/* * windows backend for libusb 1.0 * Copyright (c) 2009-2010 Pete Batard * With contributions from Michael Plante, Orin Eman et al. * Parts of this code adapted from libusb-win32-v1 by Stephan Meyer * Major code testing contribution by Xiaofan Chen * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ // COMPILATION OPTIONS: // - Use HidD_(G/S)et(In/Out)putReport instead of (Read/Write)File for HID // Note that http://msdn.microsoft.com/en-us/library/ms789883.aspx: // "In addition, some devices might not support HidD_GetInputReport, // and will become unresponsive if this routine is used." // => Don't blame libusb if you can't read or write HID reports when the // option below is enabled. #define USE_HIDD_FOR_REPORTS // - Should libusb automatically claim (and release) the interfaces it requires? #define AUTO_CLAIM // - Forces instant overlapped completion on timeouts: can prevents extensive // wait in poll, after a timeout, but might affect subsequent API calls. // ***USE AT YOUR OWN RISKS*** //#define FORCE_INSTANT_TIMEOUTS #include #include #include #include #include #include #include #include #include #include // for string to GUID conv. requires libole32.a #include #include "poll_windows.h" #include "windows_usb.h" // The following prevents "banned API" errors when using the MS's WDK OACR/Prefast #if defined(_PREFAST_) #pragma warning(disable:28719) #endif // The 2 macros below are used in conjunction with safe loops. #define LOOP_CHECK(fcall) { r=fcall; if (r != LIBUSB_SUCCESS) continue; } #define LOOP_BREAK(err) { r=err; continue; } extern void usbi_fd_notification(struct libusb_context *ctx); // Helper prototypes static int windows_get_active_config_descriptor(struct libusb_device *dev, unsigned char *buffer, size_t len, int *host_endian); static int windows_clock_gettime(int clk_id, struct timespec *tp); unsigned __stdcall windows_clock_gettime_threaded(void* param); // WinUSB API prototypes static int winusb_init(struct libusb_context *ctx); static int winusb_exit(void); static int winusb_open(struct libusb_device_handle *dev_handle); static void winusb_close(struct libusb_device_handle *dev_handle); static int winusb_claim_interface(struct libusb_device_handle *dev_handle, int iface); static int winusb_release_interface(struct libusb_device_handle *dev_handle, int iface); static int winusb_submit_control_transfer(struct usbi_transfer *itransfer); static int winusb_set_interface_altsetting(struct libusb_device_handle *dev_handle, int iface, int altsetting); static int winusb_submit_bulk_transfer(struct usbi_transfer *itransfer); static int winusb_clear_halt(struct libusb_device_handle *dev_handle, unsigned char endpoint); static int winusb_abort_transfers(struct usbi_transfer *itransfer); static int winusb_abort_control(struct usbi_transfer *itransfer); static int winusb_reset_device(struct libusb_device_handle *dev_handle); static int winusb_copy_transfer_data(struct usbi_transfer *itransfer, uint32_t io_size); // HID API prototypes static int hid_init(struct libusb_context *ctx); static int hid_exit(void); static int hid_open(struct libusb_device_handle *dev_handle); static void hid_close(struct libusb_device_handle *dev_handle); static int hid_claim_interface(struct libusb_device_handle *dev_handle, int iface); static int hid_release_interface(struct libusb_device_handle *dev_handle, int iface); static int hid_set_interface_altsetting(struct libusb_device_handle *dev_handle, int iface, int altsetting); static int hid_submit_control_transfer(struct usbi_transfer *itransfer); static int hid_submit_bulk_transfer(struct usbi_transfer *itransfer); static int hid_clear_halt(struct libusb_device_handle *dev_handle, unsigned char endpoint); static int hid_abort_transfers(struct usbi_transfer *itransfer); static int hid_reset_device(struct libusb_device_handle *dev_handle); static int hid_copy_transfer_data(struct usbi_transfer *itransfer, uint32_t io_size); // Composite API prototypes static int composite_init(struct libusb_context *ctx); static int composite_exit(void); static int composite_open(struct libusb_device_handle *dev_handle); static void composite_close(struct libusb_device_handle *dev_handle); static int composite_claim_interface(struct libusb_device_handle *dev_handle, int iface); static int composite_set_interface_altsetting(struct libusb_device_handle *dev_handle, int iface, int altsetting); static int composite_release_interface(struct libusb_device_handle *dev_handle, int iface); static int composite_submit_control_transfer(struct usbi_transfer *itransfer); static int composite_submit_bulk_transfer(struct usbi_transfer *itransfer); static int composite_submit_iso_transfer(struct usbi_transfer *itransfer); static int composite_clear_halt(struct libusb_device_handle *dev_handle, unsigned char endpoint); static int composite_abort_transfers(struct usbi_transfer *itransfer); static int composite_abort_control(struct usbi_transfer *itransfer); static int composite_reset_device(struct libusb_device_handle *dev_handle); static int composite_copy_transfer_data(struct usbi_transfer *itransfer, uint32_t io_size); // Workaround for MinGW-w64 multilib bug #if defined(_MSC_VER) || defined(_WIN64) #define INIT_INTERLOCKEDEXCHANGE #define INIT_INTERLOCKEDINCREMENT #define pInterlockedExchange InterlockedExchange #define pInterlockedIncrement InterlockedIncrement #else static LONG (WINAPI *pInterlockedExchange)(LONG volatile *, LONG) = NULL; #define INIT_INTERLOCKEDEXCHANGE if (pInterlockedExchange == NULL) { \ pInterlockedExchange = (LONG (WINAPI *)(LONG volatile *, LONG)) \ GetProcAddress(GetModuleHandle("KERNEL32"), "InterlockedExchange"); \ if (pInterlockedExchange == NULL) { \ usbi_err(NULL, "InterlockedExchange is unavailable"); \ return 1; \ } \ } static LONG (WINAPI *pInterlockedIncrement)(LONG volatile *) = NULL; #define INIT_INTERLOCKEDINCREMENT if (pInterlockedIncrement == NULL) { \ pInterlockedIncrement = (LONG (WINAPI *)(LONG volatile *)) \ GetProcAddress(GetModuleHandle("KERNEL32"), "InterlockedIncrement");\ if (pInterlockedIncrement == NULL) { \ usbi_err(NULL, "IInterlockedIncrement is unavailable"); \ return LIBUSB_ERROR_NOT_FOUND; \ } \ } #endif // Global variables struct windows_hcd_priv* hcd_root = NULL; uint64_t hires_frequency, hires_ticks_to_ps; const uint64_t epoch_time = UINT64_C(116444736000000000); // 1970.01.01 00:00:000 in MS Filetime enum windows_version windows_version = WINDOWS_UNSUPPORTED; // Concurrency static int concurrent_usage = -1; #if defined(AUTO_CLAIM) usbi_mutex_t autoclaim_lock; #endif // Timer thread // NB: index 0 is for monotonic and 1 is for the thread exit event HANDLE timer_thread = NULL; HANDLE timer_mutex = NULL; struct timespec timer_tp; volatile LONG request_count[2] = {0, 1}; // last one must be > 0 HANDLE timer_request[2] = { NULL, NULL }; HANDLE timer_response = NULL; // API globals bool api_winusb_available = false; #define CHECK_WINUSB_AVAILABLE do { if (!api_winusb_available) return LIBUSB_ERROR_ACCESS; } while (0) bool api_hid_available = false; #define CHECK_HID_AVAILABLE do { if (!api_hid_available) return LIBUSB_ERROR_ACCESS; } while (0) /* * Converts a WCHAR string to UTF8 (allocate returned string) * Returns NULL on error */ static char* wchar_to_utf8(LPCWSTR wstr) { int size; char* str; // Find out the size we need to allocate for our converted string size = wchar_to_utf8_ms(wstr, NULL, 0); if (size <= 1) // An empty string would be size 1 return NULL; if ((str = malloc(size)) == NULL) return NULL; if (wchar_to_utf8_ms(wstr, str, size) != size) { safe_free(str); return NULL; } return str; } static inline BOOLEAN guid_eq(const GUID *guid1, const GUID *guid2) { if ((guid1 != NULL) && (guid2 != NULL)) { return (memcmp(guid1, guid2, sizeof(GUID)) == 0); } return false; } #if 0 static char* guid_to_string(const GUID guid) { static char guid_string[MAX_GUID_STRING_LENGTH]; sprintf(guid_string, "{%08X-%04X-%04X-%02X%02X-%02X%02X%02X%02X%02X%02X}", (unsigned int)guid.Data1, guid.Data2, guid.Data3, guid.Data4[0], guid.Data4[1], guid.Data4[2], guid.Data4[3], guid.Data4[4], guid.Data4[5], guid.Data4[6], guid.Data4[7]); return guid_string; } #endif /* * Converts a windows error to human readable string * uses retval as errorcode, or, if 0, use GetLastError() */ static char *windows_error_str(uint32_t retval) { static char err_string[ERR_BUFFER_SIZE]; DWORD size; size_t i; uint32_t error_code, format_error; error_code = retval?retval:GetLastError(); safe_sprintf(err_string, ERR_BUFFER_SIZE, "[%d] ", error_code); size = FormatMessageA(FORMAT_MESSAGE_FROM_SYSTEM, NULL, error_code, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPTSTR) &err_string[safe_strlen(err_string)], ERR_BUFFER_SIZE - (DWORD)safe_strlen(err_string), NULL); if (size == 0) { format_error = GetLastError(); if (format_error) safe_sprintf(err_string, ERR_BUFFER_SIZE, "Windows error code %u (FormatMessage error code %u)", error_code, format_error); else safe_sprintf(err_string, ERR_BUFFER_SIZE, "Unknown error code %u", error_code); } else { // Remove CR/LF terminators for (i=safe_strlen(err_string)-1; ((err_string[i]==0x0A) || (err_string[i]==0x0D)); i--) { err_string[i] = 0; } } return err_string; } /* * Sanitize Microsoft's paths: convert to uppercase, add prefix and fix backslashes. * Return an allocated sanitized string or NULL on error. */ static char* sanitize_path(const char* path) { const char root_prefix[] = "\\\\.\\"; size_t j, size, root_size; char* ret_path = NULL; size_t add_root = 0; if (path == NULL) return NULL; size = safe_strlen(path)+1; root_size = sizeof(root_prefix)-1; // Microsoft indiscriminatly uses '\\?\', '\\.\', '##?#" or "##.#" for root prefixes. if (!((size > 3) && (((path[0] == '\\') && (path[1] == '\\') && (path[3] == '\\')) || ((path[0] == '#') && (path[1] == '#') && (path[3] == '#'))))) { add_root = root_size; size += add_root; } if ((ret_path = (char*)calloc(size, 1)) == NULL) return NULL; safe_strcpy(&ret_path[add_root], size-add_root, path); // Ensure consistancy with root prefix for (j=0; jcbSize = sizeof(SP_DEVINFO_DATA); if (!SetupDiEnumDeviceInfo(*dev_info, index, dev_info_data)) { if (GetLastError() != ERROR_NO_MORE_ITEMS) { usbi_err(ctx, "Could not obtain device info data for index %u: %s", index, windows_error_str(0)); } SetupDiDestroyDeviceInfoList(*dev_info); *dev_info = INVALID_HANDLE_VALUE; return NULL; } } dev_interface_data.cbSize = sizeof(SP_DEVICE_INTERFACE_DATA); if (!SetupDiEnumDeviceInterfaces(*dev_info, NULL, &guid, index, &dev_interface_data)) { if (GetLastError() != ERROR_NO_MORE_ITEMS) { usbi_err(ctx, "Could not obtain interface data for index %u: %s", index, windows_error_str(0)); } SetupDiDestroyDeviceInfoList(*dev_info); *dev_info = INVALID_HANDLE_VALUE; return NULL; } // Read interface data (dummy + actual) to access the device path if (!SetupDiGetDeviceInterfaceDetail(*dev_info, &dev_interface_data, NULL, 0, &size, NULL)) { // The dummy call should fail with ERROR_INSUFFICIENT_BUFFER if (GetLastError() != ERROR_INSUFFICIENT_BUFFER) { usbi_err(ctx, "could not access interface data (dummy) for index %u: %s", index, windows_error_str(0)); goto err_exit; } } else { usbi_err(ctx, "program assertion failed - http://msdn.microsoft.com/en-us/library/ms792901.aspx is wrong."); goto err_exit; } if ((dev_interface_details = malloc(size)) == NULL) { usbi_err(ctx, "could not allocate interface data for index %u.", index); goto err_exit; } dev_interface_details->cbSize = sizeof(SP_DEVICE_INTERFACE_DETAIL_DATA); if (!SetupDiGetDeviceInterfaceDetail(*dev_info, &dev_interface_data, dev_interface_details, size, &size, NULL)) { usbi_err(ctx, "could not access interface data (actual) for index %u: %s", index, windows_error_str(0)); } return dev_interface_details; err_exit: SetupDiDestroyDeviceInfoList(*dev_info); *dev_info = INVALID_HANDLE_VALUE; return NULL; } /* * Populate the endpoints addresses of the device_priv interface helper structs */ static int windows_assign_endpoints(struct libusb_device *dev, int iface, int altsetting) { int i, r; struct windows_device_priv *priv = __device_priv(dev); struct libusb_config_descriptor *conf_desc; const struct libusb_interface_descriptor *if_desc; r = libusb_get_config_descriptor(dev, 0, &conf_desc); if (r != LIBUSB_SUCCESS) { usbi_warn(NULL, "could not read config descriptor: error %d", r); return r; } if_desc = &conf_desc->interface[iface].altsetting[altsetting]; safe_free(priv->usb_interface[iface].endpoint); if (if_desc->bNumEndpoints == 0) { usbi_dbg("no endpoints found for interface %d", iface); return LIBUSB_SUCCESS; } priv->usb_interface[iface].endpoint = malloc(if_desc->bNumEndpoints); if (priv->usb_interface[iface].endpoint == NULL) { return LIBUSB_ERROR_NO_MEM; } priv->usb_interface[iface].nb_endpoints = if_desc->bNumEndpoints; for (i=0; ibNumEndpoints; i++) { priv->usb_interface[iface].endpoint[i] = if_desc->endpoint[i].bEndpointAddress; usbi_dbg("(re)assigned endpoint %02X to interface %d", priv->usb_interface[iface].endpoint[i], iface); } libusb_free_config_descriptor(conf_desc); return LIBUSB_SUCCESS; } // Lookup for a match in the list of API driver names bool is_api_driver(char* driver, uint8_t api) { uint8_t i; const char sep_str[2] = {LIST_SEPARATOR, 0}; char *tok, *tmp_str; size_t len = safe_strlen(driver); if (len == 0) return false; tmp_str = calloc(len+1, 1); if (tmp_str == NULL) return false; memcpy(tmp_str, driver, len+1); tok = strtok(tmp_str, sep_str); while (tok != NULL) { for (i=0; idev_handle->dev); struct windows_device_handle_priv *handle_priv = __device_handle_priv( transfer->dev_handle); struct windows_device_priv *priv = __device_priv(transfer->dev_handle->dev); int current_interface = *interface_number; int r = LIBUSB_SUCCESS; switch(api_type) { case USB_API_WINUSB: case USB_API_HID: break; default: return LIBUSB_ERROR_INVALID_PARAM; } usbi_mutex_lock(&autoclaim_lock); if (current_interface < 0) // No serviceable interface was found { for (current_interface=0; current_interfaceusb_interface[current_interface].apib == &usb_api_backend[api_type]) && (libusb_claim_interface(transfer->dev_handle, current_interface) == LIBUSB_SUCCESS) ) { usbi_dbg("auto-claimed interface %d for control request", current_interface); if (handle_priv->autoclaim_count[current_interface] != 0) { usbi_warn(ctx, "program assertion failed - autoclaim_count was nonzero"); } handle_priv->autoclaim_count[current_interface]++; break; } } if (current_interface == USB_MAXINTERFACES) { usbi_err(ctx, "could not auto-claim any interface"); r = LIBUSB_ERROR_NOT_FOUND; } } else { // If we have a valid interface that was autoclaimed, we must increment // its autoclaim count so that we can prevent an early release. if (handle_priv->autoclaim_count[current_interface] != 0) { handle_priv->autoclaim_count[current_interface]++; } } usbi_mutex_unlock(&autoclaim_lock); *interface_number = current_interface; return r; } static void auto_release(struct usbi_transfer *itransfer) { struct windows_transfer_priv *transfer_priv = usbi_transfer_get_os_priv(itransfer); struct libusb_transfer *transfer = __USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer); libusb_device_handle *dev_handle = transfer->dev_handle; struct windows_device_handle_priv* handle_priv = __device_handle_priv(dev_handle); int r; usbi_mutex_lock(&autoclaim_lock); if (handle_priv->autoclaim_count[transfer_priv->interface_number] > 0) { handle_priv->autoclaim_count[transfer_priv->interface_number]--; if (handle_priv->autoclaim_count[transfer_priv->interface_number] == 0) { r = libusb_release_interface(dev_handle, transfer_priv->interface_number); if (r == LIBUSB_SUCCESS) { usbi_dbg("auto-released interface %d", transfer_priv->interface_number); } else { usbi_dbg("failed to auto-release interface %d (%s)", transfer_priv->interface_number, libusb_strerror(r)); } } } usbi_mutex_unlock(&autoclaim_lock); } #endif /* * init: libusb backend init function * * This function enumerates the HCDs (Host Controller Drivers) and populates our private HCD list * In our implementation, we equate Windows' "HCD" to LibUSB's "bus". Note that bus is zero indexed. * HCDs are not expected to change after init (might not hold true for hot pluggable USB PCI card?) */ static int windows_init(struct libusb_context *ctx) { HDEVINFO dev_info; SP_DEVICE_INTERFACE_DETAIL_DATA *dev_interface_details = NULL; GUID guid; libusb_bus_t bus; int i, r = LIBUSB_ERROR_OTHER; OSVERSIONINFO os_version; HANDLE semaphore; struct windows_hcd_priv** _hcd_cur; TCHAR sem_name[11+1+8]; // strlen(libusb_init)+'\0'+(32-bit hex PID) sprintf(sem_name, "libusb_init%08X", (unsigned int)GetCurrentProcessId()&0xFFFFFFFF); semaphore = CreateSemaphore(NULL, 1, 1, sem_name); if (semaphore == NULL) { usbi_err(ctx, "could not create semaphore: %s", windows_error_str(0)); return LIBUSB_ERROR_NO_MEM; } // A successful wait brings our semaphore count to 0 (unsignaled) // => any concurent wait stalls until the semaphore's release if (WaitForSingleObject(semaphore, INFINITE) != WAIT_OBJECT_0) { usbi_err(ctx, "failure to access semaphore: %s", windows_error_str(0)); CloseHandle(semaphore); return LIBUSB_ERROR_NO_MEM; } // NB: concurrent usage supposes that init calls are equally balanced with // exit calls. If init is called more than exit, we will not exit properly if ( ++concurrent_usage == 0 ) { // First init? _hcd_cur = &hcd_root; // Detect OS version memset(&os_version, 0, sizeof(OSVERSIONINFO)); os_version.dwOSVersionInfoSize = sizeof(OSVERSIONINFO); windows_version = WINDOWS_UNSUPPORTED; if ((GetVersionEx(&os_version) != 0) && (os_version.dwPlatformId == VER_PLATFORM_WIN32_NT)) { if ((os_version.dwMajorVersion == 5) && (os_version.dwMinorVersion == 1)) { windows_version = WINDOWS_XP; } else if ((os_version.dwMajorVersion == 5) && (os_version.dwMinorVersion == 2)) { windows_version = WINDOWS_2003; // also includes XP 64 } else if (os_version.dwMajorVersion >= 6) { windows_version = WINDOWS_VISTA_AND_LATER; } } if (windows_version == WINDOWS_UNSUPPORTED) { usbi_err(ctx, "This version of Windows is NOT supported"); r = LIBUSB_ERROR_NOT_SUPPORTED; goto init_exit; } #if defined(AUTO_CLAIM) // We need a lock for proper auto-release usbi_mutex_init(&autoclaim_lock, NULL); #endif // Initialize pollable file descriptors init_polling(); // Load missing CFGMGR32.DLL imports if (Cfgmgr32_init() != LIBUSB_SUCCESS) { usbi_err(ctx, "could not resolve Cfgmgr32.dll functions"); return LIBUSB_ERROR_NOT_FOUND; } // Initialize the low level APIs (we don't care about errors at this stage) for (i=0; ipath = sanitize_path(dev_interface_details->DevicePath); _hcd_cur = &((*_hcd_cur)->next); } // TODO (2nd official release): thread for hotplug (see darwin source) } if (hcd_root == NULL) r = LIBUSB_ERROR_NO_DEVICE; else r = LIBUSB_SUCCESS; init_exit: // Holds semaphore here. if(!concurrent_usage && r != LIBUSB_SUCCESS) { // First init failed? if (timer_thread) { SetEvent(timer_request[1]); // actually the signal to quit the thread. if (WAIT_OBJECT_0 != WaitForSingleObject(timer_thread, INFINITE)) { usbi_warn(ctx, "could not wait for timer thread to quit"); TerminateThread(timer_thread, 1); // shouldn't happen, but we're destroying // all objects it might have held anyway. } CloseHandle(timer_thread); timer_thread = NULL; } for (i = 0; i < 2; i++) { if (timer_request[i]) { CloseHandle(timer_request[i]); timer_request[i] = NULL; } } if (timer_response) { CloseHandle(timer_response); timer_response = NULL; } if (timer_mutex) { CloseHandle(timer_mutex); timer_mutex = NULL; } } if (r != LIBUSB_SUCCESS) --concurrent_usage; // Not expected to call libusb_exit if we failed. ReleaseSemaphore(semaphore, 1, NULL); // increase count back to 1 CloseHandle(semaphore); return r; } /* * Initialize device structure, including active config */ static int initialize_device(struct libusb_device *dev, libusb_bus_t busnum, libusb_devaddr_t devaddr, char *path, int connection_index, uint8_t active_config, struct libusb_device *parent_dev) { struct windows_device_priv *priv = __device_priv(dev); windows_device_priv_init(priv); dev->bus_number = busnum; dev->device_address = devaddr; priv->path = path; priv->connection_index = connection_index; priv->parent_dev = parent_dev; priv->active_config = active_config; if (priv->active_config != 0) { usbi_dbg("active config: %d", priv->active_config); } else { // USB devices that don't have a config value are usually missing a driver // TODO (after first official release): use this for automated driver installation // NB: SetupDiGetDeviceRegistryProperty w/ SPDRP_INSTALL_STATE would tell us // if the driver is properly installed, but driverless devices don't seem to // be enumerable by SetupDi... usbi_dbg("* This device has no driver => libusb will not be able to access it *"); } return LIBUSB_SUCCESS; } /* * HCD (root) hubs need to have their device descriptor manually populated * * Note that we follow the Linux convention and use the "Linux Foundation root hub" * vendor ID as well as the product ID to indicate the hub speed */ static int force_hcd_device_descriptor(struct libusb_device *dev, HANDLE handle) { DWORD size; USB_HUB_CAPABILITIES hub_caps; USB_HUB_CAPABILITIES_EX hub_caps_ex; struct windows_device_priv *priv = __device_priv(dev); struct libusb_context *ctx = DEVICE_CTX(dev); priv->dev_descriptor.bLength = sizeof(USB_DEVICE_DESCRIPTOR); priv->dev_descriptor.bDescriptorType = USB_DEVICE_DESCRIPTOR_TYPE; dev->num_configurations = priv->dev_descriptor.bNumConfigurations = 1; // The following is used to set the VIS:PID of root HUBs similarly to what // Linux does: 1d6b:0001 is for 1x root hubs, 1d6b:0002 for 2x priv->dev_descriptor.idVendor = 0x1d6b; // Linux Foundation root hub if (windows_version >= WINDOWS_VISTA_AND_LATER) { size = sizeof(USB_HUB_CAPABILITIES_EX); if (DeviceIoControl(handle, IOCTL_USB_GET_HUB_CAPABILITIES_EX, &hub_caps_ex, size, &hub_caps_ex, size, &size, NULL)) { // Sanity check. HCD hub should always be root if (!hub_caps_ex.CapabilityFlags.HubIsRoot) { usbi_warn(ctx, "program assertion failed - HCD hub is not reported as root hub."); } priv->dev_descriptor.idProduct = hub_caps_ex.CapabilityFlags.HubIsHighSpeedCapable?2:1; } } else { size = sizeof(USB_HUB_CAPABILITIES); if (!DeviceIoControl(handle, IOCTL_USB_GET_HUB_CAPABILITIES, &hub_caps, size, &hub_caps, size, &size, NULL)) { usbi_warn(ctx, "could not read hub capabilities (std) for hub %s: %s", priv->path, windows_error_str(0)); priv->dev_descriptor.idProduct = 1; // Indicate 1x speed } else { priv->dev_descriptor.idProduct = hub_caps.HubIs2xCapable?2:1; } } return LIBUSB_SUCCESS; } /* * fetch and cache all the config descriptors through I/O */ static int cache_config_descriptors(struct libusb_device *dev, HANDLE hub_handle) { DWORD size, ret_size; struct libusb_context *ctx = DEVICE_CTX(dev); struct windows_device_priv *priv = __device_priv(dev); int r; uint8_t i; USB_CONFIGURATION_DESCRIPTOR_SHORT cd_buf_short; // dummy request PUSB_DESCRIPTOR_REQUEST cd_buf_actual = NULL; // actual request PUSB_CONFIGURATION_DESCRIPTOR cd_data = NULL; if (dev->num_configurations == 0) return LIBUSB_ERROR_INVALID_PARAM; priv->config_descriptor = malloc(dev->num_configurations * sizeof(PUSB_CONFIGURATION_DESCRIPTOR)); if (priv->config_descriptor == NULL) return LIBUSB_ERROR_NO_MEM; for (i=0; inum_configurations; i++) priv->config_descriptor[i] = NULL; for (i=0, r=LIBUSB_SUCCESS; ; i++) { // safe loop: release all dynamic resources safe_free(cd_buf_actual); // safe loop: end of loop condition if ((i >= dev->num_configurations) || (r != LIBUSB_SUCCESS)) break; size = sizeof(USB_CONFIGURATION_DESCRIPTOR_SHORT); memset(&cd_buf_short, 0, size); cd_buf_short.req.ConnectionIndex = priv->connection_index; cd_buf_short.req.SetupPacket.bmRequest = LIBUSB_ENDPOINT_IN; cd_buf_short.req.SetupPacket.bRequest = USB_REQUEST_GET_DESCRIPTOR; cd_buf_short.req.SetupPacket.wValue = (USB_CONFIGURATION_DESCRIPTOR_TYPE << 8) | i; cd_buf_short.req.SetupPacket.wIndex = i; cd_buf_short.req.SetupPacket.wLength = (USHORT)(size - sizeof(USB_DESCRIPTOR_REQUEST)); // Dummy call to get the required data size if (!DeviceIoControl(hub_handle, IOCTL_USB_GET_DESCRIPTOR_FROM_NODE_CONNECTION, &cd_buf_short, size, &cd_buf_short, size, &ret_size, NULL)) { usbi_err(ctx, "could not access configuration descriptor (dummy): %s", windows_error_str(0)); LOOP_BREAK(LIBUSB_ERROR_IO); } if ((ret_size != size) || (cd_buf_short.data.wTotalLength < sizeof(USB_CONFIGURATION_DESCRIPTOR))) { usbi_err(ctx, "unexpected configuration descriptor size (dummy)."); LOOP_BREAK(LIBUSB_ERROR_IO); } size = sizeof(USB_DESCRIPTOR_REQUEST) + cd_buf_short.data.wTotalLength; if ((cd_buf_actual = (PUSB_DESCRIPTOR_REQUEST)malloc(size)) == NULL) { usbi_err(ctx, "could not allocate configuration descriptor buffer. aborting."); LOOP_BREAK(LIBUSB_ERROR_NO_MEM); } memset(cd_buf_actual, 0, size); // Actual call cd_buf_actual->ConnectionIndex = priv->connection_index; cd_buf_actual->SetupPacket.bmRequest = LIBUSB_ENDPOINT_IN; cd_buf_actual->SetupPacket.bRequest = USB_REQUEST_GET_DESCRIPTOR; cd_buf_actual->SetupPacket.wValue = (USB_CONFIGURATION_DESCRIPTOR_TYPE << 8) | i; cd_buf_actual->SetupPacket.wIndex = i; cd_buf_actual->SetupPacket.wLength = (USHORT)(size - sizeof(USB_DESCRIPTOR_REQUEST)); if (!DeviceIoControl(hub_handle, IOCTL_USB_GET_DESCRIPTOR_FROM_NODE_CONNECTION, cd_buf_actual, size, cd_buf_actual, size, &ret_size, NULL)) { usbi_err(ctx, "could not access configuration descriptor (actual): %s", windows_error_str(0)); LOOP_BREAK(LIBUSB_ERROR_IO); } cd_data = (PUSB_CONFIGURATION_DESCRIPTOR)((UCHAR*)cd_buf_actual+sizeof(USB_DESCRIPTOR_REQUEST)); if ((size != ret_size) || (cd_data->wTotalLength != cd_buf_short.data.wTotalLength)) { usbi_err(ctx, "unexpected configuration descriptor size (actual)."); LOOP_BREAK(LIBUSB_ERROR_IO); } if (cd_data->bDescriptorType != USB_CONFIGURATION_DESCRIPTOR_TYPE) { usbi_err(ctx, "not a configuration descriptor"); LOOP_BREAK(LIBUSB_ERROR_IO); } usbi_dbg("cached config descriptor %d (bConfigurationValue=%d, %d bytes)", i, cd_data->bConfigurationValue, cd_data->wTotalLength); // Cache the descriptor priv->config_descriptor[i] = malloc(cd_data->wTotalLength); if (priv->config_descriptor[i] == NULL) return LIBUSB_ERROR_NO_MEM; memcpy(priv->config_descriptor[i], cd_data, cd_data->wTotalLength); } return LIBUSB_SUCCESS; } /* * Recursively enumerates and finds all hubs & devices */ static int usb_enumerate_hub(struct libusb_context *ctx, struct discovered_devs **_discdevs, HANDLE hub_handle, libusb_bus_t busnum, struct libusb_device *parent_dev, uint8_t nb_ports) { struct discovered_devs *discdevs = *_discdevs; struct libusb_device *dev = NULL; DWORD size, size_initial, size_fixed, getname_ioctl; HANDLE handle = INVALID_HANDLE_VALUE; USB_HUB_NAME_FIXED s_hubname; USB_NODE_CONNECTION_INFORMATION conn_info; USB_NODE_INFORMATION hub_node; bool is_hcd, need_unref = false; int i, r; LPCWSTR wstr; char *tmp_str = NULL, *path_str = NULL; unsigned long session_id; libusb_devaddr_t devaddr = 0; struct windows_device_priv *priv, *parent_priv; // obviously, root (HCD) hubs have no parent is_hcd = (parent_dev == NULL); if (is_hcd) { if (nb_ports != 1) { usbi_warn(ctx, "program assertion failed - invalid number of ports for HCD."); return LIBUSB_ERROR_INVALID_PARAM; } parent_priv = NULL; size_initial = sizeof(USB_ROOT_HUB_NAME); size_fixed = sizeof(USB_ROOT_HUB_NAME_FIXED); getname_ioctl = IOCTL_USB_GET_ROOT_HUB_NAME; } else { parent_priv = __device_priv(parent_dev); size_initial = sizeof(USB_NODE_CONNECTION_NAME); size_fixed = sizeof(USB_NODE_CONNECTION_NAME_FIXED); getname_ioctl = IOCTL_USB_GET_NODE_CONNECTION_NAME; } // Loop through all the ports on this hub for (i = 1, r = LIBUSB_SUCCESS; ; i++) { // safe loop: release all dynamic resources if (need_unref) { safe_unref_device(dev); need_unref = false; } safe_free(tmp_str); safe_free(path_str); safe_closehandle(handle); // safe loop: end of loop condition if ((i > nb_ports) || (r != LIBUSB_SUCCESS)) break; memset(&conn_info, 0, sizeof(conn_info)); // For non HCDs, check if the node on this port is a hub or a regular device if (!is_hcd) { size = sizeof(USB_NODE_CONNECTION_INFORMATION); conn_info.ConnectionIndex = i; if (!DeviceIoControl(hub_handle, IOCTL_USB_GET_NODE_CONNECTION_INFORMATION, &conn_info, size, &conn_info, size, &size, NULL)) { usbi_warn(ctx, "could not get node connection information: %s", windows_error_str(0)); continue; } if (conn_info.ConnectionStatus == NoDeviceConnected) { continue; } if (conn_info.DeviceAddress == LIBUSB_DEVADDR_MAX) { usbi_warn(ctx, "program assertion failed - device address is %d " "(conflicts with root hub), ignoring device", LIBUSB_DEVADDR_MAX); continue; } s_hubname.u.node.ConnectionIndex = i; // Only used for non HCDs (s_hubname is an union) } else { // HCDs have only 1 node, and it's always a hub conn_info.DeviceAddress = LIBUSB_DEVADDR_MAX; // using 0 can conflict with driverless devices conn_info.DeviceIsHub = true; conn_info.CurrentConfigurationValue = 1; } // If this node is a hub (HCD or not), open it if (conn_info.DeviceIsHub) { size = size_initial; if (!DeviceIoControl(hub_handle, getname_ioctl, &s_hubname, size, &s_hubname, size, &size, NULL)) { usbi_warn(ctx, "could not get hub path (dummy): %s", windows_error_str(0)); continue; } size = is_hcd?s_hubname.u.root.ActualLength:s_hubname.u.node.ActualLength; if (size > size_fixed) { usbi_warn(ctx, "program assertion failed - hub path is too long"); continue; } if (!is_hcd) { // previous call trashes some of the data s_hubname.u.node.ConnectionIndex = i; } if (!DeviceIoControl(hub_handle, getname_ioctl, &s_hubname, size, &s_hubname, size, &size, NULL)) { usbi_warn(ctx, "could not get hub path (actual): %s", windows_error_str(0)); continue; } // Add prefix wstr = is_hcd?s_hubname.u.root.RootHubName:s_hubname.u.node.NodeName; tmp_str = wchar_to_utf8(wstr); if (tmp_str == NULL) { usbi_err(ctx, "could not convert hub path string."); LOOP_BREAK(LIBUSB_ERROR_NO_MEM); } path_str = sanitize_path(tmp_str); if (path_str == NULL) { usbi_err(ctx, "could not sanitize hub path string."); LOOP_BREAK(LIBUSB_ERROR_NO_MEM); } // Open Hub handle = CreateFileA(path_str, GENERIC_WRITE, FILE_SHARE_WRITE, NULL, OPEN_EXISTING, FILE_FLAG_OVERLAPPED, NULL); if(handle == INVALID_HANDLE_VALUE) { usbi_warn(ctx, "could not open hub %s: %s", path_str, windows_error_str(0)); continue; } } // Generate a session ID // Will need to change the session_id computation if this assertion fails if (conn_info.DeviceAddress > LIBUSB_DEVADDR_MAX) { usbi_warn(ctx, "program assertion failed - device address is greater than %d, ignoring device", LIBUSB_DEVADDR_MAX); continue; } else { devaddr = (uint8_t)conn_info.DeviceAddress; } // Same trick as linux for session_id, with same caveat session_id = busnum << (sizeof(libusb_devaddr_t)*8) | devaddr; usbi_dbg("busnum %d devaddr %d session_id %ld", busnum, devaddr, session_id); // Allocate device if needed dev = usbi_get_device_by_session_id(ctx, session_id); if (dev) { usbi_dbg("using existing device for session %ld", session_id); priv = __device_priv(dev); // Because we are rebuilding the list, there's no guarantee // the parent device pointer is still the same. // Other device data should still be reusable priv->parent_dev = parent_dev; } else { usbi_dbg("allocating new device for session %ld", session_id); if ((dev = usbi_alloc_device(ctx, session_id)) == NULL) { LOOP_BREAK(LIBUSB_ERROR_NO_MEM); } need_unref = true; LOOP_CHECK(initialize_device(dev, busnum, devaddr, path_str, i, conn_info.CurrentConfigurationValue, parent_dev)); priv = __device_priv(dev); path_str = NULL; // protect our path from being freed // Setup the cached descriptors. Note that only non HCDs can fetch descriptors if (!is_hcd) { // The device descriptor has been read with conn_info memcpy(&priv->dev_descriptor, &(conn_info.DeviceDescriptor), sizeof(USB_DEVICE_DESCRIPTOR)); dev->num_configurations = priv->dev_descriptor.bNumConfigurations; // If we can't read the config descriptors, just set the number of confs to zero if (cache_config_descriptors(dev, hub_handle) != LIBUSB_SUCCESS) { dev->num_configurations = 0; priv->dev_descriptor.bNumConfigurations = 0; } } else { LOOP_CHECK(force_hcd_device_descriptor(dev, handle)); } LOOP_CHECK(usbi_sanitize_device(dev)); } discdevs = discovered_devs_append(*_discdevs, dev); if (!discdevs) { LOOP_BREAK(LIBUSB_ERROR_NO_MEM); } *_discdevs = discdevs; // Finally, if device is a hub, recurse if (conn_info.DeviceIsHub) { // Find number of ports for this hub size = sizeof(USB_NODE_INFORMATION); if (!DeviceIoControl(handle, IOCTL_USB_GET_NODE_INFORMATION, &hub_node, size, &hub_node, size, &size, NULL)) { usbi_warn(ctx, "could not retreive information for hub %s: %s", priv->path, windows_error_str(0)); continue; } if (hub_node.NodeType != UsbHub) { usbi_warn(ctx, "unexpected hub type (%d) for hub %s", hub_node.NodeType, priv->path); continue; } usbi_dbg("%d ports Hub: %s", hub_node.u.HubInformation.HubDescriptor.bNumberOfPorts, priv->path); usb_enumerate_hub(ctx, _discdevs, handle, busnum, dev, hub_node.u.HubInformation.HubDescriptor.bNumberOfPorts); } } return r; } /* * Composite device interfaces are not enumerated using GUID_DEVINTERFACE_USB_DEVICE, * but instead require a different lookup mechanism */ static int set_composite_device(struct libusb_context *ctx, DEVINST devinst, struct windows_device_priv *priv) { // indexes for additional interface GUIDs, not available from "USB" // SetupDiGetClassDevs enumeration should go here. Typically, these are // device interfaces that begin with something else than "\\?\usb\" enum libusb_hid_report_type { HID_DEVICE_INTERFACE_GUID_INDEX = 0, MAX_DEVICE_INTERFACE_GUID_INDEX = 1 }; DEVINST child_devinst, parent_devinst; unsigned i, j, max_guids, nb_paths, interface_number; uint8_t api; bool found; DWORD type, size; CONFIGRET r; HDEVINFO dev_info; SP_DEVINFO_DATA dev_info_data; SP_DEVICE_INTERFACE_DETAIL_DATA *dev_interface_details = NULL; HKEY key; WCHAR guid_string_w[MAX_GUID_STRING_LENGTH]; GUID guid, class_guid; GUID guid_table[MAX_USB_DEVICES]; char* sanitized_path[MAX_USB_DEVICES]; char* hid_path[MAX_USB_DEVICES]; // An extra path is needed for HID uint8_t api_type[MAX_USB_DEVICES]; char* sanitized_short = NULL; char path[MAX_PATH_LENGTH]; char driver[MAX_KEY_LENGTH]; dev_info = SetupDiGetClassDevs(NULL, "USB", NULL, DIGCF_PRESENT|DIGCF_ALLCLASSES); if (dev_info == INVALID_HANDLE_VALUE) { return LIBUSB_ERROR_NOT_FOUND; } // Manually add the HID GUID as it cannot be read with DeviceInterfaceGUIDs reg key) // NB the value returned by HidD_GetHidGuid, which is for interface class is different // from GUID_HID, which is the device class GUID HidD_GetHidGuid(&guid_table[HID_DEVICE_INTERFACE_GUID_INDEX]); // NB: for other interface guids, SetupDiClassGuidsFromName can be used max_guids = MAX_DEVICE_INTERFACE_GUID_INDEX; // First, retrieve all the device interface GUIDs for (i = 0; ; i++) { dev_info_data.cbSize = sizeof(dev_info_data); if (!SetupDiEnumDeviceInfo(dev_info, i, &dev_info_data)) { break; } key = SetupDiOpenDevRegKey(dev_info, &dev_info_data, DICS_FLAG_GLOBAL, 0, DIREG_DEV, KEY_READ); if (key == INVALID_HANDLE_VALUE) { usbi_dbg("could not open registry key"); continue; } size = sizeof(guid_string_w); r = RegQueryValueExW(key, L"DeviceInterfaceGUIDs", NULL, &type, (BYTE*)guid_string_w, &size); RegCloseKey(key); if (r != ERROR_SUCCESS) { continue; } CLSIDFromString(guid_string_w, &guid); // identical device interface GUIDs are not supposed to happen, but are a real possibility // => check and ignore duplicates found = false; for (j=0; j MAX_USB_DEVICES) { usbi_warn(ctx, "more than %d devices - ignoring the rest", MAX_USB_DEVICES); break; } } } SetupDiDestroyDeviceInfoList(dev_info); // Now let's find the device interface paths for all these devices nb_paths = 0; for (j=0; jDevicePath, windows_error_str(0)); continue; } if (CM_Get_Device_ID(parent_devinst, path, MAX_PATH_LENGTH, 0) != CR_SUCCESS) { usbi_warn(ctx, "could not retrieve HID parent's path for device %s, skipping: %s", dev_interface_details->DevicePath, windows_error_str(0)); continue; } } // In case we can't read the driver string through SPDRP_SERVICE (which is // the case for HID), we need the ClassGUID for comparison. if(!SetupDiGetDeviceRegistryPropertyW(dev_info, &dev_info_data, SPDRP_CLASSGUID, NULL, (BYTE*)guid_string_w, sizeof(guid_string_w), &size)) { usbi_warn(ctx, "could not read class GUID for device %s, skipping: %s", dev_interface_details->DevicePath, windows_error_str(0)); continue; } CLSIDFromString(guid_string_w, &class_guid); // Attempt to read the driver string if(!SetupDiGetDeviceRegistryProperty(dev_info, &dev_info_data, SPDRP_SERVICE, NULL, (BYTE*)driver, MAX_KEY_LENGTH, &size)) { driver[0] = 0; } for (api=USB_API_WINUSB; apiDevicePath); if (nb_paths > MAX_USB_DEVICES) { usbi_warn(ctx, "more than %d devices - ignoring the rest", MAX_USB_DEVICES); break; } } } } } // Finally, match the interface paths with the interfaces. We do that // by looking at the children of the composite device // NB: if the interfaces are not found in their expected position, // claim_interface will issue a warning found = false; memset(&child_devinst, 0, sizeof(DEVINST)); // prevents /W4 warning for (i = 0; iusb_interface[interface_number].path != NULL) { usbi_dbg("interface_path[%d] already set - ignoring HID collection: %s", interface_number, sanitized_path[j]); if (api_type[j] != USB_API_HID) { usbi_warn(ctx, "program assertion failed - not an HID collection"); } } else { priv->usb_interface[interface_number].path = sanitized_path[j]; priv->usb_interface[interface_number].apib = &usb_api_backend[api_type[j]]; if ((api_type[j] == USB_API_HID) && (priv->hid == NULL)) { priv->hid = calloc(1, sizeof(struct hid_device_priv)); } priv->composite_api_flags |= 1<usb_interface[interface_number].path == NULL) { usbi_warn(ctx, "interface_path[%d]: unhandled API - interface will be disabled", interface_number); continue; } usbi_dbg("interface_path[%d]: %s", interface_number, priv->usb_interface[interface_number].path); found = true; } for (j=0; jDevicePath, windows_error_str(0)); continue; } if (CM_Get_Device_ID(parent_devinst, path, MAX_PATH_LENGTH, 0) != CR_SUCCESS) { usbi_warn(ctx, "could not retrieve parent's path for device %s, skipping: %s", dev_interface_details->DevicePath, windows_error_str(0)); continue; } // Fix parent's path inconsistencies before attempting to compare sanitized_path = sanitize_path(path); if (sanitized_path == NULL) { usbi_warn(ctx, "could not sanitize parent's path for device %s, skipping.", dev_interface_details->DevicePath); continue; } // NB: we compare strings of different lengths below => strncmp if (safe_strncmp(priv->path, sanitized_path, safe_strlen(sanitized_path)) == 0) { priv->usb_interface[interface_number].path = sanitize_path(dev_interface_details->DevicePath); priv->usb_interface[interface_number].apib = &usb_api_backend[USB_API_HID]; usbi_dbg("interface_path[%d]: %s", interface_number, priv->usb_interface[interface_number].path); interface_number++; } } return LIBUSB_SUCCESS; } /* * This function retrieves and sets the paths of all non-hub devices * NB: No I/O with device is required during this call */ static int set_device_paths(struct libusb_context *ctx, struct discovered_devs *discdevs) { // Precedence for filter drivers vs driver is in the order of this array struct driver_lookup lookup[3] = { {"\0\0", SPDRP_SERVICE, "driver"}, {"\0\0", SPDRP_UPPERFILTERS, "upper filter driver"}, {"\0\0", SPDRP_LOWERFILTERS, "lower filter driver"} }; struct windows_device_priv *priv; struct windows_device_priv *parent_priv; char path[MAX_PATH_LENGTH]; char *sanitized_path = NULL; HDEVINFO dev_info; SP_DEVICE_INTERFACE_DETAIL_DATA *dev_interface_details = NULL; SP_DEVINFO_DATA dev_info_data; DEVINST parent_devinst; GUID guid; DWORD size, reg_type, install_state, port_nr; int r = LIBUSB_SUCCESS; unsigned i, j, k, l; uint8_t api; bool found; // TODO (after first official release): MI_## automated driver installation guid = GUID_DEVINTERFACE_USB_DEVICE; for (i = 0; ; i++) { // safe loop: free up any (unprotected) dynamic resource safe_free(dev_interface_details); safe_free(sanitized_path); dev_interface_details = get_interface_details(ctx, &dev_info, &dev_info_data, guid, i); // safe loop: end of loop condition if ( (dev_interface_details == NULL) || (r != LIBUSB_SUCCESS) ) break; // Check that the driver installation is OK if ( (!SetupDiGetDeviceRegistryProperty(dev_info, &dev_info_data, SPDRP_INSTALL_STATE, ®_type, (BYTE*)&install_state, 4, &size)) && (size != 4) ){ usbi_warn(ctx, "could not detect installation state of driver for %s: %s", dev_interface_details->DevicePath, windows_error_str(0)); } else if (install_state != 0) { usbi_warn(ctx, "driver for device %s is reporting an issue (code: %d) - skipping", dev_interface_details->DevicePath, install_state); continue; } // The SPDRP_ADDRESS for USB devices should be the device port number on the hub if ( (!SetupDiGetDeviceRegistryProperty(dev_info, &dev_info_data, SPDRP_ADDRESS, ®_type, (BYTE*)&port_nr, 4, &size)) && (size != 4) ){ usbi_warn(ctx, "could not retrieve port number for device %s, skipping: %s", dev_interface_details->DevicePath, windows_error_str(0)); continue; } // Retrieve parent's path using PnP Configuration Manager (CM) if (CM_Get_Parent(&parent_devinst, dev_info_data.DevInst, 0) != CR_SUCCESS) { usbi_warn(ctx, "could not retrieve parent info data for device %s, skipping: %s", dev_interface_details->DevicePath, windows_error_str(0)); continue; } if (CM_Get_Device_ID(parent_devinst, path, MAX_PATH_LENGTH, 0) != CR_SUCCESS) { usbi_warn(ctx, "could not retrieve parent's path for device %s, skipping: %s", dev_interface_details->DevicePath, windows_error_str(0)); continue; } // Fix parent's path inconsistencies before attempting to compare sanitized_path = sanitize_path(path); if (sanitized_path == NULL) { usbi_warn(ctx, "could not sanitize parent's path for device %s, skipping.", dev_interface_details->DevicePath); continue; } // With the parent path and port number, we should be able to locate our device // by comparing these values to the ones we got when enumerating hubs found = false; for (j=0; jlen; j++) { priv = __device_priv(discdevs->devices[j]); if (priv->parent_dev == NULL) { continue; // ignore HCDs } parent_priv = __device_priv(priv->parent_dev); // NB: we compare strings of different lengths below => strncmp if ( (safe_strncmp(parent_priv->path, sanitized_path, safe_strlen(sanitized_path)) == 0) && (port_nr == priv->connection_index) ) { priv->path = sanitize_path(dev_interface_details->DevicePath); usbi_dbg("path (%d:%d): %s", discdevs->devices[j]->bus_number, discdevs->devices[j]->device_address, priv->path); // Check the service & filter names to know the API we should use for (k=0; k<3; k++) { if (SetupDiGetDeviceRegistryPropertyA(dev_info, &dev_info_data, lookup[k].reg_prop, ®_type, (BYTE*)lookup[k].list, MAX_KEY_LENGTH, &size)) { // Turn the REG_SZ SPDRP_SERVICE into REG_MULTI_SZ if (lookup[k].reg_prop == SPDRP_SERVICE) { // our buffers are MAX_KEY_LENGTH+1 so we can overflow if needed lookup[k].list[safe_strlen(lookup[k].list)+1] = 0; } // MULTI_SZ is a pain to work with. Turn it into something much more manageable // NB: none of the driver names we check against contain LIST_SEPARATOR, // (currently ';'), so even if an unsuported one does, it's not an issue for (l=0; (lookup[k].list[l] != 0) || (lookup[k].list[l+1] != 0); l++) { if (lookup[k].list[l] == 0) { lookup[k].list[l] = LIST_SEPARATOR; } } upperize(lookup[k].list); usbi_dbg("%s(s): %s", lookup[k].designation, lookup[k].list); found = true; } else { if (GetLastError() != ERROR_INVALID_DATA) { usbi_dbg("could not access %s: %s", lookup[k].designation, windows_error_str(0)); } lookup[k].list[0] = 0; } } for (api=0; api= 3) continue; priv->apib = &usb_api_backend[api]; switch(api) { case USB_API_COMPOSITE: set_composite_device(ctx, dev_info_data.DevInst, priv); break; case USB_API_HID: safe_free(priv->hid); priv->hid = calloc(1, sizeof(struct hid_device_priv)); if (priv->hid == NULL) { usbi_err(ctx, "could not allocate HID data for %s, skipping", dev_interface_details->DevicePath); priv->apib = &usb_api_backend[USB_API_UNSUPPORTED]; safe_free(priv->path); } else { set_hid_device(ctx, priv); } break; default: // For other devices, the first interface is the same as the device priv->usb_interface[0].path = malloc(safe_strlen(priv->path)+1); if (priv->usb_interface[0].path != NULL) { safe_strcpy(priv->usb_interface[0].path, safe_strlen(priv->path)+1, priv->path); } // The following is needed if we want to API calls to work for both simple // and composite devices, as for(k=0; kusb_interface[k].apib = &usb_api_backend[api]; } break; } } break; } } if (!found) { usbi_warn(ctx, "could not match %s with a libusb device.", dev_interface_details->DevicePath); continue; } } return LIBUSB_SUCCESS; } /* * get_device_list: libusb backend device enumeration function */ static int windows_get_device_list(struct libusb_context *ctx, struct discovered_devs **_discdevs) { struct windows_hcd_priv* hcd; HANDLE handle = INVALID_HANDLE_VALUE; int r = LIBUSB_SUCCESS; libusb_bus_t bus; // Use the index of the HCD in the chained list as bus # for (hcd = hcd_root, bus = 0; ; hcd = hcd->next, bus++) { safe_closehandle(handle); if ( (hcd == NULL) || (r != LIBUSB_SUCCESS) ) break; if (bus == LIBUSB_BUS_MAX) { usbi_warn(ctx, "program assertion failed - got more than %d buses, skipping the rest.", LIBUSB_BUS_MAX); continue; } handle = CreateFileA(hcd->path, GENERIC_WRITE, FILE_SHARE_WRITE, NULL, OPEN_EXISTING, FILE_FLAG_OVERLAPPED, NULL); if (handle == INVALID_HANDLE_VALUE) { usbi_warn(ctx, "could not open bus %u, skipping: %s", bus, windows_error_str(0)); continue; } LOOP_CHECK(usb_enumerate_hub(ctx, _discdevs, handle, bus, NULL, 1)); } // Set the interface path for non-hubs r = set_device_paths(ctx, *_discdevs); return r; } /* * exit: libusb backend deinitialization function */ static void windows_exit(void) { struct windows_hcd_priv* hcd_tmp; int i; HANDLE semaphore; TCHAR sem_name[11+1+8]; // strlen(libusb_init)+'\0'+(32-bit hex PID) sprintf(sem_name, "libusb_init%08X", (unsigned int)GetCurrentProcessId()&0xFFFFFFFF); semaphore = CreateSemaphore(NULL, 1, 1, sem_name); if (semaphore == NULL) { return; } // A successful wait brings our semaphore count to 0 (unsignaled) // => any concurent wait stalls until the semaphore release if (WaitForSingleObject(semaphore, INFINITE) != WAIT_OBJECT_0) { CloseHandle(semaphore); return; } // Only works if exits and inits are balanced exactly if (--concurrent_usage < 0) { // Last exit while (hcd_root != NULL) { hcd_tmp = hcd_root; // Keep a copy for free hcd_root = hcd_root->next; windows_hcd_priv_release(hcd_tmp); safe_free(hcd_tmp); } for (i=0; idev_descriptor), DEVICE_DESC_LENGTH); *host_endian = 0; return LIBUSB_SUCCESS; } static int windows_get_config_descriptor(struct libusb_device *dev, uint8_t config_index, unsigned char *buffer, size_t len, int *host_endian) { struct windows_device_priv *priv = __device_priv(dev); PUSB_CONFIGURATION_DESCRIPTOR config_header; size_t size; // config index is zero based if (config_index >= dev->num_configurations) return LIBUSB_ERROR_INVALID_PARAM; if ((priv->config_descriptor == NULL) || (priv->config_descriptor[config_index] == NULL)) return LIBUSB_ERROR_NOT_FOUND; config_header = (PUSB_CONFIGURATION_DESCRIPTOR)priv->config_descriptor[config_index]; size = min(config_header->wTotalLength, len); memcpy(buffer, priv->config_descriptor[config_index], size); return LIBUSB_SUCCESS; } /* * return the cached copy of the active config descriptor */ static int windows_get_active_config_descriptor(struct libusb_device *dev, unsigned char *buffer, size_t len, int *host_endian) { struct windows_device_priv *priv = __device_priv(dev); if (priv->active_config == 0) return LIBUSB_ERROR_NOT_FOUND; // config index is zero based return windows_get_config_descriptor(dev, (uint8_t)(priv->active_config-1), buffer, len, host_endian); } static int windows_open(struct libusb_device_handle *dev_handle) { struct windows_device_priv *priv = __device_priv(dev_handle->dev); struct libusb_context *ctx = DEVICE_CTX(dev_handle->dev); if (priv->apib == NULL) { usbi_err(ctx, "program assertion failed - device is not initialized"); return LIBUSB_ERROR_NO_DEVICE; } return priv->apib->open(dev_handle); } static void windows_close(struct libusb_device_handle *dev_handle) { struct windows_device_priv *priv = __device_priv(dev_handle->dev); priv->apib->close(dev_handle); } static int windows_get_configuration(struct libusb_device_handle *dev_handle, int *config) { struct windows_device_priv *priv = __device_priv(dev_handle->dev); if (priv->active_config == 0) { *config = 0; return LIBUSB_ERROR_NOT_FOUND; } *config = priv->active_config; return LIBUSB_SUCCESS; } /* * from http://msdn.microsoft.com/en-us/library/ms793522.aspx: "The port driver * does not currently expose a service that allows higher-level drivers to set * the configuration." */ static int windows_set_configuration(struct libusb_device_handle *dev_handle, int config) { struct windows_device_priv *priv = __device_priv(dev_handle->dev); int r = LIBUSB_SUCCESS; if (config >= USB_MAXCONFIG) return LIBUSB_ERROR_INVALID_PARAM; r = libusb_control_transfer(dev_handle, LIBUSB_ENDPOINT_OUT | LIBUSB_REQUEST_TYPE_STANDARD | LIBUSB_RECIPIENT_DEVICE, LIBUSB_REQUEST_SET_CONFIGURATION, (uint16_t)config, 0, NULL, 0, 1000); if (r == LIBUSB_SUCCESS) { priv->active_config = (uint8_t)config; } return r; } static int windows_claim_interface(struct libusb_device_handle *dev_handle, int iface) { int r = LIBUSB_SUCCESS; struct windows_device_priv *priv = __device_priv(dev_handle->dev); if (iface >= USB_MAXINTERFACES) return LIBUSB_ERROR_INVALID_PARAM; safe_free(priv->usb_interface[iface].endpoint); priv->usb_interface[iface].nb_endpoints= 0; r = priv->apib->claim_interface(dev_handle, iface); if (r == LIBUSB_SUCCESS) { r = windows_assign_endpoints(dev_handle->dev, iface, 0); } return r; } static int windows_set_interface_altsetting(struct libusb_device_handle *dev_handle, int iface, int altsetting) { int r = LIBUSB_SUCCESS; struct windows_device_priv *priv = __device_priv(dev_handle->dev); safe_free(priv->usb_interface[iface].endpoint); priv->usb_interface[iface].nb_endpoints= 0; r = priv->apib->set_interface_altsetting(dev_handle, iface, altsetting); if (r == LIBUSB_SUCCESS) { r = windows_assign_endpoints(dev_handle->dev, iface, altsetting); } return r; } static int windows_release_interface(struct libusb_device_handle *dev_handle, int iface) { struct windows_device_priv *priv = __device_priv(dev_handle->dev); windows_set_interface_altsetting(dev_handle, iface, 0); return priv->apib->release_interface(dev_handle, iface); } static int windows_clear_halt(struct libusb_device_handle *dev_handle, unsigned char endpoint) { struct windows_device_priv *priv = __device_priv(dev_handle->dev); return priv->apib->clear_halt(dev_handle, endpoint); } static int windows_reset_device(struct libusb_device_handle *dev_handle) { struct windows_device_priv *priv = __device_priv(dev_handle->dev); return priv->apib->reset_device(dev_handle); } // The 3 functions below are unlikely to ever get supported on Windows static int windows_kernel_driver_active(struct libusb_device_handle *dev_handle, int iface) { return LIBUSB_ERROR_NOT_SUPPORTED; } static int windows_attach_kernel_driver(struct libusb_device_handle *dev_handle, int iface) { return LIBUSB_ERROR_NOT_SUPPORTED; } static int windows_detach_kernel_driver(struct libusb_device_handle *dev_handle, int iface) { return LIBUSB_ERROR_NOT_SUPPORTED; } static void windows_destroy_device(struct libusb_device *dev) { struct windows_device_priv *priv = __device_priv(dev); windows_device_priv_release(priv, dev->num_configurations); } static void windows_clear_transfer_priv(struct usbi_transfer *itransfer) { struct windows_transfer_priv *transfer_priv = usbi_transfer_get_os_priv(itransfer); usbi_free_fd(transfer_priv->pollable_fd.fd); safe_free(transfer_priv->hid_buffer); #if defined(AUTO_CLAIM) // When auto claim is in use, attempt to release the auto-claimed interface auto_release(itransfer); #endif } static int submit_bulk_transfer(struct usbi_transfer *itransfer) { struct libusb_transfer *transfer = __USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer); struct libusb_context *ctx = DEVICE_CTX(transfer->dev_handle->dev); struct windows_transfer_priv *transfer_priv = usbi_transfer_get_os_priv(itransfer); struct windows_device_priv *priv = __device_priv(transfer->dev_handle->dev); int r; r = priv->apib->submit_bulk_transfer(itransfer); if (r != LIBUSB_SUCCESS) { return r; } usbi_add_pollfd(ctx, transfer_priv->pollable_fd.fd, (short)((transfer->endpoint & LIBUSB_ENDPOINT_IN)?POLLIN:POLLOUT)); #if !defined(DYNAMIC_FDS) usbi_fd_notification(ctx); #endif return LIBUSB_SUCCESS; } static int submit_iso_transfer(struct usbi_transfer *itransfer) { struct libusb_transfer *transfer = __USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer); struct libusb_context *ctx = DEVICE_CTX(transfer->dev_handle->dev); struct windows_transfer_priv *transfer_priv = usbi_transfer_get_os_priv(itransfer); struct windows_device_priv *priv = __device_priv(transfer->dev_handle->dev); int r; r = priv->apib->submit_iso_transfer(itransfer); if (r != LIBUSB_SUCCESS) { return r; } usbi_add_pollfd(ctx, transfer_priv->pollable_fd.fd, (short)((transfer->endpoint & LIBUSB_ENDPOINT_IN)?POLLIN:POLLOUT)); #if !defined(DYNAMIC_FDS) usbi_fd_notification(ctx); #endif return LIBUSB_SUCCESS; } static int submit_control_transfer(struct usbi_transfer *itransfer) { struct libusb_transfer *transfer = __USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer); struct libusb_context *ctx = DEVICE_CTX(transfer->dev_handle->dev); struct windows_transfer_priv *transfer_priv = usbi_transfer_get_os_priv(itransfer); struct windows_device_priv *priv = __device_priv(transfer->dev_handle->dev); int r; r = priv->apib->submit_control_transfer(itransfer); if (r != LIBUSB_SUCCESS) { return r; } usbi_add_pollfd(ctx, transfer_priv->pollable_fd.fd, POLLIN); #if !defined(DYNAMIC_FDS) usbi_fd_notification(ctx); #endif return LIBUSB_SUCCESS; } static int windows_submit_transfer(struct usbi_transfer *itransfer) { struct libusb_transfer *transfer = __USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer); switch (transfer->type) { case LIBUSB_TRANSFER_TYPE_CONTROL: return submit_control_transfer(itransfer); case LIBUSB_TRANSFER_TYPE_BULK: case LIBUSB_TRANSFER_TYPE_INTERRUPT: return submit_bulk_transfer(itransfer); case LIBUSB_TRANSFER_TYPE_ISOCHRONOUS: return submit_iso_transfer(itransfer); default: usbi_err(TRANSFER_CTX(transfer), "unknown endpoint type %d", transfer->type); return LIBUSB_ERROR_INVALID_PARAM; } } static int windows_abort_control(struct usbi_transfer *itransfer) { struct libusb_transfer *transfer = __USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer); struct windows_device_priv *priv = __device_priv(transfer->dev_handle->dev); return priv->apib->abort_control(itransfer); } static int windows_abort_transfers(struct usbi_transfer *itransfer) { struct libusb_transfer *transfer = __USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer); struct windows_device_priv *priv = __device_priv(transfer->dev_handle->dev); return priv->apib->abort_transfers(itransfer); } static int windows_cancel_transfer(struct usbi_transfer *itransfer) { struct libusb_transfer *transfer = __USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer); #if defined(FORCE_INSTANT_TIMEOUTS) struct windows_transfer_priv *transfer_priv = usbi_transfer_get_os_priv(itransfer); // Forces instant overlapped completion on timeouts - use at your own risks if (itransfer->flags & USBI_TRANSFER_TIMED_OUT) { transfer_priv->pollable_fd.overlapped->Internal &= ~STATUS_PENDING; } #endif switch (transfer->type) { case LIBUSB_TRANSFER_TYPE_CONTROL: return windows_abort_control(itransfer); case LIBUSB_TRANSFER_TYPE_BULK: case LIBUSB_TRANSFER_TYPE_INTERRUPT: case LIBUSB_TRANSFER_TYPE_ISOCHRONOUS: return windows_abort_transfers(itransfer); default: usbi_err(ITRANSFER_CTX(itransfer), "unknown endpoint type %d", transfer->type); return LIBUSB_ERROR_INVALID_PARAM; } } static void windows_transfer_callback(struct usbi_transfer *itransfer, uint32_t io_result, uint32_t io_size) { struct libusb_transfer *transfer = __USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer); struct windows_device_priv *priv = __device_priv(transfer->dev_handle->dev); int status; usbi_dbg("handling I/O completion with errcode %d", io_result); switch(io_result) { case NO_ERROR: status = priv->apib->copy_transfer_data(itransfer, io_size); break; case ERROR_GEN_FAILURE: usbi_dbg("detected endpoint stall"); status = LIBUSB_TRANSFER_STALL; break; case ERROR_SEM_TIMEOUT: usbi_dbg("detected semaphore timeout"); status = LIBUSB_TRANSFER_TIMED_OUT; break; case ERROR_OPERATION_ABORTED: if (itransfer->flags & USBI_TRANSFER_TIMED_OUT) { usbi_dbg("detected timeout"); status = LIBUSB_TRANSFER_TIMED_OUT; } else { usbi_dbg("detected operation aborted"); status = LIBUSB_TRANSFER_CANCELLED; } break; default: usbi_err(ITRANSFER_CTX(itransfer), "detected I/O error: %s", windows_error_str(0)); status = LIBUSB_TRANSFER_ERROR; break; } windows_clear_transfer_priv(itransfer); // Cancel polling usbi_handle_transfer_completion(itransfer, status); } static void windows_handle_callback (struct usbi_transfer *itransfer, uint32_t io_result, uint32_t io_size) { struct libusb_transfer *transfer = __USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer); switch (transfer->type) { case LIBUSB_TRANSFER_TYPE_CONTROL: case LIBUSB_TRANSFER_TYPE_BULK: case LIBUSB_TRANSFER_TYPE_INTERRUPT: case LIBUSB_TRANSFER_TYPE_ISOCHRONOUS: windows_transfer_callback (itransfer, io_result, io_size); break; default: usbi_err(ITRANSFER_CTX(itransfer), "unknown endpoint type %d", transfer->type); } } static int windows_handle_events(struct libusb_context *ctx, struct pollfd *fds, nfds_t nfds, int num_ready) { struct windows_transfer_priv* transfer_priv = NULL; nfds_t i = 0; bool found = false; struct usbi_transfer *transfer; DWORD io_size, io_result; usbi_mutex_lock(&ctx->open_devs_lock); for (i = 0; i < nfds && num_ready > 0; i++) { usbi_dbg("checking fd %d with revents = %04x", fds[i].fd, fds[i].revents); if (!fds[i].revents) { continue; } num_ready--; // Because a Windows OVERLAPPED is used for poll emulation, // a pollable fd is created and stored with each transfer usbi_mutex_lock(&ctx->flying_transfers_lock); list_for_each_entry(transfer, &ctx->flying_transfers, list, struct usbi_transfer) { transfer_priv = usbi_transfer_get_os_priv(transfer); if (transfer_priv->pollable_fd.fd == fds[i].fd) { found = true; break; } } usbi_mutex_unlock(&ctx->flying_transfers_lock); if (found) { // Handle async requests that completed synchronously first if (HasOverlappedIoCompletedSync(transfer_priv->pollable_fd.overlapped)) { io_result = NO_ERROR; io_size = (DWORD)transfer_priv->pollable_fd.overlapped->InternalHigh; // Regular async overlapped } else if (GetOverlappedResult(transfer_priv->pollable_fd.handle, transfer_priv->pollable_fd.overlapped, &io_size, false)) { io_result = NO_ERROR; } else { io_result = GetLastError(); } usbi_remove_pollfd(ctx, transfer_priv->pollable_fd.fd); // let handle_callback free the event using the transfer wfd // If you don't use the transfer wfd, you run a risk of trying to free a // newly allocated wfd that took the place of the one from the transfer. windows_handle_callback(transfer, io_result, io_size); } else { usbi_err(ctx, "could not find a matching transfer for fd %x", fds[i]); return LIBUSB_ERROR_NOT_FOUND; } } usbi_mutex_unlock(&ctx->open_devs_lock); return LIBUSB_SUCCESS; } /* * Monotonic and real time functions */ unsigned __stdcall windows_clock_gettime_threaded(void* param) { LARGE_INTEGER hires_counter, li_frequency; LONG nb_responses; int timer_index; // Init - find out if we have access to a monotonic (hires) timer if (!QueryPerformanceFrequency(&li_frequency)) { usbi_dbg("no hires timer available on this platform"); hires_frequency = 0; hires_ticks_to_ps = UINT64_C(0); } else { hires_frequency = li_frequency.QuadPart; // The hires frequency can go as high as 4 GHz, so we'll use a conversion // to picoseconds to compute the tv_nsecs part in clock_gettime hires_ticks_to_ps = UINT64_C(1000000000000) / hires_frequency; usbi_dbg("hires timer available (Frequency: %"PRIu64" Hz)", hires_frequency); } // Main loop - wait for requests while (1) { timer_index = WaitForMultipleObjects(2, timer_request, FALSE, INFINITE) - WAIT_OBJECT_0; if ( (timer_index != 0) && (timer_index != 1) ) { usbi_dbg("failure to wait on requests: %s", windows_error_str(0)); continue; } if (request_count[timer_index] == 0) { // Request already handled ResetEvent(timer_request[timer_index]); // There's still a possiblity that a thread sends a request between the // time we test request_count[] == 0 and we reset the event, in which case // the request would be ignored. The simple solution to that is to test // request_count again and process requests if non zero. if (request_count[timer_index] == 0) continue; } switch (timer_index) { case 0: WaitForSingleObject(timer_mutex, INFINITE); // Requests to this thread are for hires always if (QueryPerformanceCounter(&hires_counter) != 0) { timer_tp.tv_sec = (long)(hires_counter.QuadPart / hires_frequency); timer_tp.tv_nsec = (long)(((hires_counter.QuadPart % hires_frequency)/1000) * hires_ticks_to_ps); } else { // Fallback to real-time if we can't get monotonic value // Note that real-time clock does not wait on the mutex or this thread. windows_clock_gettime(USBI_CLOCK_REALTIME, &timer_tp); } ReleaseMutex(timer_mutex); INIT_INTERLOCKEDEXCHANGE; nb_responses = pInterlockedExchange((LONG*)&request_count[0], 0); if ( (nb_responses) && (ReleaseSemaphore(timer_response, nb_responses, NULL) == 0) ) { usbi_dbg("unable to release timer semaphore %d: %s", windows_error_str(0)); } continue; case 1: // time to quit usbi_dbg("timer thread quitting"); return 0; } } usbi_dbg("ERROR: broken timer thread"); return 1; } static int windows_clock_gettime(int clk_id, struct timespec *tp) { FILETIME filetime; ULARGE_INTEGER rtime; DWORD r; switch(clk_id) { case USBI_CLOCK_MONOTONIC: if (hires_frequency != 0) { INIT_INTERLOCKEDINCREMENT; while (1) { pInterlockedIncrement((LONG*)&request_count[0]); SetEvent(timer_request[0]); r = WaitForSingleObject(timer_response, TIMER_REQUEST_RETRY_MS); switch(r) { case WAIT_OBJECT_0: WaitForSingleObject(timer_mutex, INFINITE); *tp = timer_tp; ReleaseMutex(timer_mutex); return LIBUSB_SUCCESS; case WAIT_TIMEOUT: usbi_dbg("could not obtain a timer value within reasonable timeframe - too much load?"); break; // Retry until successful default: usbi_dbg("WaitForSingleObject failed: %s", windows_error_str(0)); return LIBUSB_ERROR_OTHER; } } } // Fall through and return real-time if monotonic was not detected @ timer init case USBI_CLOCK_REALTIME: // We follow http://msdn.microsoft.com/en-us/library/ms724928%28VS.85%29.aspx // with a predef epoch_time to have an epoch that starts at 1970.01.01 00:00 // Note however that our resolution is bounded by the Windows system time // functions and is at best of the order of 1 ms (or, usually, worse) GetSystemTimeAsFileTime(&filetime); rtime.LowPart = filetime.dwLowDateTime; rtime.HighPart = filetime.dwHighDateTime; rtime.QuadPart -= epoch_time; tp->tv_sec = (long)(rtime.QuadPart / 10000000); tp->tv_nsec = (long)((rtime.QuadPart % 10000000)*100); return LIBUSB_SUCCESS; default: return LIBUSB_ERROR_INVALID_PARAM; } } // NB: MSVC6 does not support named initializers. const struct usbi_os_backend windows_backend = { "Windows", windows_init, windows_exit, windows_get_device_list, windows_open, windows_close, windows_get_device_descriptor, windows_get_active_config_descriptor, windows_get_config_descriptor, windows_get_configuration, windows_set_configuration, windows_claim_interface, windows_release_interface, windows_set_interface_altsetting, windows_clear_halt, windows_reset_device, windows_kernel_driver_active, windows_detach_kernel_driver, windows_attach_kernel_driver, windows_destroy_device, windows_submit_transfer, windows_cancel_transfer, windows_clear_transfer_priv, windows_handle_events, windows_clock_gettime, #if defined(USBI_TIMERFD_AVAILABLE) NULL, #endif sizeof(struct windows_device_priv), sizeof(struct windows_device_handle_priv), sizeof(struct windows_transfer_priv), 0, }; /* * USB API backends */ static int unsupported_init(struct libusb_context *ctx) { return LIBUSB_SUCCESS; } static int unsupported_exit(void) { return LIBUSB_SUCCESS; } static int unsupported_open(struct libusb_device_handle *dev_handle) { PRINT_UNSUPPORTED_API(open); } static void unsupported_close(struct libusb_device_handle *dev_handle) { usbi_dbg("unsupported API call for 'close'"); } static int unsupported_claim_interface(struct libusb_device_handle *dev_handle, int iface) { PRINT_UNSUPPORTED_API(claim_interface); } static int unsupported_set_interface_altsetting(struct libusb_device_handle *dev_handle, int iface, int altsetting) { PRINT_UNSUPPORTED_API(set_interface_altsetting); } static int unsupported_release_interface(struct libusb_device_handle *dev_handle, int iface) { PRINT_UNSUPPORTED_API(release_interface); } static int unsupported_clear_halt(struct libusb_device_handle *dev_handle, unsigned char endpoint) { PRINT_UNSUPPORTED_API(clear_halt); } static int unsupported_reset_device(struct libusb_device_handle *dev_handle) { PRINT_UNSUPPORTED_API(reset_device); } static int unsupported_submit_bulk_transfer(struct usbi_transfer *itransfer) { PRINT_UNSUPPORTED_API(submit_bulk_transfer); } static int unsupported_submit_iso_transfer(struct usbi_transfer *itransfer) { PRINT_UNSUPPORTED_API(submit_iso_transfer); } static int unsupported_submit_control_transfer(struct usbi_transfer *itransfer) { PRINT_UNSUPPORTED_API(submit_control_transfer); } static int unsupported_abort_control(struct usbi_transfer *itransfer) { PRINT_UNSUPPORTED_API(abort_control); } static int unsupported_abort_transfers(struct usbi_transfer *itransfer) { PRINT_UNSUPPORTED_API(abort_transfers); } static int unsupported_copy_transfer_data(struct usbi_transfer *itransfer, uint32_t io_size) { PRINT_UNSUPPORTED_API(copy_transfer_data); } // These names must be uppercase const char* composite_driver_names[] = {"USBCCGP"}; const char* winusb_driver_names[] = {"WINUSB"}; const char* hid_driver_names[] = {"HIDUSB", "MOUHID", "KBDHID"}; const struct windows_usb_api_backend usb_api_backend[USB_API_MAX] = { { USB_API_UNSUPPORTED, "Unsupported API", &CLASS_GUID_UNSUPPORTED, NULL, 0, unsupported_init, unsupported_exit, unsupported_open, unsupported_close, unsupported_claim_interface, unsupported_set_interface_altsetting, unsupported_release_interface, unsupported_clear_halt, unsupported_reset_device, unsupported_submit_bulk_transfer, unsupported_submit_iso_transfer, unsupported_submit_control_transfer, unsupported_abort_control, unsupported_abort_transfers, unsupported_copy_transfer_data, }, { USB_API_COMPOSITE, "Composite API", &CLASS_GUID_COMPOSITE, composite_driver_names, sizeof(composite_driver_names)/sizeof(composite_driver_names[0]), composite_init, composite_exit, composite_open, composite_close, composite_claim_interface, composite_set_interface_altsetting, composite_release_interface, composite_clear_halt, composite_reset_device, composite_submit_bulk_transfer, composite_submit_iso_transfer, composite_submit_control_transfer, composite_abort_control, composite_abort_transfers, composite_copy_transfer_data, }, { USB_API_WINUSB, "WinUSB API", &CLASS_GUID_LIBUSB_WINUSB, winusb_driver_names, sizeof(winusb_driver_names)/sizeof(winusb_driver_names[0]), winusb_init, winusb_exit, winusb_open, winusb_close, winusb_claim_interface, winusb_set_interface_altsetting, winusb_release_interface, winusb_clear_halt, winusb_reset_device, winusb_submit_bulk_transfer, unsupported_submit_iso_transfer, winusb_submit_control_transfer, winusb_abort_control, winusb_abort_transfers, winusb_copy_transfer_data, }, { USB_API_HID, "HID API", &CLASS_GUID_HID, hid_driver_names, sizeof(hid_driver_names)/sizeof(hid_driver_names[0]), hid_init, hid_exit, hid_open, hid_close, hid_claim_interface, hid_set_interface_altsetting, hid_release_interface, hid_clear_halt, hid_reset_device, hid_submit_bulk_transfer, unsupported_submit_iso_transfer, hid_submit_control_transfer, hid_abort_transfers, hid_abort_transfers, hid_copy_transfer_data, }, }; /* * WinUSB API functions */ static int winusb_init(struct libusb_context *ctx) { DLL_LOAD(winusb.dll, WinUsb_Initialize, TRUE); DLL_LOAD(winusb.dll, WinUsb_Free, TRUE); DLL_LOAD(winusb.dll, WinUsb_GetAssociatedInterface, TRUE); DLL_LOAD(winusb.dll, WinUsb_GetDescriptor, TRUE); DLL_LOAD(winusb.dll, WinUsb_QueryInterfaceSettings, TRUE); DLL_LOAD(winusb.dll, WinUsb_QueryDeviceInformation, TRUE); DLL_LOAD(winusb.dll, WinUsb_SetCurrentAlternateSetting, TRUE); DLL_LOAD(winusb.dll, WinUsb_GetCurrentAlternateSetting, TRUE); DLL_LOAD(winusb.dll, WinUsb_QueryPipe, TRUE); DLL_LOAD(winusb.dll, WinUsb_SetPipePolicy, TRUE); DLL_LOAD(winusb.dll, WinUsb_GetPipePolicy, TRUE); DLL_LOAD(winusb.dll, WinUsb_ReadPipe, TRUE); DLL_LOAD(winusb.dll, WinUsb_WritePipe, TRUE); DLL_LOAD(winusb.dll, WinUsb_ControlTransfer, TRUE); DLL_LOAD(winusb.dll, WinUsb_ResetPipe, TRUE); DLL_LOAD(winusb.dll, WinUsb_AbortPipe, TRUE); DLL_LOAD(winusb.dll, WinUsb_FlushPipe, TRUE); api_winusb_available = true; return LIBUSB_SUCCESS; } static int winusb_exit(void) { return LIBUSB_SUCCESS; } // NB: open and close must ensure that they only handle interface of // the right API type, as these functions can be called wholesale from // composite_open(), with interfaces belonging to different APIs static int winusb_open(struct libusb_device_handle *dev_handle) { struct libusb_context *ctx = DEVICE_CTX(dev_handle->dev); struct windows_device_priv *priv = __device_priv(dev_handle->dev); struct windows_device_handle_priv *handle_priv = __device_handle_priv(dev_handle); HANDLE file_handle; int i; CHECK_WINUSB_AVAILABLE; // WinUSB requires a seperate handle for each interface for (i = 0; i < USB_MAXINTERFACES; i++) { if ( (priv->usb_interface[i].path != NULL) && (priv->usb_interface[i].apib->id == USB_API_WINUSB) ) { file_handle = CreateFileA(priv->usb_interface[i].path, GENERIC_WRITE | GENERIC_READ, FILE_SHARE_WRITE | FILE_SHARE_READ, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL | FILE_FLAG_OVERLAPPED, NULL); if (file_handle == INVALID_HANDLE_VALUE) { usbi_err(ctx, "could not open device %s (interface %d): %s", priv->usb_interface[i].path, i, windows_error_str(0)); switch(GetLastError()) { case ERROR_FILE_NOT_FOUND: // The device was disconnected return LIBUSB_ERROR_NO_DEVICE; case ERROR_ACCESS_DENIED: return LIBUSB_ERROR_ACCESS; default: return LIBUSB_ERROR_IO; } } handle_priv->interface_handle[i].dev_handle = file_handle; } } return LIBUSB_SUCCESS; } static void winusb_close(struct libusb_device_handle *dev_handle) { struct windows_device_handle_priv *handle_priv = __device_handle_priv(dev_handle); struct windows_device_priv *priv = __device_priv(dev_handle->dev); HANDLE file_handle; int i; if (!api_winusb_available) return; for (i = 0; i < USB_MAXINTERFACES; i++) { if (priv->usb_interface[i].apib->id == USB_API_WINUSB) { file_handle = handle_priv->interface_handle[i].dev_handle; if ( (file_handle != 0) && (file_handle != INVALID_HANDLE_VALUE)) { CloseHandle(file_handle); } } } } static int winusb_claim_interface(struct libusb_device_handle *dev_handle, int iface) { struct libusb_context *ctx = DEVICE_CTX(dev_handle->dev); struct windows_device_handle_priv *handle_priv = __device_handle_priv(dev_handle); struct windows_device_priv *priv = __device_priv(dev_handle->dev); bool is_using_usbccgp = (priv->apib->id == USB_API_COMPOSITE); HANDLE file_handle, winusb_handle; UCHAR policy; uint8_t endpoint_address; int i; CHECK_WINUSB_AVAILABLE; // If the device is composite, but using the default Windows composite parent driver (usbccgp) // or if it's the first WinUSB interface, we get a handle through WinUsb_Initialize(). if ((is_using_usbccgp) || (iface == 0)) { // composite device (independent interfaces) or interface 0 winusb_handle = handle_priv->interface_handle[iface].api_handle; file_handle = handle_priv->interface_handle[iface].dev_handle; if ((file_handle == 0) || (file_handle == INVALID_HANDLE_VALUE)) { return LIBUSB_ERROR_NOT_FOUND; } if (!WinUsb_Initialize(file_handle, &winusb_handle)) { usbi_err(ctx, "could not access interface %d: %s", iface, windows_error_str(0)); handle_priv->interface_handle[iface].api_handle = INVALID_HANDLE_VALUE; switch(GetLastError()) { case ERROR_BAD_COMMAND: // The device was disconnected return LIBUSB_ERROR_NO_DEVICE; default: usbi_err(ctx, "could not claim interface %d: %s", iface, windows_error_str(0)); return LIBUSB_ERROR_ACCESS; } } handle_priv->interface_handle[iface].api_handle = winusb_handle; } else { // For all other interfaces, use WinUsb_GetAssociatedInterface() winusb_handle = handle_priv->interface_handle[0].api_handle; // It is a requirement for multiple interface devices on Windows that, to you // must first claim the first interface before you claim the others if ((winusb_handle == 0) || (winusb_handle == INVALID_HANDLE_VALUE)) { #if defined(AUTO_CLAIM) file_handle = handle_priv->interface_handle[0].dev_handle; if (WinUsb_Initialize(file_handle, &winusb_handle)) { handle_priv->interface_handle[0].api_handle = winusb_handle; usbi_warn(ctx, "auto-claimed interface 0 (required to claim %d with WinUSB)", iface); } else { usbi_warn(ctx, "failed to auto-claim interface 0 (required to claim %d with WinUSB)", iface); return LIBUSB_ERROR_ACCESS; } #else usbi_warn(ctx, "you must claim interface 0 before you can claim %d with WinUSB", iface); return LIBUSB_ERROR_ACCESS; #endif } if (!WinUsb_GetAssociatedInterface(winusb_handle, (UCHAR)(iface-1), &handle_priv->interface_handle[iface].api_handle)) { handle_priv->interface_handle[iface].api_handle = INVALID_HANDLE_VALUE; switch(GetLastError()) { case ERROR_NO_MORE_ITEMS: // invalid iface return LIBUSB_ERROR_NOT_FOUND; case ERROR_BAD_COMMAND: // The device was disconnected return LIBUSB_ERROR_NO_DEVICE; case ERROR_ALREADY_EXISTS: // already claimed return LIBUSB_ERROR_BUSY; default: usbi_err(ctx, "could not claim interface %d: %s", iface, windows_error_str(0)); return LIBUSB_ERROR_ACCESS; } } } usbi_dbg("claimed interface %d", iface); handle_priv->active_interface = iface; // With handle and enpoints set (in parent), we can setup the default // pipe properties (copied from libusb-win32-v1) // see http://download.microsoft.com/download/D/1/D/D1DD7745-426B-4CC3-A269-ABBBE427C0EF/DVC-T705_DDC08.pptx for (i=0; iusb_interface[iface].nb_endpoints; i++) { endpoint_address = priv->usb_interface[iface].endpoint[i]; policy = false; if (!WinUsb_SetPipePolicy(winusb_handle, endpoint_address, SHORT_PACKET_TERMINATE, sizeof(UCHAR), &policy)) { usbi_dbg("failed to disable SHORT_PACKET_TERMINATE for endpoint %02X", endpoint_address); } if (!WinUsb_SetPipePolicy(winusb_handle, endpoint_address, IGNORE_SHORT_PACKETS, sizeof(UCHAR), &policy)) { usbi_dbg("failed to disable IGNORE_SHORT_PACKETS for endpoint %02X", endpoint_address); } if (!WinUsb_SetPipePolicy(winusb_handle, endpoint_address, ALLOW_PARTIAL_READS, sizeof(UCHAR), &policy)) { usbi_dbg("failed to disable ALLOW_PARTIAL_READS for endpoint %02X", endpoint_address); } policy = true; if (!WinUsb_SetPipePolicy(winusb_handle, endpoint_address, AUTO_CLEAR_STALL, sizeof(UCHAR), &policy)) { usbi_dbg("failed to enable AUTO_CLEAR_STALL for endpoint %02X", endpoint_address); } } return LIBUSB_SUCCESS; } static int winusb_release_interface(struct libusb_device_handle *dev_handle, int iface) { struct windows_device_handle_priv *handle_priv = __device_handle_priv(dev_handle); HANDLE winusb_handle; CHECK_WINUSB_AVAILABLE; winusb_handle = handle_priv->interface_handle[iface].api_handle; if ((winusb_handle == 0) || (winusb_handle == INVALID_HANDLE_VALUE)) { return LIBUSB_ERROR_NOT_FOUND; } WinUsb_Free(winusb_handle); handle_priv->interface_handle[iface].api_handle = INVALID_HANDLE_VALUE; return LIBUSB_SUCCESS; } /* * Return the first valid interface (of the same API type), for control transfers */ static int get_valid_interface(struct libusb_device_handle *dev_handle, int api_id) { struct windows_device_handle_priv *handle_priv = __device_handle_priv(dev_handle); struct windows_device_priv *priv = __device_priv(dev_handle->dev); int i; if ((api_id < USB_API_WINUSB) || (api_id > USB_API_HID)) { usbi_dbg("unsupported API ID"); return -1; } for (i=0; iinterface_handle[i].dev_handle != 0) && (handle_priv->interface_handle[i].dev_handle != INVALID_HANDLE_VALUE) && (handle_priv->interface_handle[i].api_handle != 0) && (handle_priv->interface_handle[i].api_handle != INVALID_HANDLE_VALUE) && (priv->usb_interface[i].apib == &usb_api_backend[api_id]) ) { return i; } } return -1; } /* * Lookup interface by endpoint address. -1 if not found */ static int interface_by_endpoint(struct windows_device_priv *priv, struct windows_device_handle_priv *handle_priv, uint8_t endpoint_address) { int i, j; for (i=0; iinterface_handle[i].api_handle == INVALID_HANDLE_VALUE) continue; if (handle_priv->interface_handle[i].api_handle == 0) continue; if (priv->usb_interface[i].endpoint == NULL) continue; for (j=0; jusb_interface[i].nb_endpoints; j++) { if (priv->usb_interface[i].endpoint[j] == endpoint_address) { return i; } } } return -1; } static int winusb_submit_control_transfer(struct usbi_transfer *itransfer) { struct libusb_transfer *transfer = __USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer); struct libusb_context *ctx = DEVICE_CTX(transfer->dev_handle->dev); struct windows_transfer_priv *transfer_priv = usbi_transfer_get_os_priv(itransfer); struct windows_device_handle_priv *handle_priv = __device_handle_priv( transfer->dev_handle); WINUSB_SETUP_PACKET *setup = (WINUSB_SETUP_PACKET *) transfer->buffer; ULONG size; HANDLE winusb_handle; int current_interface; struct winfd wfd; CHECK_WINUSB_AVAILABLE; transfer_priv->pollable_fd = INVALID_WINFD; size = transfer->length - LIBUSB_CONTROL_SETUP_SIZE; if (size > MAX_CTRL_BUFFER_LENGTH) return LIBUSB_ERROR_INVALID_PARAM; current_interface = get_valid_interface(transfer->dev_handle, USB_API_WINUSB); if (current_interface < 0) { #if defined(AUTO_CLAIM) if (auto_claim(transfer, ¤t_interface, USB_API_WINUSB) != LIBUSB_SUCCESS) { return LIBUSB_ERROR_NOT_FOUND; } #else usbi_warn(ctx, "no interface available for control transfer"); return LIBUSB_ERROR_NOT_FOUND; #endif } usbi_dbg("will use interface %d", current_interface); winusb_handle = handle_priv->interface_handle[current_interface].api_handle; wfd = usbi_create_fd(winusb_handle, _O_RDONLY); // Always use the handle returned from usbi_create_fd (wfd.handle) if (wfd.fd < 0) { return LIBUSB_ERROR_NO_MEM; } if (!WinUsb_ControlTransfer(wfd.handle, *setup, transfer->buffer + LIBUSB_CONTROL_SETUP_SIZE, size, NULL, wfd.overlapped)) { if(GetLastError() != ERROR_IO_PENDING) { usbi_err(ctx, "WinUsb_ControlTransfer failed: %s", windows_error_str(0)); usbi_free_fd(wfd.fd); return LIBUSB_ERROR_IO; } } else { wfd.overlapped->Internal = STATUS_COMPLETED_SYNCHRONOUSLY; wfd.overlapped->InternalHigh = (DWORD)size; } // Use priv_transfer to store data needed for async polling transfer_priv->pollable_fd = wfd; transfer_priv->interface_number = (uint8_t)current_interface; return LIBUSB_SUCCESS; } static int winusb_set_interface_altsetting(struct libusb_device_handle *dev_handle, int iface, int altsetting) { struct libusb_context *ctx = DEVICE_CTX(dev_handle->dev); struct windows_device_handle_priv *handle_priv = __device_handle_priv(dev_handle); HANDLE winusb_handle; CHECK_WINUSB_AVAILABLE; if (altsetting > 255) { return LIBUSB_ERROR_INVALID_PARAM; } winusb_handle = handle_priv->interface_handle[iface].api_handle; if ((winusb_handle == 0) || (winusb_handle == INVALID_HANDLE_VALUE)) { usbi_err(ctx, "interface must be claimed first"); return LIBUSB_ERROR_NOT_FOUND; } if (!WinUsb_SetCurrentAlternateSetting(winusb_handle, (UCHAR)altsetting)) { usbi_err(ctx, "WinUsb_SetCurrentAlternateSetting failed: %s", windows_error_str(0)); return LIBUSB_ERROR_IO; } return LIBUSB_SUCCESS; } static int winusb_submit_bulk_transfer(struct usbi_transfer *itransfer) { struct libusb_transfer *transfer = __USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer); struct libusb_context *ctx = DEVICE_CTX(transfer->dev_handle->dev); struct windows_transfer_priv *transfer_priv = usbi_transfer_get_os_priv(itransfer); struct windows_device_handle_priv *handle_priv = __device_handle_priv(transfer->dev_handle); struct windows_device_priv *priv = __device_priv(transfer->dev_handle->dev); HANDLE winusb_handle; bool direction_in, ret; int current_interface; struct winfd wfd; CHECK_WINUSB_AVAILABLE; transfer_priv->pollable_fd = INVALID_WINFD; current_interface = interface_by_endpoint(priv, handle_priv, transfer->endpoint); if (current_interface < 0) { usbi_err(ctx, "unable to match endpoint to an open interface - cancelling transfer"); return LIBUSB_ERROR_NOT_FOUND; } usbi_dbg("matched endpoint %02X with interface %d", transfer->endpoint, current_interface); winusb_handle = handle_priv->interface_handle[current_interface].api_handle; direction_in = transfer->endpoint & LIBUSB_ENDPOINT_IN; wfd = usbi_create_fd(winusb_handle, direction_in?_O_RDONLY:_O_WRONLY); // Always use the handle returned from usbi_create_fd (wfd.handle) if (wfd.fd < 0) { return LIBUSB_ERROR_NO_MEM; } if (direction_in) { usbi_dbg("reading %d bytes", transfer->length); ret = WinUsb_ReadPipe(wfd.handle, transfer->endpoint, transfer->buffer, transfer->length, NULL, wfd.overlapped); } else { usbi_dbg("writing %d bytes", transfer->length); ret = WinUsb_WritePipe(wfd.handle, transfer->endpoint, transfer->buffer, transfer->length, NULL, wfd.overlapped); } if (!ret) { if(GetLastError() != ERROR_IO_PENDING) { usbi_err(ctx, "WinUsb_Pipe Transfer failed: %s", windows_error_str(0)); usbi_free_fd(wfd.fd); return LIBUSB_ERROR_IO; } } else { wfd.overlapped->Internal = STATUS_COMPLETED_SYNCHRONOUSLY; wfd.overlapped->InternalHigh = (DWORD)transfer->length; } transfer_priv->pollable_fd = wfd; transfer_priv->interface_number = (uint8_t)current_interface; return LIBUSB_SUCCESS; } static int winusb_clear_halt(struct libusb_device_handle *dev_handle, unsigned char endpoint) { struct libusb_context *ctx = DEVICE_CTX(dev_handle->dev); struct windows_device_handle_priv *handle_priv = __device_handle_priv(dev_handle); struct windows_device_priv *priv = __device_priv(dev_handle->dev); HANDLE winusb_handle; int current_interface; CHECK_WINUSB_AVAILABLE; current_interface = interface_by_endpoint(priv, handle_priv, endpoint); if (current_interface < 0) { usbi_err(ctx, "unable to match endpoint to an open interface - cannot clear"); return LIBUSB_ERROR_NOT_FOUND; } usbi_dbg("matched endpoint %02X with interface %d", endpoint, current_interface); winusb_handle = handle_priv->interface_handle[current_interface].api_handle; if (!WinUsb_ResetPipe(winusb_handle, endpoint)) { usbi_err(ctx, "WinUsb_ResetPipe failed: %s", windows_error_str(0)); return LIBUSB_ERROR_NO_DEVICE; } return LIBUSB_SUCCESS; } /* * from http://www.winvistatips.com/winusb-bugchecks-t335323.html (confirmed * through testing as well): * "You can not call WinUsb_AbortPipe on control pipe. You can possibly cancel * the control transfer using CancelIo" */ static int winusb_abort_control(struct usbi_transfer *itransfer) { // Cancelling of the I/O is done in the parent return LIBUSB_SUCCESS; } static int winusb_abort_transfers(struct usbi_transfer *itransfer) { struct libusb_transfer *transfer = __USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer); struct libusb_context *ctx = DEVICE_CTX(transfer->dev_handle->dev); struct windows_device_handle_priv *handle_priv = __device_handle_priv(transfer->dev_handle); struct windows_transfer_priv *transfer_priv = usbi_transfer_get_os_priv(itransfer); HANDLE winusb_handle; int current_interface; CHECK_WINUSB_AVAILABLE; current_interface = transfer_priv->interface_number; if ((current_interface < 0) || (current_interface >= USB_MAXINTERFACES)) { usbi_err(ctx, "program assertion failed: invalid interface_number"); return LIBUSB_ERROR_NOT_FOUND; } usbi_dbg("will use interface %d", current_interface); winusb_handle = handle_priv->interface_handle[current_interface].api_handle; if (!WinUsb_AbortPipe(winusb_handle, transfer->endpoint)) { usbi_err(ctx, "WinUsb_AbortPipe failed: %s", windows_error_str(0)); return LIBUSB_ERROR_NO_DEVICE; } return LIBUSB_SUCCESS; } /* * from the "How to Use WinUSB to Communicate with a USB Device" Microsoft white paper * (http://www.microsoft.com/whdc/connect/usb/winusb_howto.mspx): * "WinUSB does not support host-initiated reset port and cycle port operations" and * IOCTL_INTERNAL_USB_CYCLE_PORT is only available in kernel mode and the * IOCTL_USB_HUB_CYCLE_PORT ioctl was removed from Vista => the best we can do is * cycle the pipes (and even then, the control pipe can not be reset using WinUSB) */ // TODO (2nd official release): see if we can force eject the device and redetect it (reuse hotplug?) static int winusb_reset_device(struct libusb_device_handle *dev_handle) { struct libusb_context *ctx = DEVICE_CTX(dev_handle->dev); struct windows_device_handle_priv *handle_priv = __device_handle_priv(dev_handle); struct windows_device_priv *priv = __device_priv(dev_handle->dev); struct winfd wfd; HANDLE winusb_handle; int i, j; CHECK_WINUSB_AVAILABLE; // Reset any available pipe (except control) for (i=0; iinterface_handle[i].api_handle; for (wfd = handle_to_winfd(winusb_handle); wfd.fd > 0;) { // Cancel any pollable I/O usbi_remove_pollfd(ctx, wfd.fd); usbi_free_fd(wfd.fd); wfd = handle_to_winfd(winusb_handle); } if ( (winusb_handle != 0) && (winusb_handle != INVALID_HANDLE_VALUE)) { for (j=0; jusb_interface[i].nb_endpoints; j++) { usbi_dbg("resetting ep %02X", priv->usb_interface[i].endpoint[j]); if (!WinUsb_AbortPipe(winusb_handle, priv->usb_interface[i].endpoint[j])) { usbi_err(ctx, "WinUsb_AbortPipe (pipe address %02X) failed: %s", priv->usb_interface[i].endpoint[j], windows_error_str(0)); } // FlushPipe seems to fail on OUT pipes if ( (priv->usb_interface[i].endpoint[j] & LIBUSB_ENDPOINT_IN) && (!WinUsb_FlushPipe(winusb_handle, priv->usb_interface[i].endpoint[j])) ) { usbi_err(ctx, "WinUsb_FlushPipe (pipe address %02X) failed: %s", priv->usb_interface[i].endpoint[j], windows_error_str(0)); } if (!WinUsb_ResetPipe(winusb_handle, priv->usb_interface[i].endpoint[j])) { usbi_err(ctx, "WinUsb_ResetPipe (pipe address %02X) failed: %s", priv->usb_interface[i].endpoint[j], windows_error_str(0)); } } } } return LIBUSB_SUCCESS; } static int winusb_copy_transfer_data(struct usbi_transfer *itransfer, uint32_t io_size) { itransfer->transferred += io_size; return LIBUSB_TRANSFER_COMPLETED; } /* * Internal HID Support functions (from libusb-win32) * Note that functions that complete data transfer synchronously must return * LIBUSB_COMPLETED instead of LIBUSB_SUCCESS */ static int _hid_get_hid_descriptor(struct hid_device_priv* dev, void *data, size_t *size); static int _hid_get_report_descriptor(struct hid_device_priv* dev, void *data, size_t *size); static int _hid_wcslen(WCHAR *str) { int i = 0; while (str[i] && (str[i] != 0x409)) { i++; } return i; } static int _hid_get_device_descriptor(struct hid_device_priv* dev, void *data, size_t *size) { struct libusb_device_descriptor d; d.bLength = LIBUSB_DT_DEVICE_SIZE; d.bDescriptorType = LIBUSB_DT_DEVICE; d.bcdUSB = 0x0200; /* 2.00 */ d.bDeviceClass = 0; d.bDeviceSubClass = 0; d.bDeviceProtocol = 0; d.bMaxPacketSize0 = 64; /* fix this! */ d.idVendor = (uint16_t)dev->vid; d.idProduct = (uint16_t)dev->pid; d.bcdDevice = 0x0100; d.iManufacturer = dev->string_index[0]; d.iProduct = dev->string_index[1]; d.iSerialNumber = dev->string_index[2]; d.bNumConfigurations = 1; if (*size > LIBUSB_DT_DEVICE_SIZE) *size = LIBUSB_DT_DEVICE_SIZE; memcpy(data, &d, *size); return LIBUSB_COMPLETED; } static int _hid_get_config_descriptor(struct hid_device_priv* dev, void *data, size_t *size) { char num_endpoints = 0; size_t config_total_len = 0; char tmp[HID_MAX_CONFIG_DESC_SIZE]; struct libusb_config_descriptor *cd; struct libusb_interface_descriptor *id; struct libusb_hid_descriptor *hd; struct libusb_endpoint_descriptor *ed; size_t tmp_size; if (dev->input_report_size) num_endpoints++; if (dev->output_report_size) num_endpoints++; config_total_len = LIBUSB_DT_CONFIG_SIZE + LIBUSB_DT_INTERFACE_SIZE + LIBUSB_DT_HID_SIZE + num_endpoints * LIBUSB_DT_ENDPOINT_SIZE; cd = (struct libusb_config_descriptor *)tmp; id = (struct libusb_interface_descriptor *)(tmp + LIBUSB_DT_CONFIG_SIZE); hd = (struct libusb_hid_descriptor *)(tmp + LIBUSB_DT_CONFIG_SIZE + LIBUSB_DT_INTERFACE_SIZE); ed = (struct libusb_endpoint_descriptor *)(tmp + LIBUSB_DT_CONFIG_SIZE + LIBUSB_DT_INTERFACE_SIZE + LIBUSB_DT_HID_SIZE); cd->bLength = LIBUSB_DT_CONFIG_SIZE; cd->bDescriptorType = LIBUSB_DT_CONFIG; cd->wTotalLength = (uint16_t) config_total_len; cd->bNumInterfaces = 1; cd->bConfigurationValue = 1; cd->iConfiguration = 0; cd->bmAttributes = 1 << 7; /* bus powered */ cd->MaxPower = 50; id->bLength = LIBUSB_DT_INTERFACE_SIZE; id->bDescriptorType = LIBUSB_DT_INTERFACE; id->bInterfaceNumber = 0; id->bAlternateSetting = 0; id->bNumEndpoints = num_endpoints; id->bInterfaceClass = 3; id->bInterfaceSubClass = 0; id->bInterfaceProtocol = 0; id->iInterface = 0; tmp_size = LIBUSB_DT_HID_SIZE; _hid_get_hid_descriptor(dev, hd, &tmp_size); if (dev->input_report_size) { ed->bLength = LIBUSB_DT_ENDPOINT_SIZE; ed->bDescriptorType = LIBUSB_DT_ENDPOINT; ed->bEndpointAddress = HID_IN_EP; ed->bmAttributes = 3; ed->wMaxPacketSize = dev->input_report_size - 1; ed->bInterval = 10; ed++; } if (dev->output_report_size) { ed->bLength = LIBUSB_DT_ENDPOINT_SIZE; ed->bDescriptorType = LIBUSB_DT_ENDPOINT; ed->bEndpointAddress = HID_OUT_EP; ed->bmAttributes = 3; ed->wMaxPacketSize = dev->output_report_size - 1; ed->bInterval = 10; } if (*size > config_total_len) *size = config_total_len; memcpy(data, tmp, *size); return LIBUSB_COMPLETED; } static int _hid_get_string_descriptor(struct hid_device_priv* dev, int index, void *data, size_t *size) { void *tmp = NULL; size_t tmp_size = 0; int i; /* language ID, EN-US */ char string_langid[] = { 0x09, 0x04 }; if ((*size < 2) || (*size > 255)) { return LIBUSB_ERROR_OVERFLOW; } if (index == 0) { tmp = string_langid; tmp_size = sizeof(string_langid)+2; } else { for (i=0; i<3; i++) { if (index == (dev->string_index[i])) { tmp = dev->string[i]; tmp_size = (_hid_wcslen(dev->string[i])+1) * sizeof(WCHAR); break; } } if (i == 3) { // not found return LIBUSB_ERROR_INVALID_PARAM; } } if(!tmp_size) { return LIBUSB_ERROR_INVALID_PARAM; } if (tmp_size < *size) { *size = tmp_size; } // 2 byte header ((uint8_t*)data)[0] = (uint8_t)*size; ((uint8_t*)data)[1] = LIBUSB_DT_STRING; memcpy((uint8_t*)data+2, tmp, *size-2); return LIBUSB_COMPLETED; } static int _hid_get_hid_descriptor(struct hid_device_priv* dev, void *data, size_t *size) { struct libusb_hid_descriptor d; uint8_t tmp[MAX_HID_DESCRIPTOR_SIZE]; size_t report_len = MAX_HID_DESCRIPTOR_SIZE; _hid_get_report_descriptor(dev, tmp, &report_len); d.bLength = LIBUSB_DT_HID_SIZE; d.bDescriptorType = LIBUSB_DT_HID; d.bcdHID = 0x0110; /* 1.10 */ d.bCountryCode = 0; d.bNumDescriptors = 1; d.bClassDescriptorType = LIBUSB_DT_REPORT; d.wClassDescriptorLength = (uint16_t)report_len; if (*size > LIBUSB_DT_HID_SIZE) *size = LIBUSB_DT_HID_SIZE; memcpy(data, &d, *size); return LIBUSB_COMPLETED; } static int _hid_get_report_descriptor(struct hid_device_priv* dev, void *data, size_t *size) { uint8_t d[MAX_HID_DESCRIPTOR_SIZE]; size_t i = 0; /* usage page (0xFFA0 == vendor defined) */ d[i++] = 0x06; d[i++] = 0xA0; d[i++] = 0xFF; /* usage (vendor defined) */ d[i++] = 0x09; d[i++] = 0x01; /* start collection (application) */ d[i++] = 0xA1; d[i++] = 0x01; /* input report */ if (dev->input_report_size) { /* usage (vendor defined) */ d[i++] = 0x09; d[i++] = 0x01; /* logical minimum (0) */ d[i++] = 0x15; d[i++] = 0x00; /* logical maximum (255) */ d[i++] = 0x25; d[i++] = 0xFF; /* report size (8 bits) */ d[i++] = 0x75; d[i++] = 0x08; /* report count */ d[i++] = 0x95; d[i++] = (uint8_t)dev->input_report_size - 1; /* input (data, variable, absolute) */ d[i++] = 0x81; d[i++] = 0x00; } /* output report */ if (dev->output_report_size) { /* usage (vendor defined) */ d[i++] = 0x09; d[i++] = 0x02; /* logical minimum (0) */ d[i++] = 0x15; d[i++] = 0x00; /* logical maximum (255) */ d[i++] = 0x25; d[i++] = 0xFF; /* report size (8 bits) */ d[i++] = 0x75; d[i++] = 0x08; /* report count */ d[i++] = 0x95; d[i++] = (uint8_t)dev->output_report_size - 1; /* output (data, variable, absolute) */ d[i++] = 0x91; d[i++] = 0x00; } /* feature report */ if (dev->feature_report_size) { /* usage (vendor defined) */ d[i++] = 0x09; d[i++] = 0x03; /* logical minimum (0) */ d[i++] = 0x15; d[i++] = 0x00; /* logical maximum (255) */ d[i++] = 0x25; d[i++] = 0xFF; /* report size (8 bits) */ d[i++] = 0x75; d[i++] = 0x08; /* report count */ d[i++] = 0x95; d[i++] = (uint8_t)dev->feature_report_size - 1; /* feature (data, variable, absolute) */ d[i++] = 0xb2; d[i++] = 0x02; d[i++] = 0x01; } /* end collection */ d[i++] = 0xC0; if (*size > i) *size = i; memcpy(data, d, *size); return LIBUSB_COMPLETED; } static int _hid_get_descriptor(struct hid_device_priv* dev, HANDLE hid_handle, int recipient, int type, int index, void *data, size_t *size) { switch(type) { case LIBUSB_DT_DEVICE: usbi_dbg("LIBUSB_DT_DEVICE"); return _hid_get_device_descriptor(dev, data, size); case LIBUSB_DT_CONFIG: usbi_dbg("LIBUSB_DT_CONFIG"); if (!index) return _hid_get_config_descriptor(dev, data, size); return LIBUSB_ERROR_INVALID_PARAM; case LIBUSB_DT_STRING: usbi_dbg("LIBUSB_DT_STRING"); return _hid_get_string_descriptor(dev, index, data, size); case LIBUSB_DT_HID: usbi_dbg("LIBUSB_DT_HID"); if (!index) return _hid_get_hid_descriptor(dev, data, size); return LIBUSB_ERROR_INVALID_PARAM; case LIBUSB_DT_REPORT: usbi_dbg("LIBUSB_DT_REPORT"); if (!index) return _hid_get_report_descriptor(dev, data, size); return LIBUSB_ERROR_INVALID_PARAM; case LIBUSB_DT_PHYSICAL: usbi_dbg("LIBUSB_DT_PHYSICAL"); if (HidD_GetPhysicalDescriptor(hid_handle, data, (ULONG)*size)) return LIBUSB_COMPLETED; return LIBUSB_ERROR_OTHER; } usbi_dbg("unsupported"); return LIBUSB_ERROR_INVALID_PARAM; } static int _hid_get_report(struct hid_device_priv* dev, HANDLE hid_handle, int id, void *data, struct windows_transfer_priv *tp, size_t *size, OVERLAPPED* overlapped) { uint8_t *buf; DWORD read_size, expected_size = (DWORD)*size; int r = LIBUSB_SUCCESS; if (tp->hid_buffer != NULL) { usbi_dbg("program assertion failed: hid_buffer is not NULL"); } if ((*size == 0) || (*size > MAX_HID_REPORT_SIZE)) { usbi_dbg("invalid size (%d)", *size); return LIBUSB_ERROR_INVALID_PARAM; } // When report IDs are not in use, add an extra byte for the report ID if (id==0) { expected_size++; } // Add a trailing byte to detect overflows buf = (uint8_t*)calloc(expected_size+1, 1); if (buf == NULL) { return LIBUSB_ERROR_NO_MEM; } buf[0] = (uint8_t)id; // Must be set always usbi_dbg("report ID: 0x%02X", buf[0]); // NB: HidD_GetInputReport sends an request to the device for the Input Report // (and blocks until response) whereas ReadFile waits for input to be generated // asynchronously #if !defined(USE_HIDD_FOR_REPORTS) // Use ReadFile instead of HidD_GetInputReport for async I/O // TODO: send a request paquet? tp->hid_expected_size = expected_size; if (!ReadFile(hid_handle, buf, expected_size+1, &read_size, overlapped)) { if (GetLastError() != ERROR_IO_PENDING) { usbi_dbg("Failed to Read HID Input Report: %s", windows_error_str(0)); safe_free(buf); return LIBUSB_ERROR_IO; } // Asynchronous wait tp->hid_buffer = buf; tp->hid_dest = data; // copy dest, as not necessarily the start of the transfer buffer return LIBUSB_SUCCESS; } #else // Synchronous request for the Input Report if (!HidD_GetInputReport(hid_handle, buf, expected_size)) { usbi_dbg("Failed to Read HID Input Report: %s", windows_error_str(0)); safe_free(buf); return LIBUSB_ERROR_IO; } read_size = expected_size; // Can't detect overflows with this API #endif // Transfer completed synchronously => copy and discard extra buffer if (read_size == 0) { usbi_dbg("program assertion failed - read completed synchronously, but no data was read"); *size = 0; } else { if (buf[0] != id) { usbi_warn(NULL, "mismatched report ID (data is %02X, parameter is %02X)", buf[0], id); } if ((size_t)read_size > expected_size) { r = LIBUSB_ERROR_OVERFLOW; usbi_dbg("OVERFLOW!"); } else { r = LIBUSB_COMPLETED; } if (id == 0) { // Discard report ID *size = MIN((size_t)read_size-1, *size); memcpy(data, buf+1, *size); } else { *size = MIN((size_t)read_size, *size); memcpy(data, buf, *size); } } safe_free(buf); return r; } static int _hid_set_report(struct hid_device_priv* dev, HANDLE hid_handle, int id, void *data, struct windows_transfer_priv *tp, size_t *size, OVERLAPPED* overlapped) { uint8_t *buf = NULL; DWORD write_size= (DWORD)*size; if (tp->hid_buffer != NULL) { usbi_dbg("program assertion failed: hid_buffer is not NULL"); } if ((*size == 0) || (*size > MAX_HID_REPORT_SIZE)) { usbi_dbg("invalid size (%d)", *size); return LIBUSB_ERROR_INVALID_PARAM; } usbi_dbg("report ID: 0x%02X", id); // When report IDs are not used (i.e. when id == 0), we must add // a null report ID. Otherwise, we just use original data buffer if (id == 0) { write_size++; } buf = malloc(write_size); if (buf == NULL) { return LIBUSB_ERROR_NO_MEM; } if (id == 0) { buf[0] = 0; memcpy(buf + 1, data, *size); } else { // This seems like a waste, but if we don't duplicate the // data, we'll get issues when freeing hid_buffer memcpy(buf, data, *size); if (buf[0] != id) { usbi_warn(NULL, "mismatched report ID (data is %02X, parameter is %02X)", buf[0], id); } } #if !defined(USE_HIDD_FOR_REPORTS) // Une WriteFile instead of HidD_SetOutputReport for async I/O if (!WriteFile(hid_handle, buf, write_size, &write_size, overlapped)) { if (GetLastError() != ERROR_IO_PENDING) { usbi_dbg("Failed to Write HID Output Report: %s", windows_error_str(0)); safe_free(buf); return LIBUSB_ERROR_IO; } tp->hid_buffer = buf; tp->hid_dest = NULL; return LIBUSB_SUCCESS; } #else if (!HidD_SetOutputReport(hid_handle, buf, write_size)) { usbi_dbg("Failed to Write HID Output Report: %s", windows_error_str(0)); if (id == 0) { safe_free(buf); } return LIBUSB_ERROR_IO; } #endif // Transfer completed synchronously if (write_size == 0) { usbi_dbg("program assertion failed - write completed synchronously, but no data was written"); *size = 0; } else { *size = write_size - ((id == 0)?1:0); } safe_free(buf); return LIBUSB_COMPLETED; } static int _hid_get_feature(struct hid_device_priv* dev, HANDLE hid_handle, int id, void *data, size_t *size) { uint8_t *buf = (uint8_t*)data; // default with report ID is to use data ULONG read_size = (ULONG)*size; int r = LIBUSB_ERROR_OTHER; uint32_t err; if ((*size == 0) || (*size > MAX_HID_REPORT_SIZE)) { usbi_dbg("invalid size (%d)", *size); return LIBUSB_ERROR_INVALID_PARAM; } // When report IDs are not in use, we must prefix an extra zero ID if (id == 0) { read_size++; buf = (uint8_t*)calloc(1, read_size); if (buf == NULL) { return LIBUSB_ERROR_NO_MEM; } } buf[0] = (uint8_t)id; usbi_dbg("report ID: 0x%02X", buf[0]); if (HidD_GetFeature(hid_handle, buf, read_size)) { if (buf[0] != id) { usbi_warn(NULL, "mismatched report ID (data is %02X, parameter is %02X)", buf[0], id); } if (id == 0) { memcpy(data, buf+1, *size); } r = LIBUSB_COMPLETED; } else { err = GetLastError(); switch (err) { case ERROR_INVALID_FUNCTION: r = LIBUSB_ERROR_NOT_FOUND; break; default: usbi_dbg("error %s", windows_error_str(err)); r = LIBUSB_ERROR_OTHER; break; } } if (id == 0) { safe_free(buf); } return r; } static int _hid_set_feature(struct hid_device_priv* dev, HANDLE hid_handle, int id, void *data, size_t *size) { uint8_t *buf = (uint8_t*)data; uint32_t err; int r = LIBUSB_ERROR_OTHER; ULONG write_size = (ULONG)*size; if ((*size == 0) || (*size > MAX_HID_REPORT_SIZE)) { usbi_dbg("invalid size (%d)", *size); return LIBUSB_ERROR_INVALID_PARAM; } if (id == 0) { write_size++; buf = (uint8_t*)calloc(write_size, 1); if (buf == NULL) { return LIBUSB_ERROR_NO_MEM; } memcpy(buf+1, data, *size); buf[0] = (uint8_t)id; } else if (buf[0] != id) { usbi_warn(NULL, "mismatched report ID (data is %02X, parameter is %02X)", buf[0], id); return LIBUSB_ERROR_INVALID_PARAM; } usbi_dbg("report ID: 0x%02X", buf[0]); if (HidD_SetFeature(hid_handle, buf, write_size)) { r = LIBUSB_COMPLETED; } else { err = GetLastError(); switch (err) { case ERROR_INVALID_FUNCTION: r = LIBUSB_ERROR_NOT_FOUND; default: usbi_dbg("error %s", windows_error_str(err)); r = LIBUSB_ERROR_OTHER; } } if (id == 0) { safe_free(buf); } return r; } static int _hid_class_request(struct hid_device_priv* dev, HANDLE hid_handle, int request_type, int request, int value, int index, void *data, struct windows_transfer_priv *tp, size_t *size, OVERLAPPED* overlapped) { int report_type = (value >> 8) & 0xFF; int report_id = value & 0xFF; if ( (LIBUSB_REQ_RECIPIENT(request_type) != LIBUSB_RECIPIENT_INTERFACE) && (LIBUSB_REQ_RECIPIENT(request_type) != LIBUSB_RECIPIENT_DEVICE) ) return LIBUSB_ERROR_INVALID_PARAM; if (LIBUSB_REQ_OUT(request_type) && request == HID_REQ_SET_REPORT && report_type == HID_REPORT_TYPE_OUTPUT) return _hid_set_report(dev, hid_handle, report_id, data, tp, size, overlapped); if (LIBUSB_REQ_IN(request_type) && request == HID_REQ_GET_REPORT && report_type == HID_REPORT_TYPE_INPUT) return _hid_get_report(dev, hid_handle, report_id, data, tp, size, overlapped); if (LIBUSB_REQ_OUT(request_type) && request == HID_REQ_SET_REPORT && report_type == HID_REPORT_TYPE_FEATURE) return _hid_set_feature(dev, hid_handle, report_id, data, size); if (LIBUSB_REQ_IN(request_type) && request == HID_REQ_GET_REPORT && report_type == HID_REPORT_TYPE_FEATURE) return _hid_get_feature(dev, hid_handle, report_id, data, size); return LIBUSB_ERROR_INVALID_PARAM; } /* * HID API functions */ static int hid_init(struct libusb_context *ctx) { DLL_LOAD(hid.dll, HidD_GetAttributes, TRUE); DLL_LOAD(hid.dll, HidD_GetHidGuid, TRUE); DLL_LOAD(hid.dll, HidD_GetPreparsedData, TRUE); DLL_LOAD(hid.dll, HidD_FreePreparsedData, TRUE); DLL_LOAD(hid.dll, HidD_GetManufacturerString, TRUE); DLL_LOAD(hid.dll, HidD_GetProductString, TRUE); DLL_LOAD(hid.dll, HidD_GetSerialNumberString, TRUE); DLL_LOAD(hid.dll, HidP_GetCaps, TRUE); DLL_LOAD(hid.dll, HidD_SetNumInputBuffers, TRUE); DLL_LOAD(hid.dll, HidD_SetFeature, TRUE); DLL_LOAD(hid.dll, HidD_GetFeature, TRUE); DLL_LOAD(hid.dll, HidD_GetPhysicalDescriptor, TRUE); DLL_LOAD(hid.dll, HidD_GetInputReport, FALSE); DLL_LOAD(hid.dll, HidD_SetOutputReport, FALSE); DLL_LOAD(hid.dll, HidD_FlushQueue, TRUE); DLL_LOAD(hid.dll, HidP_GetValueCaps, TRUE); api_hid_available = true; return LIBUSB_SUCCESS; } static int hid_exit(void) { return LIBUSB_SUCCESS; } // NB: open and close must ensure that they only handle interface of // the right API type, as these functions can be called wholesale from // composite_open(), with interfaces belonging to different APIs static int hid_open(struct libusb_device_handle *dev_handle) { struct libusb_context *ctx = DEVICE_CTX(dev_handle->dev); struct windows_device_priv *priv = __device_priv(dev_handle->dev); struct windows_device_handle_priv *handle_priv = __device_handle_priv(dev_handle); HIDD_ATTRIBUTES hid_attributes; PHIDP_PREPARSED_DATA preparsed_data = NULL; HIDP_CAPS capabilities; HIDP_VALUE_CAPS *value_caps; HANDLE hid_handle = INVALID_HANDLE_VALUE; int i, j; // report IDs handling ULONG size[3]; char* type[3] = {"input", "output", "feature"}; int nb_ids[2]; // zero and nonzero report IDs CHECK_HID_AVAILABLE; if (priv->hid == NULL) { usbi_err(ctx, "program assertion failed - private HID structure is unitialized"); return LIBUSB_ERROR_NOT_FOUND; } for (i = 0; i < USB_MAXINTERFACES; i++) { if ( (priv->usb_interface[i].path != NULL) && (priv->usb_interface[i].apib->id == USB_API_HID) ) { hid_handle = CreateFileA(priv->usb_interface[i].path, GENERIC_WRITE | GENERIC_READ, FILE_SHARE_WRITE | FILE_SHARE_READ, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL | FILE_FLAG_OVERLAPPED, NULL); /* * http://www.lvr.com/hidfaq.htm: Why do I receive "Access denied" when attempting to access my HID? * "Windows 2000 and later have exclusive read/write access to HIDs that are configured as a system * keyboards or mice. An application can obtain a handle to a system keyboard or mouse by not * requesting READ or WRITE access with CreateFile. Applications can then use HidD_SetFeature and * HidD_GetFeature (if the device supports Feature reports)." */ if (hid_handle == INVALID_HANDLE_VALUE) { usbi_warn(ctx, "could not open HID device in R/W mode (keyboard or mouse?) - trying without"); hid_handle = CreateFileA(priv->usb_interface[i].path, 0, FILE_SHARE_WRITE | FILE_SHARE_READ, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL | FILE_FLAG_OVERLAPPED, NULL); if (hid_handle == INVALID_HANDLE_VALUE) { usbi_err(ctx, "could not open device %s (interface %d): %s", priv->path, i, windows_error_str(0)); switch(GetLastError()) { case ERROR_FILE_NOT_FOUND: // The device was disconnected return LIBUSB_ERROR_NO_DEVICE; case ERROR_ACCESS_DENIED: return LIBUSB_ERROR_ACCESS; default: return LIBUSB_ERROR_IO; } } priv->usb_interface[i].restricted_functionality = true; } handle_priv->interface_handle[i].api_handle = hid_handle; } } hid_attributes.Size = sizeof(hid_attributes); do { if (!HidD_GetAttributes(hid_handle, &hid_attributes)) { usbi_err(ctx, "could not gain access to HID top collection (HidD_GetAttributes)"); break; } priv->hid->vid = hid_attributes.VendorID; priv->hid->pid = hid_attributes.ProductID; // Set the maximum available input buffer size for (i=32; HidD_SetNumInputBuffers(hid_handle, i); i*=2); usbi_dbg("set maximum input buffer size to %d", i/2); // Get the maximum input and output report size if (!HidD_GetPreparsedData(hid_handle, &preparsed_data) || !preparsed_data) { usbi_err(ctx, "could not read HID preparsed data (HidD_GetPreparsedData)"); break; } if (HidP_GetCaps(preparsed_data, &capabilities) != HIDP_STATUS_SUCCESS) { usbi_err(ctx, "could not parse HID capabilities (HidP_GetCaps)"); break; } // Find out if interrupt will need report IDs size[0] = capabilities.NumberInputValueCaps; size[1] = capabilities.NumberOutputValueCaps; size[2] = capabilities.NumberFeatureValueCaps; for (j=0; j<3; j++) { usbi_dbg("%d HID %s report value(s) found", size[j], type[j]); priv->hid->uses_report_ids[j] = false; if (size[j] > 0) { value_caps = malloc(size[j] * sizeof(HIDP_VALUE_CAPS)); if ( (value_caps != NULL) && (HidP_GetValueCaps(j, value_caps, &size[j], preparsed_data) == HIDP_STATUS_SUCCESS) && (size[j] >= 1) ) { nb_ids[0] = 0; nb_ids[1] = 0; for (i=0; i<(int)size[j]; i++) { usbi_dbg(" Report ID: 0x%02X", value_caps[i].ReportID); if (value_caps[i].ReportID != 0) { nb_ids[1]++; } else { nb_ids[0]++; } } if (nb_ids[1] != 0) { if (nb_ids[0] != 0) { usbi_warn(ctx, "program assertion failed: zero and nonzero report IDs used for %s", type[j]); } priv->hid->uses_report_ids[j] = true; } } else { usbi_warn(ctx, " could not process %s report IDs", type[j]); } safe_free(value_caps); } } // Set the report sizes priv->hid->input_report_size = capabilities.InputReportByteLength; priv->hid->output_report_size = capabilities.OutputReportByteLength; priv->hid->feature_report_size = capabilities.FeatureReportByteLength; // Fetch string descriptors priv->hid->string_index[0] = priv->dev_descriptor.iManufacturer; if (priv->hid->string_index[0] != 0) { HidD_GetManufacturerString(hid_handle, priv->hid->string[0], sizeof(priv->hid->string[0])); } else { priv->hid->string[0][0] = 0; } priv->hid->string_index[1] = priv->dev_descriptor.iProduct; if (priv->hid->string_index[1] != 0) { HidD_GetProductString(hid_handle, priv->hid->string[1], sizeof(priv->hid->string[1])); } else { priv->hid->string[1][0] = 0; } priv->hid->string_index[2] = priv->dev_descriptor.iSerialNumber; if (priv->hid->string_index[2] != 0) { HidD_GetSerialNumberString(hid_handle, priv->hid->string[2], sizeof(priv->hid->string[2])); } else { priv->hid->string[2][0] = 0; } } while(0); if (preparsed_data) { HidD_FreePreparsedData(preparsed_data); } return LIBUSB_SUCCESS; } static void hid_close(struct libusb_device_handle *dev_handle) { struct windows_device_priv *priv = __device_priv(dev_handle->dev); struct windows_device_handle_priv *handle_priv = __device_handle_priv(dev_handle); HANDLE file_handle; int i; if (!api_hid_available) return; for (i = 0; i < USB_MAXINTERFACES; i++) { if (priv->usb_interface[i].apib->id == USB_API_HID) { file_handle = handle_priv->interface_handle[i].api_handle; if ( (file_handle != 0) && (file_handle != INVALID_HANDLE_VALUE)) { CloseHandle(file_handle); } } } } static int hid_claim_interface(struct libusb_device_handle *dev_handle, int iface) { struct windows_device_handle_priv *handle_priv = __device_handle_priv(dev_handle); struct windows_device_priv *priv = __device_priv(dev_handle->dev); CHECK_HID_AVAILABLE; // NB: Disconnection detection is not possible in this function if (priv->usb_interface[iface].path == NULL) { return LIBUSB_ERROR_NOT_FOUND; // invalid iface } // We use dev_handle as a flag for interface claimed if (handle_priv->interface_handle[iface].dev_handle == INTERFACE_CLAIMED) { return LIBUSB_ERROR_BUSY; // already claimed } handle_priv->interface_handle[iface].dev_handle = INTERFACE_CLAIMED; usbi_dbg("claimed interface %d", iface); handle_priv->active_interface = iface; return LIBUSB_SUCCESS; } static int hid_release_interface(struct libusb_device_handle *dev_handle, int iface) { struct windows_device_handle_priv *handle_priv = __device_handle_priv(dev_handle); struct windows_device_priv *priv = __device_priv(dev_handle->dev); CHECK_HID_AVAILABLE; if (priv->usb_interface[iface].path == NULL) { return LIBUSB_ERROR_NOT_FOUND; // invalid iface } if (handle_priv->interface_handle[iface].dev_handle != INTERFACE_CLAIMED) { return LIBUSB_ERROR_NOT_FOUND; // invalid iface } handle_priv->interface_handle[iface].dev_handle = INVALID_HANDLE_VALUE; return LIBUSB_SUCCESS; } static int hid_set_interface_altsetting(struct libusb_device_handle *dev_handle, int iface, int altsetting) { struct libusb_context *ctx = DEVICE_CTX(dev_handle->dev); CHECK_HID_AVAILABLE; if (altsetting > 255) { return LIBUSB_ERROR_INVALID_PARAM; } if (altsetting != 0) { usbi_err(ctx, "set interface altsetting not supported for altsetting >0"); return LIBUSB_ERROR_NOT_SUPPORTED; } return LIBUSB_SUCCESS; } static int hid_submit_control_transfer(struct usbi_transfer *itransfer) { struct libusb_transfer *transfer = __USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer); struct windows_transfer_priv *transfer_priv = usbi_transfer_get_os_priv(itransfer); struct windows_device_handle_priv *handle_priv = __device_handle_priv(transfer->dev_handle); struct windows_device_priv *priv = __device_priv(transfer->dev_handle->dev); struct libusb_context *ctx = DEVICE_CTX(transfer->dev_handle->dev); WINUSB_SETUP_PACKET *setup = (WINUSB_SETUP_PACKET *) transfer->buffer; HANDLE hid_handle; struct winfd wfd; int current_interface, config; size_t size; int r = LIBUSB_ERROR_INVALID_PARAM; CHECK_HID_AVAILABLE; transfer_priv->pollable_fd = INVALID_WINFD; safe_free(transfer_priv->hid_buffer); transfer_priv->hid_dest = NULL; size = transfer->length - LIBUSB_CONTROL_SETUP_SIZE; if (size > MAX_CTRL_BUFFER_LENGTH) { return LIBUSB_ERROR_INVALID_PARAM; } current_interface = get_valid_interface(transfer->dev_handle, USB_API_HID); if (current_interface < 0) { #if defined(AUTO_CLAIM) if (auto_claim(transfer, ¤t_interface, USB_API_HID) != LIBUSB_SUCCESS) { return LIBUSB_ERROR_NOT_FOUND; } #else usbi_warn(ctx, "no interface available for control transfer"); return LIBUSB_ERROR_NOT_FOUND; #endif } usbi_dbg("will use interface %d", current_interface); hid_handle = handle_priv->interface_handle[current_interface].api_handle; // Always use the handle returned from usbi_create_fd (wfd.handle) wfd = usbi_create_fd(hid_handle, _O_RDONLY); if (wfd.fd < 0) { return LIBUSB_ERROR_NO_MEM; } switch(LIBUSB_REQ_TYPE(setup->request_type)) { case LIBUSB_REQUEST_TYPE_STANDARD: switch(setup->request) { case LIBUSB_REQUEST_GET_DESCRIPTOR: r = _hid_get_descriptor(priv->hid, wfd.handle, LIBUSB_REQ_RECIPIENT(setup->request_type), (setup->value >> 8) & 0xFF, setup->value & 0xFF, transfer->buffer + LIBUSB_CONTROL_SETUP_SIZE, &size); break; case LIBUSB_REQUEST_GET_CONFIGURATION: r = windows_get_configuration(transfer->dev_handle, &config); if (r == LIBUSB_SUCCESS) { size = 1; ((uint8_t*)transfer->buffer)[LIBUSB_CONTROL_SETUP_SIZE] = (uint8_t)config; r = LIBUSB_COMPLETED; } break; case LIBUSB_REQUEST_SET_CONFIGURATION: if (setup->value == priv->active_config) { r = LIBUSB_COMPLETED; } else { usbi_warn(ctx, "cannot set configuration other than the default one"); r = LIBUSB_ERROR_INVALID_PARAM; } break; case LIBUSB_REQUEST_GET_INTERFACE: size = 1; ((uint8_t*)transfer->buffer)[LIBUSB_CONTROL_SETUP_SIZE] = 0; r = LIBUSB_COMPLETED; break; case LIBUSB_REQUEST_SET_INTERFACE: r = hid_set_interface_altsetting(transfer->dev_handle, setup->index, setup->value); if (r == LIBUSB_SUCCESS) { r = LIBUSB_COMPLETED; } break; default: usbi_warn(ctx, "unsupported HID control request"); r = LIBUSB_ERROR_INVALID_PARAM; break; } break; case LIBUSB_REQUEST_TYPE_CLASS: r =_hid_class_request(priv->hid, wfd.handle, setup->request_type, setup->request, setup->value, setup->index, transfer->buffer + LIBUSB_CONTROL_SETUP_SIZE, transfer_priv, &size, wfd.overlapped); break; default: usbi_warn(ctx, "unsupported HID control request"); r = LIBUSB_ERROR_INVALID_PARAM; break; } if (r == LIBUSB_COMPLETED) { // Force request to be completed synchronously. Transferred size has been set by previous call wfd.overlapped->Internal = STATUS_COMPLETED_SYNCHRONOUSLY; // http://msdn.microsoft.com/en-us/library/ms684342%28VS.85%29.aspx // set InternalHigh to the number of bytes transferred wfd.overlapped->InternalHigh = (DWORD)size; r = LIBUSB_SUCCESS; } if (r == LIBUSB_SUCCESS) { // Use priv_transfer to store data needed for async polling transfer_priv->pollable_fd = wfd; transfer_priv->interface_number = (uint8_t)current_interface; } else { usbi_free_fd(wfd.fd); } return r; } static int hid_submit_bulk_transfer(struct usbi_transfer *itransfer) { struct libusb_transfer *transfer = __USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer); struct windows_transfer_priv *transfer_priv = usbi_transfer_get_os_priv(itransfer); struct libusb_context *ctx = DEVICE_CTX(transfer->dev_handle->dev); struct windows_device_handle_priv *handle_priv = __device_handle_priv(transfer->dev_handle); struct windows_device_priv *priv = __device_priv(transfer->dev_handle->dev); struct winfd wfd; HANDLE hid_handle; bool direction_in, ret; int current_interface, length; DWORD size; int r = LIBUSB_SUCCESS; CHECK_HID_AVAILABLE; transfer_priv->pollable_fd = INVALID_WINFD; transfer_priv->hid_dest = NULL; safe_free(transfer_priv->hid_buffer); current_interface = interface_by_endpoint(priv, handle_priv, transfer->endpoint); if (current_interface < 0) { usbi_err(ctx, "unable to match endpoint to an open interface - cancelling transfer"); return LIBUSB_ERROR_NOT_FOUND; } usbi_dbg("matched endpoint %02X with interface %d", transfer->endpoint, current_interface); hid_handle = handle_priv->interface_handle[current_interface].api_handle; direction_in = transfer->endpoint & LIBUSB_ENDPOINT_IN; wfd = usbi_create_fd(hid_handle, direction_in?_O_RDONLY:_O_WRONLY); // Always use the handle returned from usbi_create_fd (wfd.handle) if (wfd.fd < 0) { return LIBUSB_ERROR_NO_MEM; } // If report IDs are not in use, an extra prefix byte must be added if ( ((direction_in) && (!priv->hid->uses_report_ids[0])) || ((!direction_in) && (!priv->hid->uses_report_ids[1])) ) { length = transfer->length+1; } else { length = transfer->length; } // Add a trailing byte to detect overflows on input transfer_priv->hid_buffer = (uint8_t*)calloc(length+1, 1); if (transfer_priv->hid_buffer == NULL) { return LIBUSB_ERROR_NO_MEM; } transfer_priv->hid_expected_size = length; if (direction_in) { transfer_priv->hid_dest = transfer->buffer; usbi_dbg("reading %d bytes (report ID: 0x%02X)", length, transfer_priv->hid_buffer[0]); ret = ReadFile(wfd.handle, transfer_priv->hid_buffer, length+1, &size, wfd.overlapped); } else { if (!priv->hid->uses_report_ids[1]) { memcpy(transfer_priv->hid_buffer+1, transfer->buffer, transfer->length); } else { // We could actually do without the calloc and memcpy in this case memcpy(transfer_priv->hid_buffer, transfer->buffer, transfer->length); } usbi_dbg("writing %d bytes (report ID: 0x%02X)", length, transfer_priv->hid_buffer[0]); ret = WriteFile(wfd.handle, transfer_priv->hid_buffer, length, &size, wfd.overlapped); } if (!ret) { if (GetLastError() != ERROR_IO_PENDING) { usbi_err(ctx, "HID transfer failed: %s", windows_error_str(0)); usbi_free_fd(wfd.fd); safe_free(transfer_priv->hid_buffer); return LIBUSB_ERROR_IO; } } else { // Only write operations that completed synchronously need to free up // hid_buffer. For reads, copy_transfer_data() handles that process. if (!direction_in) { safe_free(transfer_priv->hid_buffer); } if (size == 0) { usbi_err(ctx, "program assertion failed - no data was transferred"); size = 1; } if (size > (size_t)length) { usbi_err(ctx, "OVERFLOW!"); r = LIBUSB_ERROR_OVERFLOW; } wfd.overlapped->Internal = STATUS_COMPLETED_SYNCHRONOUSLY; wfd.overlapped->InternalHigh = size; } transfer_priv->pollable_fd = wfd; transfer_priv->interface_number = (uint8_t)current_interface; return r; } static int hid_abort_transfers(struct usbi_transfer *itransfer) { struct libusb_transfer *transfer = __USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer); struct windows_transfer_priv *transfer_priv = usbi_transfer_get_os_priv(itransfer); struct windows_device_handle_priv *handle_priv = __device_handle_priv(transfer->dev_handle); HANDLE hid_handle; int current_interface; CHECK_HID_AVAILABLE; current_interface = transfer_priv->interface_number; hid_handle = handle_priv->interface_handle[current_interface].api_handle; CancelIo(hid_handle); return LIBUSB_SUCCESS; } static int hid_reset_device(struct libusb_device_handle *dev_handle) { struct windows_device_handle_priv *handle_priv = __device_handle_priv(dev_handle); HANDLE hid_handle; int current_interface; CHECK_HID_AVAILABLE; // Flushing the queues on all interfaces is the best we can achieve for (current_interface = 0; current_interface < USB_MAXINTERFACES; current_interface++) { hid_handle = handle_priv->interface_handle[current_interface].api_handle; if ((hid_handle != 0) && (hid_handle != INVALID_HANDLE_VALUE)) { HidD_FlushQueue(hid_handle); } } return LIBUSB_SUCCESS; } static int hid_clear_halt(struct libusb_device_handle *dev_handle, unsigned char endpoint) { struct libusb_context *ctx = DEVICE_CTX(dev_handle->dev); struct windows_device_handle_priv *handle_priv = __device_handle_priv(dev_handle); struct windows_device_priv *priv = __device_priv(dev_handle->dev); HANDLE hid_handle; int current_interface; CHECK_HID_AVAILABLE; current_interface = interface_by_endpoint(priv, handle_priv, endpoint); if (current_interface < 0) { usbi_err(ctx, "unable to match endpoint to an open interface - cannot clear"); return LIBUSB_ERROR_NOT_FOUND; } usbi_dbg("matched endpoint %02X with interface %d", endpoint, current_interface); hid_handle = handle_priv->interface_handle[current_interface].api_handle; // No endpoint selection with Microsoft's implementation, so we try to flush the // whole interface. Should be OK for most case scenarios if (!HidD_FlushQueue(hid_handle)) { usbi_err(ctx, "Flushing of HID queue failed: %s", windows_error_str(0)); // Device was probably disconnected return LIBUSB_ERROR_NO_DEVICE; } return LIBUSB_SUCCESS; } // This extra function is only needed for HID static int hid_copy_transfer_data(struct usbi_transfer *itransfer, uint32_t io_size) { struct libusb_transfer *transfer = __USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer); struct libusb_context *ctx = DEVICE_CTX(transfer->dev_handle->dev); struct windows_transfer_priv *transfer_priv = usbi_transfer_get_os_priv(itransfer); int r = LIBUSB_TRANSFER_COMPLETED; uint32_t corrected_size = io_size; if (transfer_priv->hid_buffer != NULL) { // If we have a valid hid_buffer, it means the transfer was async if (transfer_priv->hid_dest != NULL) { // Data readout // First, check for overflow if (corrected_size > transfer_priv->hid_expected_size) { usbi_err(ctx, "OVERFLOW!"); corrected_size = (uint32_t)transfer_priv->hid_expected_size; r = LIBUSB_TRANSFER_OVERFLOW; } if (transfer_priv->hid_buffer[0] == 0) { // Discard the 1 byte report ID prefix corrected_size--; memcpy(transfer_priv->hid_dest, transfer_priv->hid_buffer+1, corrected_size); } else { memcpy(transfer_priv->hid_dest, transfer_priv->hid_buffer, corrected_size); } transfer_priv->hid_dest = NULL; } // For write, we just need to free the hid buffer safe_free(transfer_priv->hid_buffer); } itransfer->transferred += corrected_size; return r; } /* * Composite API functions */ static int composite_init(struct libusb_context *ctx) { return LIBUSB_SUCCESS; } static int composite_exit(void) { return LIBUSB_SUCCESS; } static int composite_open(struct libusb_device_handle *dev_handle) { struct windows_device_priv *priv = __device_priv(dev_handle->dev); unsigned api; int r; uint8_t flag = 1<composite_api_flags & flag) { r = usb_api_backend[api].open(dev_handle); if (r != LIBUSB_SUCCESS) { return r; } } flag <<= 1; } return LIBUSB_SUCCESS; } static void composite_close(struct libusb_device_handle *dev_handle) { struct windows_device_priv *priv = __device_priv(dev_handle->dev); unsigned api; uint8_t flag = 1<composite_api_flags & flag) { usb_api_backend[api].close(dev_handle); } flag <<= 1; } } static int composite_claim_interface(struct libusb_device_handle *dev_handle, int iface) { struct windows_device_priv *priv = __device_priv(dev_handle->dev); return priv->usb_interface[iface].apib->claim_interface(dev_handle, iface); } static int composite_set_interface_altsetting(struct libusb_device_handle *dev_handle, int iface, int altsetting) { struct windows_device_priv *priv = __device_priv(dev_handle->dev); return priv->usb_interface[iface].apib->set_interface_altsetting(dev_handle, iface, altsetting); } static int composite_release_interface(struct libusb_device_handle *dev_handle, int iface) { struct windows_device_priv *priv = __device_priv(dev_handle->dev); return priv->usb_interface[iface].apib->release_interface(dev_handle, iface); } static int composite_submit_control_transfer(struct usbi_transfer *itransfer) { struct libusb_transfer *transfer = __USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer); struct libusb_context *ctx = DEVICE_CTX(transfer->dev_handle->dev); struct windows_device_priv *priv = __device_priv(transfer->dev_handle->dev); int i, pass; // Interface shouldn't matter for control, but it does in practice, with Windows' // restrictions with regards to accessing HID keyboards and mice. Try a 2 pass approach for (pass = 0; pass < 2; pass++) { for (i=0; iusb_interface[i].path != NULL) { if ((pass == 0) && (priv->usb_interface[i].restricted_functionality)) { usbi_dbg("trying to skip restricted interface #%d (HID keyboard or mouse?)", i); continue; } usbi_dbg("using interface %d", i); return priv->usb_interface[i].apib->submit_control_transfer(itransfer); } } } usbi_err(ctx, "no libusb supported interfaces to complete request"); return LIBUSB_ERROR_NOT_FOUND; } static int composite_submit_bulk_transfer(struct usbi_transfer *itransfer) { struct libusb_transfer *transfer = __USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer); struct libusb_context *ctx = DEVICE_CTX(transfer->dev_handle->dev); struct windows_device_handle_priv *handle_priv = __device_handle_priv(transfer->dev_handle); struct windows_device_priv *priv = __device_priv(transfer->dev_handle->dev); int current_interface; current_interface = interface_by_endpoint(priv, handle_priv, transfer->endpoint); if (current_interface < 0) { usbi_err(ctx, "unable to match endpoint to an open interface - cancelling transfer"); return LIBUSB_ERROR_NOT_FOUND; } return priv->usb_interface[current_interface].apib->submit_bulk_transfer(itransfer); } static int composite_submit_iso_transfer(struct usbi_transfer *itransfer) { struct libusb_transfer *transfer = __USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer); struct libusb_context *ctx = DEVICE_CTX(transfer->dev_handle->dev); struct windows_device_handle_priv *handle_priv = __device_handle_priv(transfer->dev_handle); struct windows_device_priv *priv = __device_priv(transfer->dev_handle->dev); int current_interface; current_interface = interface_by_endpoint(priv, handle_priv, transfer->endpoint); if (current_interface < 0) { usbi_err(ctx, "unable to match endpoint to an open interface - cancelling transfer"); return LIBUSB_ERROR_NOT_FOUND; } return priv->usb_interface[current_interface].apib->submit_iso_transfer(itransfer); } static int composite_clear_halt(struct libusb_device_handle *dev_handle, unsigned char endpoint) { struct libusb_context *ctx = DEVICE_CTX(dev_handle->dev); struct windows_device_handle_priv *handle_priv = __device_handle_priv(dev_handle); struct windows_device_priv *priv = __device_priv(dev_handle->dev); int current_interface; current_interface = interface_by_endpoint(priv, handle_priv, endpoint); if (current_interface < 0) { usbi_err(ctx, "unable to match endpoint to an open interface - cannot clear"); return LIBUSB_ERROR_NOT_FOUND; } return priv->usb_interface[current_interface].apib->clear_halt(dev_handle, endpoint); } static int composite_abort_control(struct usbi_transfer *itransfer) { struct libusb_transfer *transfer = __USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer); struct windows_transfer_priv *transfer_priv = usbi_transfer_get_os_priv(itransfer); struct windows_device_priv *priv = __device_priv(transfer->dev_handle->dev); return priv->usb_interface[transfer_priv->interface_number].apib->abort_control(itransfer); } static int composite_abort_transfers(struct usbi_transfer *itransfer) { struct libusb_transfer *transfer = __USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer); struct windows_transfer_priv *transfer_priv = usbi_transfer_get_os_priv(itransfer); struct windows_device_priv *priv = __device_priv(transfer->dev_handle->dev); return priv->usb_interface[transfer_priv->interface_number].apib->abort_transfers(itransfer); } static int composite_reset_device(struct libusb_device_handle *dev_handle) { struct windows_device_priv *priv = __device_priv(dev_handle->dev); unsigned api; int r; uint8_t flag = 1<composite_api_flags & flag) { r = usb_api_backend[api].reset_device(dev_handle); if (r != LIBUSB_SUCCESS) { return r; } } flag <<= 1; } return LIBUSB_SUCCESS; } static int composite_copy_transfer_data(struct usbi_transfer *itransfer, uint32_t io_size) { struct libusb_transfer *transfer = __USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer); struct windows_transfer_priv *transfer_priv = usbi_transfer_get_os_priv(itransfer); struct windows_device_priv *priv = __device_priv(transfer->dev_handle->dev); return priv->usb_interface[transfer_priv->interface_number].apib->copy_transfer_data(itransfer, io_size); }