+ switch (colorchannels) {
+ case 1:
+ photometric = PHOTOMETRIC_MINISBLACK;
+ break;
+ case 3:
+ photometric = PHOTOMETRIC_RGB;
+ break;
+ default:
+ sprintf(emsg, "Missing needed %s tag", photoTag);
+ return (0);
+ }
+ }
+ switch (photometric) {
+ case PHOTOMETRIC_MINISWHITE:
+ case PHOTOMETRIC_MINISBLACK:
+ case PHOTOMETRIC_PALETTE:
+ if (td->td_planarconfig == PLANARCONFIG_CONTIG && td->td_samplesperpixel != 1) {
+ sprintf(emsg,
+ "Sorry, can not handle contiguous data with %s=%d, and %s=%d",
+ photoTag, photometric,
+ "Samples/pixel", td->td_samplesperpixel);
+ return (0);
+ }
+ break;
+ case PHOTOMETRIC_YCBCR:
+ if (td->td_planarconfig != PLANARCONFIG_CONTIG) {
+ sprintf(emsg, "Sorry, can not handle YCbCr images with %s=%d",
+ "Planarconfiguration", td->td_planarconfig);
+ return (0);
+ }
+ break;
+ case PHOTOMETRIC_RGB:
+ if (colorchannels < 3) {
+ sprintf(emsg, "Sorry, can not handle RGB image with %s=%d",
+ "Color channels", colorchannels);
+ return (0);
+ }
+ break;
+#ifdef CMYK_SUPPORT
+ case PHOTOMETRIC_SEPARATED:
+ if (td->td_inkset != INKSET_CMYK) {
+ sprintf(emsg, "Sorry, can not handle separated image with %s=%d",
+ "InkSet", td->td_inkset);
+ return (0);
+ }
+ if (td->td_samplesperpixel != 4) {
+ sprintf(emsg, "Sorry, can not handle separated image with %s=%d",
+ "Samples/pixel", td->td_samplesperpixel);
+ return (0);
+ }
+ break;
+#endif
+ case PHOTOMETRIC_LOGL:
+ if (td->td_compression != COMPRESSION_SGILOG) {
+ sprintf(emsg, "Sorry, LogL data must have %s=%d",
+ "Compression", COMPRESSION_SGILOG);
+ return (0);
+ }
+ break;
+ case PHOTOMETRIC_LOGLUV:
+ if (td->td_compression != COMPRESSION_SGILOG &&
+ td->td_compression != COMPRESSION_SGILOG24) {
+ sprintf(emsg, "Sorry, LogLuv data must have %s=%d or %d",
+ "Compression", COMPRESSION_SGILOG, COMPRESSION_SGILOG24);
+ return (0);
+ }
+ if (td->td_planarconfig != PLANARCONFIG_CONTIG) {
+ sprintf(emsg, "Sorry, can not handle LogLuv images with %s=%d",
+ "Planarconfiguration", td->td_planarconfig);
+ return (0);
+ }
+ break;
+ default:
+ sprintf(emsg, "Sorry, can not handle image with %s=%d",
+ photoTag, photometric);
+ return (0);
+ }
+ return (1);
+}
+
+void
+TIFFRGBAImageEnd(TIFFRGBAImage* img)
+{
+ if (img->Map)
+ _TIFFfree(img->Map), img->Map = NULL;
+ if (img->BWmap)
+ _TIFFfree(img->BWmap), img->BWmap = NULL;
+ if (img->PALmap)
+ _TIFFfree(img->PALmap), img->PALmap = NULL;
+ if (img->ycbcr)
+ _TIFFfree(img->ycbcr), img->ycbcr = NULL;
+}
+
+static int
+isCCITTCompression(TIFF* tif)
+{
+ uint16 compress;
+ TIFFGetField(tif, TIFFTAG_COMPRESSION, &compress);
+ return (compress == COMPRESSION_CCITTFAX3 ||
+ compress == COMPRESSION_CCITTFAX4 ||
+ compress == COMPRESSION_CCITTRLE ||
+ compress == COMPRESSION_CCITTRLEW);
+}
+
+int
+TIFFRGBAImageBegin(TIFFRGBAImage* img, TIFF* tif, int stop, char emsg[1024])
+{
+ uint16* sampleinfo;
+ uint16 extrasamples;
+ uint16 planarconfig;
+ uint16 compress;
+ int colorchannels;
+
+ img->tif = tif;
+ img->stoponerr = stop;
+ TIFFGetFieldDefaulted(tif, TIFFTAG_BITSPERSAMPLE, &img->bitspersample);
+ switch (img->bitspersample) {
+ case 1: case 2: case 4:
+ case 8: case 16:
+ break;
+ default:
+ sprintf(emsg, "Sorry, can not image with %d-bit samples",
+ img->bitspersample);
+ return (0);
+ }
+ img->alpha = 0;
+ TIFFGetFieldDefaulted(tif, TIFFTAG_SAMPLESPERPIXEL, &img->samplesperpixel);
+ TIFFGetFieldDefaulted(tif, TIFFTAG_EXTRASAMPLES,
+ &extrasamples, &sampleinfo);
+ if (extrasamples == 1)
+ switch (sampleinfo[0]) {
+ case EXTRASAMPLE_ASSOCALPHA: /* data is pre-multiplied */
+ case EXTRASAMPLE_UNASSALPHA: /* data is not pre-multiplied */
+ img->alpha = sampleinfo[0];
+ break;
+ }
+ colorchannels = img->samplesperpixel - extrasamples;
+ TIFFGetFieldDefaulted(tif, TIFFTAG_COMPRESSION, &compress);
+ TIFFGetFieldDefaulted(tif, TIFFTAG_PLANARCONFIG, &planarconfig);
+ if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &img->photometric)) {
+ switch (colorchannels) {
+ case 1:
+ if (isCCITTCompression(tif))
+ img->photometric = PHOTOMETRIC_MINISWHITE;
+ else
+ img->photometric = PHOTOMETRIC_MINISBLACK;
+ break;
+ case 3:
+ img->photometric = PHOTOMETRIC_RGB;
+ break;
+ default:
+ sprintf(emsg, "Missing needed %s tag", photoTag);
+ return (0);
+ }
+ }
+ switch (img->photometric) {
+ case PHOTOMETRIC_PALETTE:
+ if (!TIFFGetField(tif, TIFFTAG_COLORMAP,
+ &img->redcmap, &img->greencmap, &img->bluecmap)) {
+ TIFFError(TIFFFileName(tif), "Missing required \"Colormap\" tag");
+ return (0);
+ }
+ /* fall thru... */
+ case PHOTOMETRIC_MINISWHITE:
+ case PHOTOMETRIC_MINISBLACK:
+ if (planarconfig == PLANARCONFIG_CONTIG && img->samplesperpixel != 1) {
+ sprintf(emsg,
+ "Sorry, can not handle contiguous data with %s=%d, and %s=%d",
+ photoTag, img->photometric,
+ "Samples/pixel", img->samplesperpixel);
+ return (0);
+ }
+ break;
+ case PHOTOMETRIC_YCBCR:
+ if (planarconfig != PLANARCONFIG_CONTIG) {
+ sprintf(emsg, "Sorry, can not handle YCbCr images with %s=%d",
+ "Planarconfiguration", planarconfig);
+ return (0);
+ }
+ /* It would probably be nice to have a reality check here. */
+ if (compress == COMPRESSION_JPEG && planarconfig == PLANARCONFIG_CONTIG) {
+ /* can rely on libjpeg to convert to RGB */
+ /* XXX should restore current state on exit */
+ TIFFSetField(tif, TIFFTAG_JPEGCOLORMODE, JPEGCOLORMODE_RGB);
+ img->photometric = PHOTOMETRIC_RGB;
+ }
+ break;
+ case PHOTOMETRIC_RGB:
+ if (colorchannels < 3) {
+ sprintf(emsg, "Sorry, can not handle RGB image with %s=%d",
+ "Color channels", colorchannels);
+ return (0);
+ }
+ break;
+ case PHOTOMETRIC_SEPARATED: {
+ uint16 inkset;
+ TIFFGetFieldDefaulted(tif, TIFFTAG_INKSET, &inkset);
+ if (inkset != INKSET_CMYK) {
+ sprintf(emsg, "Sorry, can not handle separated image with %s=%d",
+ "InkSet", inkset);
+ return (0);
+ }
+ if (img->samplesperpixel != 4) {
+ sprintf(emsg, "Sorry, can not handle separated image with %s=%d",
+ "Samples/pixel", img->samplesperpixel);
+ return (0);
+ }
+ break;
+ }
+ case PHOTOMETRIC_LOGL:
+ if (compress != COMPRESSION_SGILOG) {
+ sprintf(emsg, "Sorry, LogL data must have %s=%d",
+ "Compression", COMPRESSION_SGILOG);
+ return (0);
+ }
+ TIFFSetField(tif, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_8BIT);
+ img->photometric = PHOTOMETRIC_MINISBLACK; /* little white lie */
+ img->bitspersample = 8;
+ break;
+ case PHOTOMETRIC_LOGLUV:
+ if (compress != COMPRESSION_SGILOG && compress != COMPRESSION_SGILOG24) {
+ sprintf(emsg, "Sorry, LogLuv data must have %s=%d or %d",
+ "Compression", COMPRESSION_SGILOG, COMPRESSION_SGILOG24);
+ return (0);
+ }
+ if (planarconfig != PLANARCONFIG_CONTIG) {
+ sprintf(emsg, "Sorry, can not handle LogLuv images with %s=%d",
+ "Planarconfiguration", planarconfig);
+ return (0);
+ }
+ TIFFSetField(tif, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_8BIT);
+ img->photometric = PHOTOMETRIC_RGB; /* little white lie */
+ img->bitspersample = 8;
+ break;
+ default:
+ sprintf(emsg, "Sorry, can not handle image with %s=%d",
+ photoTag, img->photometric);
+ return (0);
+ }
+ img->Map = NULL;
+ img->BWmap = NULL;
+ img->PALmap = NULL;
+ img->ycbcr = NULL;
+ TIFFGetField(tif, TIFFTAG_IMAGEWIDTH, &img->width);
+ TIFFGetField(tif, TIFFTAG_IMAGELENGTH, &img->height);
+ TIFFGetFieldDefaulted(tif, TIFFTAG_ORIENTATION, &img->orientation);
+ img->isContig =
+ !(planarconfig == PLANARCONFIG_SEPARATE && colorchannels > 1);
+ if (img->isContig) {
+ img->get = TIFFIsTiled(tif) ? gtTileContig : gtStripContig;
+ (void) pickTileContigCase(img);
+ } else {
+ img->get = TIFFIsTiled(tif) ? gtTileSeparate : gtStripSeparate;
+ (void) pickTileSeparateCase(img);
+ }
+ return (1);
+}
+
+int
+TIFFRGBAImageGet(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
+{
+ if (img->get == NULL) {
+ TIFFError(TIFFFileName(img->tif), "No \"get\" routine setup");
+ return (0);
+ }
+ if (img->put.any == NULL) {
+ TIFFError(TIFFFileName(img->tif),
+ "No \"put\" routine setupl; probably can not handle image format");
+ return (0);
+ }
+ return (*img->get)(img, raster, w, h);
+}
+
+/*
+ * Read the specified image into an ABGR-format raster.
+ */
+int
+TIFFReadRGBAImage(TIFF* tif,
+ uint32 rwidth, uint32 rheight, uint32* raster, int stop)
+{
+ char emsg[1024];
+ TIFFRGBAImage img;
+ int ok;
+
+ if (TIFFRGBAImageBegin(&img, tif, stop, emsg)) {
+ /* XXX verify rwidth and rheight against width and height */
+ ok = TIFFRGBAImageGet(&img, raster+(rheight-img.height)*rwidth,
+ rwidth, img.height);
+ TIFFRGBAImageEnd(&img);
+ } else {
+ TIFFError(TIFFFileName(tif), emsg);
+ ok = 0;
+ }
+ return (ok);
+}
+
+static uint32
+setorientation(TIFFRGBAImage* img, uint32 h)
+{
+ TIFF* tif = img->tif;
+ uint32 y;
+
+ switch (img->orientation) {
+ case ORIENTATION_BOTRIGHT:
+ case ORIENTATION_RIGHTBOT: /* XXX */
+ case ORIENTATION_LEFTBOT: /* XXX */
+ TIFFWarning(TIFFFileName(tif), "using bottom-left orientation");
+ img->orientation = ORIENTATION_BOTLEFT;
+ /* fall thru... */
+ case ORIENTATION_BOTLEFT:
+ y = 0;
+ break;
+ case ORIENTATION_TOPRIGHT:
+ case ORIENTATION_RIGHTTOP: /* XXX */
+ case ORIENTATION_LEFTTOP: /* XXX */
+ default:
+ TIFFWarning(TIFFFileName(tif), "using top-left orientation");
+ img->orientation = ORIENTATION_TOPLEFT;
+ /* fall thru... */
+ case ORIENTATION_TOPLEFT:
+ y = h-1;
+ break;
+ }
+ return (y);
+}
+
+/*
+ * Get an tile-organized image that has
+ * PlanarConfiguration contiguous if SamplesPerPixel > 1
+ * or
+ * SamplesPerPixel == 1
+ */
+static int
+gtTileContig(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
+{
+ TIFF* tif = img->tif;
+ tileContigRoutine put = img->put.contig;
+ uint16 orientation;
+ uint32 col, row, y;
+ uint32 tw, th;
+ u_char* buf;
+ int32 fromskew, toskew;
+ uint32 nrow;
+
+ buf = (u_char*) _TIFFmalloc(TIFFTileSize(tif));
+ if (buf == 0) {
+ TIFFError(TIFFFileName(tif), "No space for tile buffer");
+ return (0);
+ }
+ TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tw);
+ TIFFGetField(tif, TIFFTAG_TILELENGTH, &th);
+ y = setorientation(img, h);
+ orientation = img->orientation;
+ toskew = -(int32) (orientation == ORIENTATION_TOPLEFT ? tw+w : tw-w);
+ for (row = 0; row < h; row += th) {
+ nrow = (row + th > h ? h - row : th);
+ for (col = 0; col < w; col += tw) {
+ if (TIFFReadTile(tif, buf, col, row, 0, 0) < 0 && img->stoponerr)
+ break;
+ if (col + tw > w) {
+ /*
+ * Tile is clipped horizontally. Calculate
+ * visible portion and skewing factors.
+ */
+ uint32 npix = w - col;
+ fromskew = tw - npix;
+ (*put)(img, raster+y*w+col, col, y,
+ npix, nrow, fromskew, toskew + fromskew, buf);
+ } else {
+ (*put)(img, raster+y*w+col, col, y, tw, nrow, 0, toskew, buf);
+ }
+ }
+ y += (orientation == ORIENTATION_TOPLEFT ?
+ -(int32) nrow : (int32) nrow);
+ }
+ _TIFFfree(buf);
+ return (1);
+}
+
+/*
+ * Get an tile-organized image that has
+ * SamplesPerPixel > 1
+ * PlanarConfiguration separated
+ * We assume that all such images are RGB.
+ */
+static int
+gtTileSeparate(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
+{
+ TIFF* tif = img->tif;
+ tileSeparateRoutine put = img->put.separate;
+ uint16 orientation;
+ uint32 col, row, y;
+ uint32 tw, th;
+ u_char* buf;
+ u_char* r;
+ u_char* g;
+ u_char* b;
+ u_char* a;
+ tsize_t tilesize;
+ int32 fromskew, toskew;
+ int alpha = img->alpha;
+ uint32 nrow;
+
+ tilesize = TIFFTileSize(tif);
+ buf = (u_char*) _TIFFmalloc(4*tilesize);
+ if (buf == 0) {
+ TIFFError(TIFFFileName(tif), "No space for tile buffer");
+ return (0);
+ }
+ r = buf;
+ g = r + tilesize;
+ b = g + tilesize;
+ a = b + tilesize;
+ if (!alpha)
+ memset(a, 0xff, tilesize);
+ TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tw);
+ TIFFGetField(tif, TIFFTAG_TILELENGTH, &th);
+ y = setorientation(img, h);
+ orientation = img->orientation;
+ toskew = -(int32) (orientation == ORIENTATION_TOPLEFT ? tw+w : tw-w);
+ for (row = 0; row < h; row += th) {
+ nrow = (row + th > h ? h - row : th);
+ for (col = 0; col < w; col += tw) {
+ if (TIFFReadTile(tif, r, col, row,0,0) < 0 && img->stoponerr)
+ break;
+ if (TIFFReadTile(tif, g, col, row,0,1) < 0 && img->stoponerr)
+ break;
+ if (TIFFReadTile(tif, b, col, row,0,2) < 0 && img->stoponerr)
+ break;
+ if (alpha && TIFFReadTile(tif,a,col,row,0,3) < 0 && img->stoponerr)
+ break;
+ if (col + tw > w) {
+ /*
+ * Tile is clipped horizontally. Calculate
+ * visible portion and skewing factors.
+ */
+ uint32 npix = w - col;
+ fromskew = tw - npix;
+ (*put)(img, raster+y*w+col, col, y,
+ npix, nrow, fromskew, toskew + fromskew, r, g, b, a);
+ } else {
+ (*put)(img, raster+y*w+col, col, y,
+ tw, nrow, 0, toskew, r, g, b, a);
+ }
+ }
+ y += (orientation == ORIENTATION_TOPLEFT ?
+ -(int32) nrow : (int32) nrow);
+ }
+ _TIFFfree(buf);
+ return (1);
+}
+
+/*
+ * Get a strip-organized image that has
+ * PlanarConfiguration contiguous if SamplesPerPixel > 1
+ * or
+ * SamplesPerPixel == 1
+ */
+static int
+gtStripContig(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
+{
+ TIFF* tif = img->tif;
+ tileContigRoutine put = img->put.contig;
+ uint16 orientation;
+ uint32 row, y, nrow;
+ u_char* buf;
+ uint32 rowsperstrip;
+ uint32 imagewidth = img->width;
+ tsize_t scanline;
+ int32 fromskew, toskew;
+
+ buf = (u_char*) _TIFFmalloc(TIFFStripSize(tif));
+ if (buf == 0) {
+ TIFFError(TIFFFileName(tif), "No space for strip buffer");
+ return (0);
+ }
+ y = setorientation(img, h);
+ orientation = img->orientation;
+ toskew = -(int32) (orientation == ORIENTATION_TOPLEFT ? w+w : w-w);
+ TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip);
+ scanline = TIFFScanlineSize(tif);
+ fromskew = (w < imagewidth ? imagewidth - w : 0);
+ for (row = 0; row < h; row += rowsperstrip) {
+ nrow = (row + rowsperstrip > h ? h - row : rowsperstrip);
+ if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, row, 0),
+ buf, nrow*scanline) < 0 && img->stoponerr)
+ break;
+ (*put)(img, raster+y*w, 0, y, w, nrow, fromskew, toskew, buf);
+ y += (orientation == ORIENTATION_TOPLEFT ?
+ -(int32) nrow : (int32) nrow);
+ }
+ _TIFFfree(buf);
+ return (1);
+}
+
+/*
+ * Get a strip-organized image with
+ * SamplesPerPixel > 1
+ * PlanarConfiguration separated
+ * We assume that all such images are RGB.
+ */
+static int
+gtStripSeparate(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
+{
+ TIFF* tif = img->tif;
+ tileSeparateRoutine put = img->put.separate;
+ uint16 orientation;
+ u_char *buf;
+ u_char *r, *g, *b, *a;
+ uint32 row, y, nrow;
+ tsize_t scanline;
+ uint32 rowsperstrip;
+ uint32 imagewidth = img->width;
+ tsize_t stripsize;
+ int32 fromskew, toskew;
+ int alpha = img->alpha;
+
+ stripsize = TIFFStripSize(tif);
+ r = buf = (u_char *)_TIFFmalloc(4*stripsize);
+ if (buf == 0) {
+ TIFFError(TIFFFileName(tif), "No space for tile buffer");
+ return (0);
+ }
+ g = r + stripsize;
+ b = g + stripsize;
+ a = b + stripsize;
+ if (!alpha)
+ memset(a, 0xff, stripsize);
+ y = setorientation(img, h);
+ orientation = img->orientation;
+ toskew = -(int32) (orientation == ORIENTATION_TOPLEFT ? w+w : w-w);
+ TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip);
+ scanline = TIFFScanlineSize(tif);
+ fromskew = (w < imagewidth ? imagewidth - w : 0);
+ for (row = 0; row < h; row += rowsperstrip) {
+ nrow = (row + rowsperstrip > h ? h - row : rowsperstrip);
+ if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, row, 0),
+ r, nrow*scanline) < 0 && img->stoponerr)
+ break;
+ if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, row, 1),
+ g, nrow*scanline) < 0 && img->stoponerr)
+ break;
+ if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, row, 2),
+ b, nrow*scanline) < 0 && img->stoponerr)
+ break;
+ if (alpha &&
+ (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, row, 3),
+ a, nrow*scanline) < 0 && img->stoponerr))
+ break;
+ (*put)(img, raster+y*w, 0, y, w, nrow, fromskew, toskew, r, g, b, a);
+ y += (orientation == ORIENTATION_TOPLEFT ?
+ -(int32) nrow : (int32) nrow);
+ }
+ _TIFFfree(buf);
+ return (1);
+}
+
+/*
+ * The following routines move decoded data returned
+ * from the TIFF library into rasters filled with packed
+ * ABGR pixels (i.e. suitable for passing to lrecwrite.)
+ *
+ * The routines have been created according to the most
+ * important cases and optimized. pickTileContigCase and
+ * pickTileSeparateCase analyze the parameters and select
+ * the appropriate "put" routine to use.
+ */
+#define REPEAT8(op) REPEAT4(op); REPEAT4(op)
+#define REPEAT4(op) REPEAT2(op); REPEAT2(op)
+#define REPEAT2(op) op; op
+#define CASE8(x,op) \
+ switch (x) { \
+ case 7: op; case 6: op; case 5: op; \
+ case 4: op; case 3: op; case 2: op; \
+ case 1: op; \
+ }
+#define CASE4(x,op) switch (x) { case 3: op; case 2: op; case 1: op; }
+#define NOP
+
+#define UNROLL8(w, op1, op2) { \
+ uint32 _x; \
+ for (_x = w; _x >= 8; _x -= 8) { \
+ op1; \
+ REPEAT8(op2); \
+ } \
+ if (_x > 0) { \
+ op1; \
+ CASE8(_x,op2); \
+ } \
+}
+#define UNROLL4(w, op1, op2) { \
+ uint32 _x; \
+ for (_x = w; _x >= 4; _x -= 4) { \
+ op1; \
+ REPEAT4(op2); \
+ } \
+ if (_x > 0) { \
+ op1; \
+ CASE4(_x,op2); \
+ } \
+}
+#define UNROLL2(w, op1, op2) { \
+ uint32 _x; \
+ for (_x = w; _x >= 2; _x -= 2) { \
+ op1; \
+ REPEAT2(op2); \
+ } \
+ if (_x) { \
+ op1; \
+ op2; \
+ } \
+}
+
+#define SKEW(r,g,b,skew) { r += skew; g += skew; b += skew; }
+#define SKEW4(r,g,b,a,skew) { r += skew; g += skew; b += skew; a+= skew; }
+
+#define A1 ((uint32)(0xffL<<24))
+#define PACK(r,g,b) \
+ ((uint32)(r)|((uint32)(g)<<8)|((uint32)(b)<<16)|A1)
+#define PACK4(r,g,b,a) \
+ ((uint32)(r)|((uint32)(g)<<8)|((uint32)(b)<<16)|((uint32)(a)<<24))
+#define W2B(v) (((v)>>8)&0xff)
+#define PACKW(r,g,b) \
+ ((uint32)W2B(r)|((uint32)W2B(g)<<8)|((uint32)W2B(b)<<16)|A1)
+#define PACKW4(r,g,b,a) \
+ ((uint32)W2B(r)|((uint32)W2B(g)<<8)|((uint32)W2B(b)<<16)|((uint32)W2B(a)<<24))
+
+#define DECLAREContigPutFunc(name) \
+static void name(\
+ TIFFRGBAImage* img, \
+ uint32* cp, \
+ uint32 x, uint32 y, \
+ uint32 w, uint32 h, \
+ int32 fromskew, int32 toskew, \
+ u_char* pp \
+)
+
+/*
+ * 8-bit palette => colormap/RGB
+ */
+DECLAREContigPutFunc(put8bitcmaptile)
+{
+ uint32** PALmap = img->PALmap;
+
+ (void) x; (void) y;
+ while (h-- > 0) {
+ UNROLL8(w, NOP, *cp++ = PALmap[*pp++][0]);
+ cp += toskew;
+ pp += fromskew;
+ }
+}
+
+/*
+ * 4-bit palette => colormap/RGB
+ */
+DECLAREContigPutFunc(put4bitcmaptile)
+{
+ uint32** PALmap = img->PALmap;
+
+ (void) x; (void) y;
+ fromskew /= 2;
+ while (h-- > 0) {
+ uint32* bw;
+ UNROLL2(w, bw = PALmap[*pp++], *cp++ = *bw++);
+ cp += toskew;
+ pp += fromskew;
+ }
+}
+
+/*
+ * 2-bit palette => colormap/RGB
+ */
+DECLAREContigPutFunc(put2bitcmaptile)
+{
+ uint32** PALmap = img->PALmap;
+
+ (void) x; (void) y;
+ fromskew /= 4;
+ while (h-- > 0) {
+ uint32* bw;
+ UNROLL4(w, bw = PALmap[*pp++], *cp++ = *bw++);
+ cp += toskew;
+ pp += fromskew;
+ }
+}
+
+/*
+ * 1-bit palette => colormap/RGB
+ */
+DECLAREContigPutFunc(put1bitcmaptile)
+{
+ uint32** PALmap = img->PALmap;
+
+ (void) x; (void) y;
+ fromskew /= 8;
+ while (h-- > 0) {
+ uint32* bw;
+ UNROLL8(w, bw = PALmap[*pp++], *cp++ = *bw++);
+ cp += toskew;
+ pp += fromskew;
+ }
+}
+
+/*
+ * 8-bit greyscale => colormap/RGB
+ */
+DECLAREContigPutFunc(putgreytile)
+{
+ uint32** BWmap = img->BWmap;
+
+ (void) y;
+ while (h-- > 0) {
+ for (x = w; x-- > 0;)
+ *cp++ = BWmap[*pp++][0];
+ cp += toskew;
+ pp += fromskew;
+ }
+}
+
+/*
+ * 1-bit bilevel => colormap/RGB
+ */
+DECLAREContigPutFunc(put1bitbwtile)
+{
+ uint32** BWmap = img->BWmap;
+
+ (void) x; (void) y;
+ fromskew /= 8;
+ while (h-- > 0) {
+ uint32* bw;
+ UNROLL8(w, bw = BWmap[*pp++], *cp++ = *bw++);
+ cp += toskew;
+ pp += fromskew;
+ }
+}
+
+/*
+ * 2-bit greyscale => colormap/RGB
+ */
+DECLAREContigPutFunc(put2bitbwtile)
+{
+ uint32** BWmap = img->BWmap;
+
+ (void) x; (void) y;
+ fromskew /= 4;
+ while (h-- > 0) {
+ uint32* bw;
+ UNROLL4(w, bw = BWmap[*pp++], *cp++ = *bw++);
+ cp += toskew;
+ pp += fromskew;
+ }
+}
+
+/*
+ * 4-bit greyscale => colormap/RGB
+ */
+DECLAREContigPutFunc(put4bitbwtile)
+{
+ uint32** BWmap = img->BWmap;
+
+ (void) x; (void) y;
+ fromskew /= 2;
+ while (h-- > 0) {
+ uint32* bw;
+ UNROLL2(w, bw = BWmap[*pp++], *cp++ = *bw++);
+ cp += toskew;
+ pp += fromskew;
+ }
+}
+
+/*
+ * 8-bit packed samples, no Map => RGB
+ */
+DECLAREContigPutFunc(putRGBcontig8bittile)
+{
+ int samplesperpixel = img->samplesperpixel;
+
+ (void) x; (void) y;
+ fromskew *= samplesperpixel;
+ while (h-- > 0) {
+ UNROLL8(w, NOP,
+ *cp++ = PACK(pp[0], pp[1], pp[2]);
+ pp += samplesperpixel);
+ cp += toskew;
+ pp += fromskew;
+ }
+}
+
+/*
+ * 8-bit packed samples, w/ Map => RGB
+ */
+DECLAREContigPutFunc(putRGBcontig8bitMaptile)
+{
+ TIFFRGBValue* Map = img->Map;
+ int samplesperpixel = img->samplesperpixel;
+
+ (void) y;
+ fromskew *= samplesperpixel;
+ while (h-- > 0) {
+ for (x = w; x-- > 0;) {
+ *cp++ = PACK(Map[pp[0]], Map[pp[1]], Map[pp[2]]);
+ pp += samplesperpixel;
+ }
+ pp += fromskew;
+ cp += toskew;
+ }
+}
+
+/*
+ * 8-bit packed samples => RGBA w/ associated alpha
+ * (known to have Map == NULL)
+ */
+DECLAREContigPutFunc(putRGBAAcontig8bittile)
+{
+ int samplesperpixel = img->samplesperpixel;
+
+ (void) x; (void) y;
+ fromskew *= samplesperpixel;
+ while (h-- > 0) {
+ UNROLL8(w, NOP,
+ *cp++ = PACK4(pp[0], pp[1], pp[2], pp[3]);
+ pp += samplesperpixel);
+ cp += toskew;
+ pp += fromskew;
+ }
+}
+
+/*
+ * 8-bit packed samples => RGBA w/ unassociated alpha
+ * (known to have Map == NULL)
+ */
+DECLAREContigPutFunc(putRGBUAcontig8bittile)
+{
+ int samplesperpixel = img->samplesperpixel;
+
+ (void) y;
+ fromskew *= samplesperpixel;
+ while (h-- > 0) {
+ uint32 r, g, b, a;
+ for (x = w; x-- > 0;) {
+ a = pp[3];
+ r = (pp[0] * a) / 255;
+ g = (pp[1] * a) / 255;
+ b = (pp[2] * a) / 255;
+ *cp++ = PACK4(r,g,b,a);
+ pp += samplesperpixel;
+ }
+ cp += toskew;
+ pp += fromskew;
+ }
+}
+
+/*
+ * 16-bit packed samples => RGB
+ */
+DECLAREContigPutFunc(putRGBcontig16bittile)
+{
+ int samplesperpixel = img->samplesperpixel;
+ uint16 *wp = (uint16 *)pp;
+
+ (void) y;
+ fromskew *= samplesperpixel;
+ while (h-- > 0) {
+ for (x = w; x-- > 0;) {
+ *cp++ = PACKW(wp[0], wp[1], wp[2]);
+ wp += samplesperpixel;
+ }
+ cp += toskew;
+ wp += fromskew;
+ }
+}
+
+/*
+ * 16-bit packed samples => RGBA w/ associated alpha
+ * (known to have Map == NULL)
+ */
+DECLAREContigPutFunc(putRGBAAcontig16bittile)
+{
+ int samplesperpixel = img->samplesperpixel;
+ uint16 *wp = (uint16 *)pp;
+
+ (void) y;
+ fromskew *= samplesperpixel;
+ while (h-- > 0) {
+ for (x = w; x-- > 0;) {
+ *cp++ = PACKW4(wp[0], wp[1], wp[2], wp[3]);
+ wp += samplesperpixel;
+ }
+ cp += toskew;
+ wp += fromskew;
+ }
+}
+
+/*
+ * 16-bit packed samples => RGBA w/ unassociated alpha
+ * (known to have Map == NULL)
+ */
+DECLAREContigPutFunc(putRGBUAcontig16bittile)
+{
+ int samplesperpixel = img->samplesperpixel;
+ uint16 *wp = (uint16 *)pp;
+
+ (void) y;
+ fromskew *= samplesperpixel;
+ while (h-- > 0) {
+ uint32 r,g,b,a;
+ /*
+ * We shift alpha down four bits just in case unsigned
+ * arithmetic doesn't handle the full range.
+ * We still have plenty of accuracy, since the output is 8 bits.
+ * So we have (r * 0xffff) * (a * 0xfff)) = r*a * (0xffff*0xfff)
+ * Since we want r*a * 0xff for eight bit output,
+ * we divide by (0xffff * 0xfff) / 0xff == 0x10eff.
+ */
+ for (x = w; x-- > 0;) {
+ a = wp[3] >> 4;
+ r = (wp[0] * a) / 0x10eff;
+ g = (wp[1] * a) / 0x10eff;
+ b = (wp[2] * a) / 0x10eff;
+ *cp++ = PACK4(r,g,b,a);
+ wp += samplesperpixel;
+ }
+ cp += toskew;
+ wp += fromskew;
+ }
+}
+
+/*
+ * 8-bit packed CMYK samples w/o Map => RGB
+ *
+ * NB: The conversion of CMYK->RGB is *very* crude.
+ */
+DECLAREContigPutFunc(putRGBcontig8bitCMYKtile)
+{
+ int samplesperpixel = img->samplesperpixel;
+ uint16 r, g, b, k;
+
+ (void) x; (void) y;
+ fromskew *= samplesperpixel;
+ while (h-- > 0) {
+ UNROLL8(w, NOP,
+ k = 255 - pp[3];
+ r = (k*(255-pp[0]))/255;
+ g = (k*(255-pp[1]))/255;
+ b = (k*(255-pp[2]))/255;
+ *cp++ = PACK(r, g, b);
+ pp += samplesperpixel);
+ cp += toskew;
+ pp += fromskew;
+ }
+}
+
+/*
+ * 8-bit packed CMYK samples w/Map => RGB
+ *
+ * NB: The conversion of CMYK->RGB is *very* crude.
+ */
+DECLAREContigPutFunc(putRGBcontig8bitCMYKMaptile)
+{
+ int samplesperpixel = img->samplesperpixel;
+ TIFFRGBValue* Map = img->Map;
+ uint16 r, g, b, k;
+
+ (void) y;
+ fromskew *= samplesperpixel;
+ while (h-- > 0) {
+ for (x = w; x-- > 0;) {
+ k = 255 - pp[3];
+ r = (k*(255-pp[0]))/255;
+ g = (k*(255-pp[1]))/255;
+ b = (k*(255-pp[2]))/255;
+ *cp++ = PACK(Map[r], Map[g], Map[b]);
+ pp += samplesperpixel;
+ }
+ pp += fromskew;
+ cp += toskew;
+ }
+}
+
+#define DECLARESepPutFunc(name) \
+static void name(\
+ TIFFRGBAImage* img,\
+ uint32* cp,\
+ uint32 x, uint32 y, \
+ uint32 w, uint32 h,\
+ int32 fromskew, int32 toskew,\
+ u_char* r, u_char* g, u_char* b, u_char* a\
+)
+
+/*
+ * 8-bit unpacked samples => RGB
+ */
+DECLARESepPutFunc(putRGBseparate8bittile)
+{
+ (void) img; (void) x; (void) y; (void) a;
+ while (h-- > 0) {
+ UNROLL8(w, NOP, *cp++ = PACK(*r++, *g++, *b++));
+ SKEW(r, g, b, fromskew);
+ cp += toskew;
+ }
+}
+
+/*
+ * 8-bit unpacked samples => RGB
+ */
+DECLARESepPutFunc(putRGBseparate8bitMaptile)
+{
+ TIFFRGBValue* Map = img->Map;
+
+ (void) y; (void) a;
+ while (h-- > 0) {
+ for (x = w; x > 0; x--)
+ *cp++ = PACK(Map[*r++], Map[*g++], Map[*b++]);
+ SKEW(r, g, b, fromskew);
+ cp += toskew;
+ }
+}
+
+/*
+ * 8-bit unpacked samples => RGBA w/ associated alpha
+ */
+DECLARESepPutFunc(putRGBAAseparate8bittile)
+{
+ (void) img; (void) x; (void) y;
+ while (h-- > 0) {
+ UNROLL8(w, NOP, *cp++ = PACK4(*r++, *g++, *b++, *a++));
+ SKEW4(r, g, b, a, fromskew);
+ cp += toskew;
+ }
+}
+
+/*
+ * 8-bit unpacked samples => RGBA w/ unassociated alpha
+ */
+DECLARESepPutFunc(putRGBUAseparate8bittile)
+{
+ (void) img; (void) y;
+ while (h-- > 0) {
+ uint32 rv, gv, bv, av;
+ for (x = w; x-- > 0;) {
+ av = *a++;
+ rv = (*r++ * av) / 255;
+ gv = (*g++ * av) / 255;
+ bv = (*b++ * av) / 255;
+ *cp++ = PACK4(rv,gv,bv,av);
+ }
+ SKEW4(r, g, b, a, fromskew);
+ cp += toskew;
+ }
+}
+
+/*
+ * 16-bit unpacked samples => RGB
+ */
+DECLARESepPutFunc(putRGBseparate16bittile)
+{
+ uint16 *wr = (uint16*) r;
+ uint16 *wg = (uint16*) g;
+ uint16 *wb = (uint16*) b;
+
+ (void) img; (void) y; (void) a;
+ while (h-- > 0) {
+ for (x = 0; x < w; x++)
+ *cp++ = PACKW(*wr++, *wg++, *wb++);
+ SKEW(wr, wg, wb, fromskew);
+ cp += toskew;
+ }
+}
+
+/*
+ * 16-bit unpacked samples => RGBA w/ associated alpha
+ */
+DECLARESepPutFunc(putRGBAAseparate16bittile)
+{
+ uint16 *wr = (uint16*) r;
+ uint16 *wg = (uint16*) g;
+ uint16 *wb = (uint16*) b;
+ uint16 *wa = (uint16*) a;
+
+ (void) img; (void) y;
+ while (h-- > 0) {
+ for (x = 0; x < w; x++)
+ *cp++ = PACKW4(*wr++, *wg++, *wb++, *wa++);
+ SKEW4(wr, wg, wb, wa, fromskew);
+ cp += toskew;
+ }
+}
+
+/*
+ * 16-bit unpacked samples => RGBA w/ unassociated alpha
+ */
+DECLARESepPutFunc(putRGBUAseparate16bittile)
+{
+ uint16 *wr = (uint16*) r;
+ uint16 *wg = (uint16*) g;
+ uint16 *wb = (uint16*) b;
+ uint16 *wa = (uint16*) a;
+
+ (void) img; (void) y;
+ while (h-- > 0) {
+ uint32 r,g,b,a;
+ /*
+ * We shift alpha down four bits just in case unsigned
+ * arithmetic doesn't handle the full range.
+ * We still have plenty of accuracy, since the output is 8 bits.
+ * So we have (r * 0xffff) * (a * 0xfff)) = r*a * (0xffff*0xfff)
+ * Since we want r*a * 0xff for eight bit output,
+ * we divide by (0xffff * 0xfff) / 0xff == 0x10eff.
+ */
+ for (x = w; x-- > 0;) {
+ a = *wa++ >> 4;
+ r = (*wr++ * a) / 0x10eff;
+ g = (*wg++ * a) / 0x10eff;
+ b = (*wb++ * a) / 0x10eff;
+ *cp++ = PACK4(r,g,b,a);
+ }
+ SKEW4(wr, wg, wb, wa, fromskew);
+ cp += toskew;
+ }
+}
+
+/*
+ * YCbCr -> RGB conversion and packing routines. The colorspace
+ * conversion algorithm comes from the IJG v5a code; see below
+ * for more information on how it works.
+ */
+
+#define YCbCrtoRGB(dst, yc) { \
+ int Y = (yc); \
+ dst = PACK( \
+ clamptab[Y+Crrtab[Cr]], \
+ clamptab[Y + (int)((Cbgtab[Cb]+Crgtab[Cr])>>16)], \
+ clamptab[Y+Cbbtab[Cb]]); \
+}
+#define YCbCrSetup \
+ TIFFYCbCrToRGB* ycbcr = img->ycbcr; \
+ int* Crrtab = ycbcr->Cr_r_tab; \
+ int* Cbbtab = ycbcr->Cb_b_tab; \
+ int32* Crgtab = ycbcr->Cr_g_tab; \
+ int32* Cbgtab = ycbcr->Cb_g_tab; \
+ TIFFRGBValue* clamptab = ycbcr->clamptab
+
+/*
+ * 8-bit packed YCbCr samples w/ 4,4 subsampling => RGB
+ */
+DECLAREContigPutFunc(putcontig8bitYCbCr44tile)
+{
+ YCbCrSetup;
+ uint32* cp1 = cp+w+toskew;
+ uint32* cp2 = cp1+w+toskew;
+ uint32* cp3 = cp2+w+toskew;
+ int32 incr = 3*w+4*toskew;
+
+ (void) y;
+ /* XXX adjust fromskew */
+ for (; h >= 4; h -= 4) {
+ x = w>>2;
+ do {
+ int Cb = pp[16];
+ int Cr = pp[17];
+
+ YCbCrtoRGB(cp [0], pp[ 0]);
+ YCbCrtoRGB(cp [1], pp[ 1]);
+ YCbCrtoRGB(cp [2], pp[ 2]);
+ YCbCrtoRGB(cp [3], pp[ 3]);
+ YCbCrtoRGB(cp1[0], pp[ 4]);
+ YCbCrtoRGB(cp1[1], pp[ 5]);
+ YCbCrtoRGB(cp1[2], pp[ 6]);
+ YCbCrtoRGB(cp1[3], pp[ 7]);
+ YCbCrtoRGB(cp2[0], pp[ 8]);
+ YCbCrtoRGB(cp2[1], pp[ 9]);
+ YCbCrtoRGB(cp2[2], pp[10]);
+ YCbCrtoRGB(cp2[3], pp[11]);
+ YCbCrtoRGB(cp3[0], pp[12]);
+ YCbCrtoRGB(cp3[1], pp[13]);
+ YCbCrtoRGB(cp3[2], pp[14]);
+ YCbCrtoRGB(cp3[3], pp[15]);
+
+ cp += 4, cp1 += 4, cp2 += 4, cp3 += 4;
+ pp += 18;
+ } while (--x);
+ cp += incr, cp1 += incr, cp2 += incr, cp3 += incr;
+ pp += fromskew;
+ }
+}
+
+/*
+ * 8-bit packed YCbCr samples w/ 4,2 subsampling => RGB
+ */
+DECLAREContigPutFunc(putcontig8bitYCbCr42tile)
+{
+ YCbCrSetup;
+ uint32* cp1 = cp+w+toskew;
+ int32 incr = 2*toskew+w;
+
+ (void) y;
+ /* XXX adjust fromskew */
+ for (; h >= 2; h -= 2) {
+ x = w>>2;
+ do {
+ int Cb = pp[8];
+ int Cr = pp[9];
+
+ YCbCrtoRGB(cp [0], pp[0]);
+ YCbCrtoRGB(cp [1], pp[1]);
+ YCbCrtoRGB(cp [2], pp[2]);
+ YCbCrtoRGB(cp [3], pp[3]);
+ YCbCrtoRGB(cp1[0], pp[4]);
+ YCbCrtoRGB(cp1[1], pp[5]);
+ YCbCrtoRGB(cp1[2], pp[6]);
+ YCbCrtoRGB(cp1[3], pp[7]);
+
+ cp += 4, cp1 += 4;
+ pp += 10;
+ } while (--x);
+ cp += incr, cp1 += incr;
+ pp += fromskew;
+ }
+}
+
+/*
+ * 8-bit packed YCbCr samples w/ 4,1 subsampling => RGB
+ */
+DECLAREContigPutFunc(putcontig8bitYCbCr41tile)
+{
+ YCbCrSetup;
+
+ (void) y;
+ /* XXX adjust fromskew */
+ do {
+ x = w>>2;
+ do {
+ int Cb = pp[4];
+ int Cr = pp[5];
+
+ YCbCrtoRGB(cp [0], pp[0]);
+ YCbCrtoRGB(cp [1], pp[1]);
+ YCbCrtoRGB(cp [2], pp[2]);
+ YCbCrtoRGB(cp [3], pp[3]);
+
+ cp += 4;
+ pp += 6;
+ } while (--x);
+ cp += toskew;
+ pp += fromskew;
+ } while (--h);
+}
+
+/*
+ * 8-bit packed YCbCr samples w/ 2,2 subsampling => RGB
+ */
+DECLAREContigPutFunc(putcontig8bitYCbCr22tile)
+{
+ YCbCrSetup;
+ uint32* cp1 = cp+w+toskew;
+ int32 incr = 2*toskew+w;
+
+ (void) y;
+ /* XXX adjust fromskew */
+ for (; h >= 2; h -= 2) {
+ x = w>>1;
+ do {
+ int Cb = pp[4];
+ int Cr = pp[5];
+
+ YCbCrtoRGB(cp [0], pp[0]);
+ YCbCrtoRGB(cp [1], pp[1]);
+ YCbCrtoRGB(cp1[0], pp[2]);
+ YCbCrtoRGB(cp1[1], pp[3]);
+
+ cp += 2, cp1 += 2;
+ pp += 6;
+ } while (--x);
+ cp += incr, cp1 += incr;
+ pp += fromskew;
+ }
+}
+
+/*
+ * 8-bit packed YCbCr samples w/ 2,1 subsampling => RGB
+ */
+DECLAREContigPutFunc(putcontig8bitYCbCr21tile)
+{
+ YCbCrSetup;
+
+ (void) y;
+ /* XXX adjust fromskew */
+ do {
+ x = w>>1;
+ do {
+ int Cb = pp[2];
+ int Cr = pp[3];
+
+ YCbCrtoRGB(cp[0], pp[0]);
+ YCbCrtoRGB(cp[1], pp[1]);
+
+ cp += 2;
+ pp += 4;
+ } while (--x);
+ cp += toskew;
+ pp += fromskew;
+ } while (--h);
+}
+
+/*
+ * 8-bit packed YCbCr samples w/ no subsampling => RGB
+ */
+DECLAREContigPutFunc(putcontig8bitYCbCr11tile)
+{
+ YCbCrSetup;
+
+ (void) y;
+ /* XXX adjust fromskew */
+ do {
+ x = w>>1;
+ do {
+ int Cb = pp[1];
+ int Cr = pp[2];
+
+ YCbCrtoRGB(*cp++, pp[0]);
+
+ pp += 3;
+ } while (--x);
+ cp += toskew;
+ pp += fromskew;
+ } while (--h);
+}
+#undef YCbCrSetup
+#undef YCbCrtoRGB
+
+#define LumaRed coeffs[0]
+#define LumaGreen coeffs[1]
+#define LumaBlue coeffs[2]
+#define SHIFT 16
+#define FIX(x) ((int32)((x) * (1L<<SHIFT) + 0.5))
+#define ONE_HALF ((int32)(1<<(SHIFT-1)))
+
+/*
+ * Initialize the YCbCr->RGB conversion tables. The conversion
+ * is done according to the 6.0 spec:
+ *
+ * R = Y + Cr*(2 - 2*LumaRed)
+ * B = Y + Cb*(2 - 2*LumaBlue)
+ * G = Y
+ * - LumaBlue*Cb*(2-2*LumaBlue)/LumaGreen
+ * - LumaRed*Cr*(2-2*LumaRed)/LumaGreen
+ *
+ * To avoid floating point arithmetic the fractional constants that
+ * come out of the equations are represented as fixed point values
+ * in the range 0...2^16. We also eliminate multiplications by
+ * pre-calculating possible values indexed by Cb and Cr (this code
+ * assumes conversion is being done for 8-bit samples).
+ */
+static void
+TIFFYCbCrToRGBInit(TIFFYCbCrToRGB* ycbcr, TIFF* tif)
+{
+ TIFFRGBValue* clamptab;
+ float* coeffs;
+ int i;
+
+ clamptab = (TIFFRGBValue*)(
+ (tidata_t) ycbcr+TIFFroundup(sizeof (TIFFYCbCrToRGB), sizeof (long)));
+ _TIFFmemset(clamptab, 0, 256); /* v < 0 => 0 */
+ ycbcr->clamptab = (clamptab += 256);
+ for (i = 0; i < 256; i++)
+ clamptab[i] = i;
+ _TIFFmemset(clamptab+256, 255, 2*256); /* v > 255 => 255 */
+ TIFFGetFieldDefaulted(tif, TIFFTAG_YCBCRCOEFFICIENTS, &coeffs);
+ _TIFFmemcpy(ycbcr->coeffs, coeffs, 3*sizeof (float));
+ { float f1 = 2-2*LumaRed; int32 D1 = FIX(f1);
+ float f2 = LumaRed*f1/LumaGreen; int32 D2 = -FIX(f2);
+ float f3 = 2-2*LumaBlue; int32 D3 = FIX(f3);
+ float f4 = LumaBlue*f3/LumaGreen; int32 D4 = -FIX(f4);
+ int x;
+
+ ycbcr->Cr_r_tab = (int*) (clamptab + 3*256);
+ ycbcr->Cb_b_tab = ycbcr->Cr_r_tab + 256;
+ ycbcr->Cr_g_tab = (int32*) (ycbcr->Cb_b_tab + 256);
+ ycbcr->Cb_g_tab = ycbcr->Cr_g_tab + 256;
+ /*
+ * i is the actual input pixel value in the range 0..255
+ * Cb and Cr values are in the range -128..127 (actually
+ * they are in a range defined by the ReferenceBlackWhite
+ * tag) so there is some range shifting to do here when
+ * constructing tables indexed by the raw pixel data.
+ *
+ * XXX handle ReferenceBlackWhite correctly to calculate
+ * Cb/Cr values to use in constructing the tables.
+ */
+ for (i = 0, x = -128; i < 256; i++, x++) {
+ ycbcr->Cr_r_tab[i] = (int)((D1*x + ONE_HALF)>>SHIFT);
+ ycbcr->Cb_b_tab[i] = (int)((D3*x + ONE_HALF)>>SHIFT);
+ ycbcr->Cr_g_tab[i] = D2*x;
+ ycbcr->Cb_g_tab[i] = D4*x + ONE_HALF;
+ }
+ }
+}
+#undef SHIFT
+#undef ONE_HALF
+#undef FIX
+#undef LumaBlue
+#undef LumaGreen
+#undef LumaRed
+
+static tileContigRoutine
+initYCbCrConversion(TIFFRGBAImage* img)
+{
+ uint16 hs, vs;
+
+ if (img->ycbcr == NULL) {
+ img->ycbcr = (TIFFYCbCrToRGB*) _TIFFmalloc(
+ TIFFroundup(sizeof (TIFFYCbCrToRGB), sizeof (long))
+ + 4*256*sizeof (TIFFRGBValue)
+ + 2*256*sizeof (int)
+ + 2*256*sizeof (int32)
+ );
+ if (img->ycbcr == NULL) {
+ TIFFError(TIFFFileName(img->tif),
+ "No space for YCbCr->RGB conversion state");
+ return (NULL);
+ }
+ TIFFYCbCrToRGBInit(img->ycbcr, img->tif);
+ } else {
+ float* coeffs;
+
+ TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRCOEFFICIENTS, &coeffs);
+ if (_TIFFmemcmp(coeffs, img->ycbcr->coeffs, 3*sizeof (float)) != 0)
+ TIFFYCbCrToRGBInit(img->ycbcr, img->tif);
+ }
+ /*
+ * The 6.0 spec says that subsampling must be
+ * one of 1, 2, or 4, and that vertical subsampling
+ * must always be <= horizontal subsampling; so
+ * there are only a few possibilities and we just
+ * enumerate the cases.
+ */
+ TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRSUBSAMPLING, &hs, &vs);
+ switch ((hs<<4)|vs) {
+ case 0x44: return (putcontig8bitYCbCr44tile);
+ case 0x42: return (putcontig8bitYCbCr42tile);
+ case 0x41: return (putcontig8bitYCbCr41tile);
+ case 0x22: return (putcontig8bitYCbCr22tile);
+ case 0x21: return (putcontig8bitYCbCr21tile);
+ case 0x11: return (putcontig8bitYCbCr11tile);
+ }
+ return (NULL);
+}
+
+/*
+ * Greyscale images with less than 8 bits/sample are handled
+ * with a table to avoid lots of shifts and masks. The table
+ * is setup so that put*bwtile (below) can retrieve 8/bitspersample
+ * pixel values simply by indexing into the table with one
+ * number.
+ */
+static int
+makebwmap(TIFFRGBAImage* img)
+{
+ TIFFRGBValue* Map = img->Map;
+ int bitspersample = img->bitspersample;
+ int nsamples = 8 / bitspersample;
+ int i;
+ uint32* p;
+
+ img->BWmap = (uint32**) _TIFFmalloc(
+ 256*sizeof (uint32 *)+(256*nsamples*sizeof(uint32)));
+ if (img->BWmap == NULL) {
+ TIFFError(TIFFFileName(img->tif), "No space for B&W mapping table");
+ return (0);
+ }
+ p = (uint32*)(img->BWmap + 256);
+ for (i = 0; i < 256; i++) {
+ TIFFRGBValue c;
+ img->BWmap[i] = p;
+ switch (bitspersample) {
+#define GREY(x) c = Map[x]; *p++ = PACK(c,c,c);
+ case 1:
+ GREY(i>>7);
+ GREY((i>>6)&1);
+ GREY((i>>5)&1);
+ GREY((i>>4)&1);
+ GREY((i>>3)&1);
+ GREY((i>>2)&1);
+ GREY((i>>1)&1);
+ GREY(i&1);
+ break;
+ case 2:
+ GREY(i>>6);
+ GREY((i>>4)&3);
+ GREY((i>>2)&3);
+ GREY(i&3);
+ break;
+ case 4:
+ GREY(i>>4);
+ GREY(i&0xf);
+ break;
+ case 8:
+ GREY(i);
+ break;
+ }
+#undef GREY
+ }
+ return (1);
+}
+
+/*
+ * Construct a mapping table to convert from the range
+ * of the data samples to [0,255] --for display. This
+ * process also handles inverting B&W images when needed.
+ */
+static int
+setupMap(TIFFRGBAImage* img)
+{
+ int32 x, range;
+
+ range = (int32)((1L<<img->bitspersample)-1);
+ img->Map = (TIFFRGBValue*) _TIFFmalloc((range+1) * sizeof (TIFFRGBValue));
+ if (img->Map == NULL) {
+ TIFFError(TIFFFileName(img->tif),
+ "No space for photometric conversion table");
+ return (0);
+ }
+ if (img->photometric == PHOTOMETRIC_MINISWHITE) {
+ for (x = 0; x <= range; x++)
+ img->Map[x] = ((range - x) * 255) / range;
+ } else {
+ for (x = 0; x <= range; x++)
+ img->Map[x] = (x * 255) / range;
+ }
+ if (img->bitspersample <= 8 &&
+ (img->photometric == PHOTOMETRIC_MINISBLACK ||
+ img->photometric == PHOTOMETRIC_MINISWHITE)) {
+ /*
+ * Use photometric mapping table to construct
+ * unpacking tables for samples <= 8 bits.
+ */
+ if (!makebwmap(img))
+ return (0);
+ /* no longer need Map, free it */
+ _TIFFfree(img->Map), img->Map = NULL;
+ }
+ return (1);
+}
+
+static int
+checkcmap(TIFFRGBAImage* img)
+{
+ uint16* r = img->redcmap;
+ uint16* g = img->greencmap;
+ uint16* b = img->bluecmap;
+ long n = 1L<<img->bitspersample;
+
+ while (n-- > 0)
+ if (*r++ >= 256 || *g++ >= 256 || *b++ >= 256)
+ return (16);
+ return (8);
+}
+
+static void
+cvtcmap(TIFFRGBAImage* img)
+{
+ uint16* r = img->redcmap;
+ uint16* g = img->greencmap;
+ uint16* b = img->bluecmap;
+ long i;
+
+ for (i = (1L<<img->bitspersample)-1; i >= 0; i--) {
+#define CVT(x) ((uint16)((x)>>8))
+ r[i] = CVT(r[i]);
+ g[i] = CVT(g[i]);
+ b[i] = CVT(b[i]);
+#undef CVT
+ }
+}
+
+/*
+ * Palette images with <= 8 bits/sample are handled
+ * with a table to avoid lots of shifts and masks. The table
+ * is setup so that put*cmaptile (below) can retrieve 8/bitspersample
+ * pixel values simply by indexing into the table with one
+ * number.
+ */
+static int
+makecmap(TIFFRGBAImage* img)
+{
+ int bitspersample = img->bitspersample;
+ int nsamples = 8 / bitspersample;
+ uint16* r = img->redcmap;
+ uint16* g = img->greencmap;
+ uint16* b = img->bluecmap;
+ uint32 *p;
+ int i;
+
+ img->PALmap = (uint32**) _TIFFmalloc(
+ 256*sizeof (uint32 *)+(256*nsamples*sizeof(uint32)));
+ if (img->PALmap == NULL) {
+ TIFFError(TIFFFileName(img->tif), "No space for Palette mapping table");
+ return (0);
+ }
+ p = (uint32*)(img->PALmap + 256);
+ for (i = 0; i < 256; i++) {
+ TIFFRGBValue c;
+ img->PALmap[i] = p;
+#define CMAP(x) c = x; *p++ = PACK(r[c]&0xff, g[c]&0xff, b[c]&0xff);
+ switch (bitspersample) {
+ case 1:
+ CMAP(i>>7);
+ CMAP((i>>6)&1);
+ CMAP((i>>5)&1);
+ CMAP((i>>4)&1);
+ CMAP((i>>3)&1);
+ CMAP((i>>2)&1);
+ CMAP((i>>1)&1);
+ CMAP(i&1);
+ break;
+ case 2:
+ CMAP(i>>6);
+ CMAP((i>>4)&3);
+ CMAP((i>>2)&3);
+ CMAP(i&3);
+ break;
+ case 4:
+ CMAP(i>>4);
+ CMAP(i&0xf);
+ break;
+ case 8:
+ CMAP(i);
+ break;
+ }
+#undef CMAP
+ }
+ return (1);
+}
+
+/*
+ * Construct any mapping table used
+ * by the associated put routine.
+ */
+static int
+buildMap(TIFFRGBAImage* img)
+{
+ switch (img->photometric) {
+ case PHOTOMETRIC_RGB:
+ case PHOTOMETRIC_YCBCR:
+ case PHOTOMETRIC_SEPARATED:
+ if (img->bitspersample == 8)
+ break;
+ /* fall thru... */
+ case PHOTOMETRIC_MINISBLACK:
+ case PHOTOMETRIC_MINISWHITE:
+ if (!setupMap(img))
+ return (0);
+ break;
+ case PHOTOMETRIC_PALETTE:
+ /*
+ * Convert 16-bit colormap to 8-bit (unless it looks
+ * like an old-style 8-bit colormap).
+ */
+ if (checkcmap(img) == 16)
+ cvtcmap(img);
+ else
+ TIFFWarning(TIFFFileName(img->tif), "Assuming 8-bit colormap");
+ /*
+ * Use mapping table and colormap to construct
+ * unpacking tables for samples < 8 bits.
+ */
+ if (img->bitspersample <= 8 && !makecmap(img))
+ return (0);
+ break;
+ }
+ return (1);
+}
+
+/*
+ * Select the appropriate conversion routine for packed data.
+ */
+static int
+pickTileContigCase(TIFFRGBAImage* img)
+{
+ tileContigRoutine put = 0;
+
+ if (buildMap(img)) {
+ switch (img->photometric) {
+ case PHOTOMETRIC_RGB:
+ switch (img->bitspersample) {
+ case 8:
+ if (!img->Map) {
+ if (img->alpha == EXTRASAMPLE_ASSOCALPHA)
+ put = putRGBAAcontig8bittile;
+ else if (img->alpha == EXTRASAMPLE_UNASSALPHA)
+ put = putRGBUAcontig8bittile;
+ else
+ put = putRGBcontig8bittile;
+ } else
+ put = putRGBcontig8bitMaptile;
+ break;
+ case 16:
+ put = putRGBcontig16bittile;
+ if (!img->Map) {
+ if (img->alpha == EXTRASAMPLE_ASSOCALPHA)
+ put = putRGBAAcontig16bittile;
+ else if (img->alpha == EXTRASAMPLE_UNASSALPHA)
+ put = putRGBUAcontig16bittile;
+ }
+ break;
+ }
+ break;
+ case PHOTOMETRIC_SEPARATED:
+ if (img->bitspersample == 8) {
+ if (!img->Map)
+ put = putRGBcontig8bitCMYKtile;
+ else
+ put = putRGBcontig8bitCMYKMaptile;
+ }
+ break;
+ case PHOTOMETRIC_PALETTE:
+ switch (img->bitspersample) {
+ case 8: put = put8bitcmaptile; break;
+ case 4: put = put4bitcmaptile; break;
+ case 2: put = put2bitcmaptile; break;
+ case 1: put = put1bitcmaptile; break;
+ }
+ break;
+ case PHOTOMETRIC_MINISWHITE:
+ case PHOTOMETRIC_MINISBLACK:
+ switch (img->bitspersample) {
+ case 8: put = putgreytile; break;
+ case 4: put = put4bitbwtile; break;
+ case 2: put = put2bitbwtile; break;
+ case 1: put = put1bitbwtile; break;
+ }
+ break;
+ case PHOTOMETRIC_YCBCR:
+ if (img->bitspersample == 8)
+ put = initYCbCrConversion(img);
+ break;
+ }
+ }
+ return ((img->put.contig = put) != 0);
+}
+
+/*
+ * Select the appropriate conversion routine for unpacked data.
+ *
+ * NB: we assume that unpacked single channel data is directed
+ * to the "packed routines.
+ */
+static int
+pickTileSeparateCase(TIFFRGBAImage* img)
+{
+ tileSeparateRoutine put = 0;
+
+ if (buildMap(img)) {
+ switch (img->photometric) {
+ case PHOTOMETRIC_RGB:
+ switch (img->bitspersample) {
+ case 8:
+ if (!img->Map) {
+ if (img->alpha == EXTRASAMPLE_ASSOCALPHA)
+ put = putRGBAAseparate8bittile;
+ else if (img->alpha == EXTRASAMPLE_UNASSALPHA)
+ put = putRGBUAseparate8bittile;
+ else
+ put = putRGBseparate8bittile;
+ } else
+ put = putRGBseparate8bitMaptile;
+ break;
+ case 16:
+ put = putRGBseparate16bittile;
+ if (!img->Map) {
+ if (img->alpha == EXTRASAMPLE_ASSOCALPHA)
+ put = putRGBAAseparate16bittile;
+ else if (img->alpha == EXTRASAMPLE_UNASSALPHA)
+ put = putRGBUAseparate16bittile;
+ }
+ break;
+ }
+ break;
+ }
+ }
+ return ((img->put.separate = put) != 0);
+}