/* * Copyright (c) 2007-2011 Intel Corporation. All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL INTEL AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /** * \file va_vpp.h * \brief The video processing API * * This file contains the \ref api_vpp "Video processing API". */ #ifndef VA_VPP_H #define VA_VPP_H #ifdef __cplusplus extern "C" { #endif /** * \defgroup api_vpp Video processing API * * @{ * * The video processing API uses the same paradigm as for decoding: * - Query for supported filters; * - Set up a video processing pipeline; * - Send video processing parameters through VA buffers. * * \section api_vpp_caps Query for supported filters * * Checking whether video processing is supported can be performed * with vaQueryConfigEntrypoints() and the profile argument set to * #VAProfileNone. If video processing is supported, then the list of * returned entry-points will include #VAEntrypointVideoProc. * * \code * VAEntrypoint *entrypoints; * int i, num_entrypoints, supportsVideoProcessing = 0; * * num_entrypoints = vaMaxNumEntrypoints(); * entrypoints = malloc(num_entrypoints * sizeof(entrypoints[0]); * vaQueryConfigEntrypoints(va_dpy, VAProfileNone, * entrypoints, &num_entrypoints); * * for (i = 0; !supportsVideoProcessing && i < num_entrypoints; i++) { * if (entrypoints[i] == VAEntrypointVideoProc) * supportsVideoProcessing = 1; * } * \endcode * * Then, the vaQueryVideoProcFilters() function is used to query the * list of video processing filters. * * \code * VAProcFilterType filters[VAProcFilterCount]; * unsigned int num_filters = VAProcFilterCount; * * // num_filters shall be initialized to the length of the array * vaQueryVideoProcFilters(va_dpy, vpp_ctx, &filters, &num_filters); * \endcode * * Finally, individual filter capabilities can be checked with * vaQueryVideoProcFilterCaps(). * * \code * VAProcFilterCap denoise_caps; * unsigned int num_denoise_caps = 1; * vaQueryVideoProcFilterCaps(va_dpy, vpp_ctx, * VAProcFilterNoiseReduction, * &denoise_caps, &num_denoise_caps * ); * * VAProcFilterCapDeinterlacing deinterlacing_caps[VAProcDeinterlacingCount]; * unsigned int num_deinterlacing_caps = VAProcDeinterlacingCount; * vaQueryVideoProcFilterCaps(va_dpy, vpp_ctx, * VAProcFilterDeinterlacing, * &deinterlacing_caps, &num_deinterlacing_caps * ); * \endcode * * \section api_vpp_setup Set up a video processing pipeline * * A video processing pipeline buffer is created for each source * surface we want to process. However, buffers holding filter * parameters can be created once and for all. Rationale is to avoid * multiple creation/destruction chains of filter buffers and also * because filter parameters generally won't change frame after * frame. e.g. this makes it possible to implement a checkerboard of * videos where the same filters are applied to each video source. * * The general control flow is demonstrated by the following pseudo-code: * \code * // Create filters * VABufferID denoise_filter, deint_filter; * VABufferID filter_bufs[VAProcFilterCount]; * unsigned int num_filter_bufs; * * for (i = 0; i < num_filters; i++) { * switch (filters[i]) { * case VAProcFilterNoiseReduction: { // Noise reduction filter * VAProcFilterParameterBuffer denoise; * denoise.type = VAProcFilterNoiseReduction; * denoise.value = 0.5; * vaCreateBuffer(va_dpy, vpp_ctx, * VAProcFilterParameterBufferType, sizeof(denoise), 1, * &denoise, &denoise_filter * ); * filter_bufs[num_filter_bufs++] = denoise_filter; * break; * } * * case VAProcFilterDeinterlacing: // Motion-adaptive deinterlacing * for (j = 0; j < num_deinterlacing_caps; j++) { * VAProcFilterCapDeinterlacing * const cap = &deinterlacing_caps[j]; * if (cap->type != VAProcDeinterlacingMotionAdaptive) * continue; * * VAProcFilterParameterBufferDeinterlacing deint; * deint.type = VAProcFilterDeinterlacing; * deint.algorithm = VAProcDeinterlacingMotionAdaptive; * vaCreateBuffer(va_dpy, vpp_ctx, * VAProcFilterParameterBufferType, sizeof(deint), 1, * &deint, &deint_filter * ); * filter_bufs[num_filter_bufs++] = deint_filter; * } * } * } * \endcode * * Once the video processing pipeline is set up, the caller shall check the * implied capabilities and requirements with vaQueryVideoProcPipelineCaps(). * This function can be used to validate the number of reference frames are * needed by the specified deinterlacing algorithm, the supported color * primaries, etc. * \code * // Create filters * VAProcPipelineCaps pipeline_caps; * VASurfaceID *forward_references; * unsigned int num_forward_references; * VASurfaceID *backward_references; * unsigned int num_backward_references; * VAProcColorStandardType in_color_standards[VAProcColorStandardCount]; * VAProcColorStandardType out_color_standards[VAProcColorStandardCount]; * * pipeline_caps.input_color_standards = NULL; * pipeline_caps.num_input_color_standards = ARRAY_ELEMS(in_color_standards); * pipeline_caps.output_color_standards = NULL; * pipeline_caps.num_output_color_standards = ARRAY_ELEMS(out_color_standards); * vaQueryVideoProcPipelineCaps(va_dpy, vpp_ctx, * filter_bufs, num_filter_bufs, * &pipeline_caps * ); * * num_forward_references = pipeline_caps.num_forward_references; * forward_references = * malloc(num__forward_references * sizeof(VASurfaceID)); * num_backward_references = pipeline_caps.num_backward_references; * backward_references = * malloc(num_backward_references * sizeof(VASurfaceID)); * \endcode * * \section api_vpp_submit Send video processing parameters through VA buffers * * Video processing pipeline parameters are submitted for each source * surface to process. Video filter parameters can also change, per-surface. * e.g. the list of reference frames used for deinterlacing. * * \code * foreach (iteration) { * vaBeginPicture(va_dpy, vpp_ctx, vpp_surface); * foreach (surface) { * VARectangle output_region; * VABufferID pipeline_buf; * VAProcPipelineParameterBuffer *pipeline_param; * * vaCreateBuffer(va_dpy, vpp_ctx, * VAProcPipelineParameterBuffer, sizeof(*pipeline_param), 1, * NULL, &pipeline_buf * ); * * // Setup output region for this surface * // e.g. upper left corner for the first surface * output_region.x = BORDER; * output_region.y = BORDER; * output_region.width = * (vpp_surface_width - (Nx_surfaces + 1) * BORDER) / Nx_surfaces; * output_region.height = * (vpp_surface_height - (Ny_surfaces + 1) * BORDER) / Ny_surfaces; * * vaMapBuffer(va_dpy, pipeline_buf, &pipeline_param); * pipeline_param->surface = surface; * pipeline_param->surface_region = NULL; * pipeline_param->output_region = &output_region; * pipeline_param->output_background_color = 0; * if (first surface to render) * pipeline_param->output_background_color = 0xff000000; // black * pipeline_param->filter_flags = VA_FILTER_SCALING_HQ; * pipeline_param->filters = filter_bufs; * pipeline_param->num_filters = num_filter_bufs; * vaUnmapBuffer(va_dpy, pipeline_buf); * * // Update reference frames for deinterlacing, if necessary * pipeline_param->forward_references = forward_references; * pipeline_param->num_forward_references = num_forward_references_used; * pipeline_param->backward_references = backward_references; * pipeline_param->num_backward_references = num_bacward_references_used; * * // Apply filters * vaRenderPicture(va_dpy, vpp_ctx, &pipeline_buf, 1); * } * vaEndPicture(va_dpy, vpp_ctx); * } * \endcode */ /** \brief Video filter types. */ typedef enum _VAProcFilterType { VAProcFilterNone = 0, /** \brief Noise reduction filter. */ VAProcFilterNoiseReduction, /** \brief Deinterlacing filter. */ VAProcFilterDeinterlacing, /** \brief Sharpening filter. */ VAProcFilterSharpening, /** \brief Color balance parameters. */ VAProcFilterColorBalance, /** \brief Skin Tone Enhancement. */ VAProcFilterSkinToneEnhancement, /** \brief Total Color Correction. */ VAProcFilterTotalColorCorrection, /** \brief Human Vision System(HVS) Noise reduction filter. */ VAProcFilterHVSNoiseReduction, /** \brief High Dynamic Range Tone Mapping. */ VAProcFilterHighDynamicRangeToneMapping, /** \brief Number of video filters. */ VAProcFilterCount } VAProcFilterType; /** \brief Deinterlacing types. */ typedef enum _VAProcDeinterlacingType { VAProcDeinterlacingNone = 0, /** \brief Bob deinterlacing algorithm. */ VAProcDeinterlacingBob, /** \brief Weave deinterlacing algorithm. */ VAProcDeinterlacingWeave, /** \brief Motion adaptive deinterlacing algorithm. */ VAProcDeinterlacingMotionAdaptive, /** \brief Motion compensated deinterlacing algorithm. */ VAProcDeinterlacingMotionCompensated, /** \brief Number of deinterlacing algorithms. */ VAProcDeinterlacingCount } VAProcDeinterlacingType; /** \brief Color balance types. */ typedef enum _VAProcColorBalanceType { VAProcColorBalanceNone = 0, /** \brief Hue. */ VAProcColorBalanceHue, /** \brief Saturation. */ VAProcColorBalanceSaturation, /** \brief Brightness. */ VAProcColorBalanceBrightness, /** \brief Contrast. */ VAProcColorBalanceContrast, /** \brief Automatically adjusted saturation. */ VAProcColorBalanceAutoSaturation, /** \brief Automatically adjusted brightness. */ VAProcColorBalanceAutoBrightness, /** \brief Automatically adjusted contrast. */ VAProcColorBalanceAutoContrast, /** \brief Number of color balance attributes. */ VAProcColorBalanceCount } VAProcColorBalanceType; /** \brief Color standard types. * * These define a set of color properties corresponding to particular * video standards. * * Where matrix_coefficients is specified, it applies only to YUV data - * RGB data always use the identity matrix (matrix_coefficients = 0). */ typedef enum _VAProcColorStandardType { VAProcColorStandardNone = 0, /** \brief ITU-R BT.601. * * It is unspecified whether this will use 525-line or 625-line values; * specify the colour primaries and matrix coefficients explicitly if * it is known which one is required. * * Equivalent to: * colour_primaries = 5 or 6 * transfer_characteristics = 6 * matrix_coefficients = 5 or 6 */ VAProcColorStandardBT601, /** \brief ITU-R BT.709. * * Equivalent to: * colour_primaries = 1 * transfer_characteristics = 1 * matrix_coefficients = 1 */ VAProcColorStandardBT709, /** \brief ITU-R BT.470-2 System M. * * Equivalent to: * colour_primaries = 4 * transfer_characteristics = 4 * matrix_coefficients = 4 */ VAProcColorStandardBT470M, /** \brief ITU-R BT.470-2 System B, G. * * Equivalent to: * colour_primaries = 5 * transfer_characteristics = 5 * matrix_coefficients = 5 */ VAProcColorStandardBT470BG, /** \brief SMPTE-170M. * * Equivalent to: * colour_primaries = 6 * transfer_characteristics = 6 * matrix_coefficients = 6 */ VAProcColorStandardSMPTE170M, /** \brief SMPTE-240M. * * Equivalent to: * colour_primaries = 7 * transfer_characteristics = 7 * matrix_coefficients = 7 */ VAProcColorStandardSMPTE240M, /** \brief Generic film. * * Equivalent to: * colour_primaries = 8 * transfer_characteristics = 1 * matrix_coefficients = 1 */ VAProcColorStandardGenericFilm, /** \brief sRGB. * * Equivalent to: * colour_primaries = 1 * transfer_characteristics = 13 * matrix_coefficients = 0 */ VAProcColorStandardSRGB, /** \brief stRGB. * * ??? */ VAProcColorStandardSTRGB, /** \brief xvYCC601. * * Equivalent to: * colour_primaries = 1 * transfer_characteristics = 11 * matrix_coefficients = 5 */ VAProcColorStandardXVYCC601, /** \brief xvYCC709. * * Equivalent to: * colour_primaries = 1 * transfer_characteristics = 11 * matrix_coefficients = 1 */ VAProcColorStandardXVYCC709, /** \brief ITU-R BT.2020. * * Equivalent to: * colour_primaries = 9 * transfer_characteristics = 14 * matrix_coefficients = 9 */ VAProcColorStandardBT2020, /** \brief Explicitly specified color properties. * * Use corresponding color properties section. * For example, HDR10 content: * colour_primaries = 9 (BT2020) * transfer_characteristics = 16 (SMPTE ST2084) * matrix_coefficients = 9 */ VAProcColorStandardExplicit, /** \brief Number of color standards. */ VAProcColorStandardCount } VAProcColorStandardType; /** \brief Total color correction types. */ typedef enum _VAProcTotalColorCorrectionType { VAProcTotalColorCorrectionNone = 0, /** \brief Red Saturation. */ VAProcTotalColorCorrectionRed, /** \brief Green Saturation. */ VAProcTotalColorCorrectionGreen, /** \brief Blue Saturation. */ VAProcTotalColorCorrectionBlue, /** \brief Cyan Saturation. */ VAProcTotalColorCorrectionCyan, /** \brief Magenta Saturation. */ VAProcTotalColorCorrectionMagenta, /** \brief Yellow Saturation. */ VAProcTotalColorCorrectionYellow, /** \brief Number of color correction attributes. */ VAProcTotalColorCorrectionCount } VAProcTotalColorCorrectionType; /** \brief High Dynamic Range Metadata types. */ typedef enum _VAProcHighDynamicRangeMetadataType { VAProcHighDynamicRangeMetadataNone = 0, /** \brief Metadata type for HDR10. */ VAProcHighDynamicRangeMetadataHDR10, /** \brief Number of Metadata type. */ VAProcHighDynamicRangeMetadataTypeCount } VAProcHighDynamicRangeMetadataType; /** \brief Video Processing Mode. */ typedef enum _VAProcMode { /** * \brief Default Mode. * In this mode, pipeline is decided in driver to the appropriate mode. * e.g. a mode that's a balance between power and performance. */ VAProcDefaultMode = 0, /** * \brief Power Saving Mode. * In this mode, pipeline is optimized for power saving. */ VAProcPowerSavingMode, /** * \brief Performance Mode. * In this mode, pipeline is optimized for performance. */ VAProcPerformanceMode } VAProcMode; /** @name Video blending flags */ /**@{*/ /** \brief Global alpha blending. */ #define VA_BLEND_GLOBAL_ALPHA 0x0001 /** \brief Premultiplied alpha blending (RGBA surfaces only). */ #define VA_BLEND_PREMULTIPLIED_ALPHA 0x0002 /** \brief Luma color key (YUV surfaces only). */ #define VA_BLEND_LUMA_KEY 0x0010 /**@}*/ /** \brief Video blending state definition. */ typedef struct _VABlendState { /** \brief Video blending flags. */ unsigned int flags; /** * \brief Global alpha value. * * Valid if \flags has VA_BLEND_GLOBAL_ALPHA. * Valid range is 0.0 to 1.0 inclusive. */ float global_alpha; /** * \brief Minimum luma value. * * Valid if \flags has VA_BLEND_LUMA_KEY. * Valid range is 0.0 to 1.0 inclusive. * \ref min_luma shall be set to a sensible value lower than \ref max_luma. */ float min_luma; /** * \brief Maximum luma value. * * Valid if \flags has VA_BLEND_LUMA_KEY. * Valid range is 0.0 to 1.0 inclusive. * \ref max_luma shall be set to a sensible value larger than \ref min_luma. */ float max_luma; } VABlendState; /** @name Video pipeline flags */ /**@{*/ /** \brief Specifies whether to apply subpictures when processing a surface. */ #define VA_PROC_PIPELINE_SUBPICTURES 0x00000001 /** * \brief Specifies whether to apply power or performance * optimizations to a pipeline. * * When processing several surfaces, it may be necessary to prioritize * more certain pipelines than others. This flag is only a hint to the * video processor so that it can omit certain filters to save power * for example. Typically, this flag could be used with video surfaces * decoded from a secondary bitstream. */ #define VA_PROC_PIPELINE_FAST 0x00000002 /**@}*/ /** @name Video filter flags */ /**@{*/ /** \brief Specifies whether the filter shall be present in the pipeline. */ #define VA_PROC_FILTER_MANDATORY 0x00000001 /**@}*/ /** @name Pipeline end flags */ /**@{*/ /** \brief Specifies the pipeline is the last. */ #define VA_PIPELINE_FLAG_END 0x00000004 /**@}*/ /** @name Chroma Siting flag */ /**@{*/ /** vertical chroma sitting take bit 0-1, horizontal chroma sitting take bit 2-3 * vertical chromma siting | horizontal chroma sitting to be chroma sitting */ #define VA_CHROMA_SITING_UNKNOWN 0x00 /** \brief Chroma samples are co-sited vertically on the top with the luma samples. */ #define VA_CHROMA_SITING_VERTICAL_TOP 0x01 /** \brief Chroma samples are not co-sited vertically with the luma samples. */ #define VA_CHROMA_SITING_VERTICAL_CENTER 0x02 /** \brief Chroma samples are co-sited vertically on the bottom with the luma samples. */ #define VA_CHROMA_SITING_VERTICAL_BOTTOM 0x03 /** \brief Chroma samples are co-sited horizontally on the left with the luma samples. */ #define VA_CHROMA_SITING_HORIZONTAL_LEFT 0x04 /** \brief Chroma samples are not co-sited horizontally with the luma samples. */ #define VA_CHROMA_SITING_HORIZONTAL_CENTER 0x08 /**@}*/ /** * This is to indicate that the color-space conversion uses full range or reduced range. * VA_SOURCE_RANGE_FULL(Full range): Y/Cb/Cr is in [0, 255]. It is mainly used * for JPEG/JFIF formats. The combination with the BT601 flag means that * JPEG/JFIF color-space conversion matrix is used. * VA_SOURCE_RANGE_REDUCED(Reduced range): Y is in [16, 235] and Cb/Cr is in [16, 240]. * It is mainly used for the YUV->RGB color-space conversion in SDTV/HDTV/UHDTV. */ #define VA_SOURCE_RANGE_UNKNOWN 0 #define VA_SOURCE_RANGE_REDUCED 1 #define VA_SOURCE_RANGE_FULL 2 /** @name Tone Mapping flags multiple HDR mode*/ /**@{*/ /** \brief Tone Mapping from HDR content to HDR display. */ #define VA_TONE_MAPPING_HDR_TO_HDR 0x0001 /** \brief Tone Mapping from HDR content to SDR display. */ #define VA_TONE_MAPPING_HDR_TO_SDR 0x0002 /** \brief Tone Mapping from HDR content to EDR display. */ #define VA_TONE_MAPPING_HDR_TO_EDR 0x0004 /** \brief Tone Mapping from SDR content to HDR display. */ #define VA_TONE_MAPPING_SDR_TO_HDR 0x0008 /**@}*/ /** \brief Video processing pipeline capabilities. */ typedef struct _VAProcPipelineCaps { /** \brief Pipeline flags. See VAProcPipelineParameterBuffer::pipeline_flags. */ uint32_t pipeline_flags; /** \brief Extra filter flags. See VAProcPipelineParameterBuffer::filter_flags. */ uint32_t filter_flags; /** \brief Number of forward reference frames that are needed. */ uint32_t num_forward_references; /** \brief Number of backward reference frames that are needed. */ uint32_t num_backward_references; /** \brief List of color standards supported on input. */ VAProcColorStandardType *input_color_standards; /** \brief Number of elements in \ref input_color_standards array. */ uint32_t num_input_color_standards; /** \brief List of color standards supported on output. */ VAProcColorStandardType *output_color_standards; /** \brief Number of elements in \ref output_color_standards array. */ uint32_t num_output_color_standards; /** * \brief Rotation flags. * * For each rotation angle supported by the underlying hardware, * the corresponding bit is set in \ref rotation_flags. See * "Rotation angles" for a description of rotation angles. * * A value of 0 means the underlying hardware does not support any * rotation. Otherwise, a check for a specific rotation angle can be * performed as follows: * * \code * VAProcPipelineCaps pipeline_caps; * ... * vaQueryVideoProcPipelineCaps(va_dpy, vpp_ctx, * filter_bufs, num_filter_bufs, * &pipeline_caps * ); * ... * if (pipeline_caps.rotation_flags & (1 << VA_ROTATION_xxx)) { * // Clockwise rotation by xxx degrees is supported * ... * } * \endcode */ uint32_t rotation_flags; /** \brief Blend flags. See "Video blending flags". */ uint32_t blend_flags; /** * \brief Mirroring flags. * * For each mirroring direction supported by the underlying hardware, * the corresponding bit is set in \ref mirror_flags. See * "Mirroring directions" for a description of mirroring directions. * */ uint32_t mirror_flags; /** \brief Number of additional output surfaces supported by the pipeline */ uint32_t num_additional_outputs; /** \brief Number of elements in \ref input_pixel_format array. */ uint32_t num_input_pixel_formats; /** \brief List of input pixel formats in fourcc. */ uint32_t *input_pixel_format; /** \brief Number of elements in \ref output_pixel_format array. */ uint32_t num_output_pixel_formats; /** \brief List of output pixel formats in fourcc. */ uint32_t *output_pixel_format; /** \brief Max supported input width in pixels. */ uint32_t max_input_width; /** \brief Max supported input height in pixels. */ uint32_t max_input_height; /** \brief Min supported input width in pixels. */ uint32_t min_input_width; /** \brief Min supported input height in pixels. */ uint32_t min_input_height; /** \brief Max supported output width in pixels. */ uint32_t max_output_width; /** \brief Max supported output height in pixels. */ uint32_t max_output_height; /** \brief Min supported output width in pixels. */ uint32_t min_output_width; /** \brief Min supported output height in pixels. */ uint32_t min_output_height; /** \brief Reserved bytes for future use, must be zero */ #if defined(__AMD64__) || defined(__x86_64__) || defined(__amd64__) || defined(__LP64__) uint32_t va_reserved[VA_PADDING_HIGH - 2]; #else uint32_t va_reserved[VA_PADDING_HIGH]; #endif } VAProcPipelineCaps; /** \brief Specification of values supported by the filter. */ typedef struct _VAProcFilterValueRange { /** \brief Minimum value supported, inclusive. */ float min_value; /** \brief Maximum value supported, inclusive. */ float max_value; /** \brief Default value. */ float default_value; /** \brief Step value that alters the filter behaviour in a sensible way. */ float step; /** \brief Reserved bytes for future use, must be zero */ uint32_t va_reserved[VA_PADDING_LOW]; } VAProcFilterValueRange; typedef struct _VAProcColorProperties { /** Chroma sample location.\c VA_CHROMA_SITING_VERTICAL_XXX | VA_CHROMA_SITING_HORIZONTAL_XXX */ uint8_t chroma_sample_location; /** Color range. \c VA_SOURCE_RANGE_XXX*/ uint8_t color_range; /** Colour primaries. * * See ISO/IEC 23001-8 or ITU H.273, section 8.1 and table 2. * Only used if the color standard in use is \c VAColorStandardExplicit. * Below list the typical colour primaries for the reference. * --------------------------------------------------------------------------------- * | Value | Primaries | Informative Remark | * -------------------------------------------------------------------------------- * | 1 |primary x y |Rec.ITU-R BT.709-5 | * | |green 0.300 0.600 |IEC 61966-2-1(sRGB or sYCC) | * | |blue 0.150 0.060 | | * | |red 0.640 0.330 | | * | |whiteD65 0.3127 0.3290 | | * --------------------------------------------------------------------------------- * | 6 |primary x y |Rec.ITU-R BT.601-6 525 | * | |green 0.310 0.595 | | * | |blue 0.155 0.070 | | * | |red 0.630 0.340 | | * | |whiteD65 0.3127 0.3290 | | * --------------------------------------------------------------------------------- * | 9 |primary x y |Rec.ITU-R BT.2020 | * | |green 0.170 0.797 | | * | |blue 0.131 0.046 | | * | |red 0.708 0.292 | | * | |whiteD65 0.3127 0.3290 | | * --------------------------------------------------------------------------------- */ uint8_t colour_primaries; /** Transfer characteristics. * * See ISO/IEC 23001-8 or ITU H.273, section 8.2 and table 3. * Only used if the color standard in use is \c VAColorStandardExplicit. * Below list the typical transfer characteristics for the reference. * ----------------------------------------------------------- * | Value | Informative Remark | * ----------------------------------------------------------- * | 1 |Rec.ITU-R BT.709-5 | * | |colour gamut system | * ----------------------------------------------------------- * | 4 |Assumed display gamma 2.2 | * ----------------------------------------------------------- * | 6 |Rec.ITU-R BT.601-6 525 or 625 | * ----------------------------------------------------------- * | 8 |Linear transfer characteristics | * ----------------------------------------------------------- * | 13 |IEC 61966-2-1(sRGB or sYCC) | * ----------------------------------------------------------- * | 14,15 |Rec.ITU-R BT.2020 | * ----------------------------------------------------------- * | 16 |SMPTE ST 2084 for 10,12,14 and 16bit system | * ----------------------------------------------------------- */ uint8_t transfer_characteristics; /** Matrix coefficients. * * See ISO/IEC 23001-8 or ITU H.273, section 8.3 and table 4. * Only used if the color standard in use is \c VAColorStandardExplicit. */ uint8_t matrix_coefficients; /** Reserved bytes for future use, must be zero. */ uint8_t reserved[3]; } VAProcColorProperties; /** \brief Describes High Dynamic Range Meta Data for HDR10. * * Specifies the colour volume(the colour primaries, white point and luminance range) of * a display considered to be the mastering display for the associated video content -e.g., * the colour volume of a display that was used for viewing while authoring the video content. * See ITU-T H.265 D.3.27 Mastering display colour volume SEI message semantics. * * Specifies upper bounds for the nominal light level of the content. See ITU-T H.265 D.3.35 * Content light level information SEI message semantics. * * This structure can be used to indicate the HDR10 metadata for 1) the content which was authored; * 2) the display on which the content will be presented. If it is for display, max_content_light_level * and max_pic_average_light_level are ignored. */ typedef struct _VAHdrMetaDataHDR10 { /** * \brief X chromaticity coordinate of the mastering display. * * Index value c equal to 0 should correspond to the green primary. * Index value c equal to 1 should correspond to the blue primary. * Index value c equal to 2 should correspond to the red primary. * The value for display_primaries_x shall be in the range of 0 to 50000 inclusive. */ uint16_t display_primaries_x[3]; /** * \brief Y chromaticity coordinate of the mastering display. * * Index value c equal to 0 should correspond to the green primary. * Index value c equal to 1 should correspond to the blue primary. * Index value c equal to 2 should correspond to the red primary. * The value for display_primaries_y shall be in the range of 0 to 50000 inclusive. */ uint16_t display_primaries_y[3]; /** * \brief X chromaticity coordinate of the white point of the mastering display. * * The value for white_point_x shall be in the range of 0 to 50000 inclusive. */ uint16_t white_point_x; /** * \brief Y chromaticity coordinate of the white point of the mastering display. * * The value for white_point_y shall be in the range of 0 to 50000 inclusive. */ uint16_t white_point_y; /** * \brief The maximum display luminance of the mastering display. * * The value is in units of 0.0001 candelas per square metre. */ uint32_t max_display_mastering_luminance; /** * \brief The minumum display luminance of the mastering display. * * The value is in units of 0.0001 candelas per square metre. */ uint32_t min_display_mastering_luminance; /** * \brief The maximum content light level (MaxCLL). * * The value is in units of 1 candelas per square metre. */ uint16_t max_content_light_level; /** * \brief The maximum picture average light level (MaxFALL). * * The value is in units of 1 candelas per square metre. */ uint16_t max_pic_average_light_level; /** Resevered */ uint16_t reserved[VA_PADDING_HIGH]; } VAHdrMetaDataHDR10; /** \brief Capabilities specification for the High Dynamic Range filter. */ typedef struct _VAProcFilterCapHighDynamicRange { /** \brief high dynamic range type. */ VAProcHighDynamicRangeMetadataType metadata_type; /** * \brief flag for high dynamic range tone mapping * * The flag is the combination of VA_TONE_MAPPING_XXX_TO_XXX. * It could be VA_TONE_MAPPING_HDR_TO_HDR | VA_TONE_MAPPING_HDR_TO_SDR. * SDR content to SDR display is always supported by default since it is legacy path. */ uint16_t caps_flag; /** \brief Reserved bytes for future use, must be zero */ uint16_t va_reserved[VA_PADDING_HIGH]; } VAProcFilterCapHighDynamicRange; /** \brief High Dynamic Range Meta Data. */ typedef struct _VAHdrMetaData { /** \brief high dynamic range metadata type, HDR10 etc. */ VAProcHighDynamicRangeMetadataType metadata_type; /** * \brief Pointer to high dynamic range metadata. * * The pointer could point to VAHdrMetaDataHDR10 or other HDR meta data. */ void* metadata; /** * \brief Size of high dynamic range metadata. */ uint32_t metadata_size; /** \brief Reserved bytes for future use, must be zero */ uint32_t reserved[VA_PADDING_LOW]; } VAHdrMetaData; /** * \brief Video processing pipeline configuration. * * This buffer defines a video processing pipeline. The actual filters to * be applied are provided in the \c filters field, they can be re-used * in other processing pipelines. * * The target surface is specified by the \c render_target argument of * \c vaBeginPicture(). The general usage model is described as follows: * - \c vaBeginPicture(): specify the target surface that receives the * processed output; * - \c vaRenderPicture(): specify a surface to be processed and composed * into the \c render_target. Use as many \c vaRenderPicture() calls as * necessary surfaces to compose ; * - \c vaEndPicture(): tell the driver to start processing the surfaces * with the requested filters. * * If a filter (e.g. noise reduction) needs to be applied with different * values for multiple surfaces, the application needs to create as many * filter parameter buffers as necessary. i.e. the filter parameters shall * not change between two calls to \c vaRenderPicture(). * * For composition usage models, the first surface to process will generally * use an opaque background color, i.e. \c output_background_color set with * the most significant byte set to \c 0xff. For instance, \c 0xff000000 for * a black background. Then, subsequent surfaces would use a transparent * background color. */ typedef struct _VAProcPipelineParameterBuffer { /** * \brief Source surface ID. * * ID of the source surface to process. If subpictures are associated * with the video surfaces then they shall be rendered to the target * surface, if the #VA_PROC_PIPELINE_SUBPICTURES pipeline flag is set. */ VASurfaceID surface; /** * \brief Region within the source surface to be processed. * * Pointer to a #VARectangle defining the region within the source * surface to be processed. If NULL, \c surface_region implies the * whole surface. */ const VARectangle *surface_region; /** * \brief Requested input color standard. * * Color properties are implicitly converted throughout the processing * pipeline. The video processor chooses the best moment to apply * this conversion. The set of supported color standards for input shall * be queried with vaQueryVideoProcPipelineCaps(). * * If this is set to VAProcColorStandardExplicit, the color properties * are specified explicitly in surface_color_properties instead. */ VAProcColorStandardType surface_color_standard; /** * \brief Region within the output surface. * * Pointer to a #VARectangle defining the region within the output * surface that receives the processed pixels. If NULL, \c output_region * implies the whole surface. * * Note that any pixels residing outside the specified region will * be filled in with the \ref output_background_color. */ const VARectangle *output_region; /** * \brief Background color. * * Background color used to fill in pixels that reside outside of the * specified \ref output_region. The color is specified in ARGB format: * [31:24] alpha, [23:16] red, [15:8] green, [7:0] blue. * * Unless the alpha value is zero or the \ref output_region represents * the whole target surface size, implementations shall not render the * source surface to the target surface directly. Rather, in order to * maintain the exact semantics of \ref output_background_color, the * driver shall use a temporary surface and fill it in with the * appropriate background color. Next, the driver will blend this * temporary surface into the target surface. */ uint32_t output_background_color; /** * \brief Requested output color standard. * * If this is set to VAProcColorStandardExplicit, the color properties * are specified explicitly in output_color_properties instead. */ VAProcColorStandardType output_color_standard; /** * \brief Pipeline filters. See video pipeline flags. * * Flags to control the pipeline, like whether to apply subpictures * or not, notify the driver that it can opt for power optimizations, * should this be needed. */ uint32_t pipeline_flags; /** * \brief Extra filter flags. See vaPutSurface() flags. * * Filter flags are used as a fast path, wherever possible, to use * vaPutSurface() flags instead of explicit filter parameter buffers. * * Allowed filter flags API-wise. Use vaQueryVideoProcPipelineCaps() * to check for implementation details: * - Bob-deinterlacing: \c VA_FRAME_PICTURE, \c VA_TOP_FIELD, * \c VA_BOTTOM_FIELD. Note that any deinterlacing filter * (#VAProcFilterDeinterlacing) will override those flags. * - Color space conversion: \c VA_SRC_BT601, \c VA_SRC_BT709, * \c VA_SRC_SMPTE_240. * - Scaling: \c VA_FILTER_SCALING_DEFAULT, \c VA_FILTER_SCALING_FAST, * \c VA_FILTER_SCALING_HQ, \c VA_FILTER_SCALING_NL_ANAMORPHIC. * - Interpolation Method: \c VA_FILTER_INTERPOLATION_DEFAULT, * \c VA_FILTER_INTERPOLATION_NEAREST_NEIGHBOR, * \c VA_FILTER_INTERPOLATION_BILINEAR, \c VA_FILTER_INTERPOLATION_ADVANCED. */ uint32_t filter_flags; /** * \brief Array of filters to apply to the surface. * * The list of filters shall be ordered in the same way the driver expects * them. i.e. as was returned from vaQueryVideoProcFilters(). * Otherwise, a #VA_STATUS_ERROR_INVALID_FILTER_CHAIN is returned * from vaRenderPicture() with this buffer. * * #VA_STATUS_ERROR_UNSUPPORTED_FILTER is returned if the list * contains an unsupported filter. * */ VABufferID *filters; /** \brief Actual number of filters. */ uint32_t num_filters; /** \brief Array of forward reference frames (past frames). */ VASurfaceID *forward_references; /** \brief Number of forward reference frames that were supplied. */ uint32_t num_forward_references; /** \brief Array of backward reference frames (future frames). */ VASurfaceID *backward_references; /** \brief Number of backward reference frames that were supplied. */ uint32_t num_backward_references; /** * \brief Rotation state. See rotation angles. * * The rotation angle is clockwise. There is no specific rotation * center for this operation. Rather, The source \ref surface is * first rotated by the specified angle and then scaled to fit the * \ref output_region. * * This means that the top-left hand corner (0,0) of the output * (rotated) surface is expressed as follows: * - \ref VA_ROTATION_NONE: (0,0) is the top left corner of the * source surface -- no rotation is performed ; * - \ref VA_ROTATION_90: (0,0) is the bottom-left corner of the * source surface ; * - \ref VA_ROTATION_180: (0,0) is the bottom-right corner of the * source surface -- the surface is flipped around the X axis ; * - \ref VA_ROTATION_270: (0,0) is the top-right corner of the * source surface. * * Check VAProcPipelineCaps::rotation_flags first prior to * defining a specific rotation angle. Otherwise, the hardware can * perfectly ignore this variable if it does not support any * rotation. */ uint32_t rotation_state; /** * \brief blending state. See "Video blending state definition". * * If \ref blend_state is NULL, then default operation mode depends * on the source \ref surface format: * - RGB: per-pixel alpha blending ; * - YUV: no blending, i.e override the underlying pixels. * * Otherwise, \ref blend_state is a pointer to a #VABlendState * structure that shall be live until vaEndPicture(). * * Implementation note: the driver is responsible for checking the * blend state flags against the actual source \ref surface format. * e.g. premultiplied alpha blending is only applicable to RGB * surfaces, and luma keying is only applicable to YUV surfaces. * If a mismatch occurs, then #VA_STATUS_ERROR_INVALID_BLEND_STATE * is returned. */ const VABlendState *blend_state; /** * \bried mirroring state. See "Mirroring directions". * * Mirroring of an image can be performed either along the * horizontal or vertical axis. It is assumed that the rotation * operation is always performed before the mirroring operation. */ uint32_t mirror_state; /** \brief Array of additional output surfaces. */ VASurfaceID *additional_outputs; /** \brief Number of additional output surfaces. */ uint32_t num_additional_outputs; /** * \brief Flag to indicate the input surface flag * * bit0~3: Surface sample type * - 0000: Progressive --> VA_FRAME_PICTURE * - 0001: Single Top Field --> VA_TOP_FIELD * - 0010: Single Bottom Field --> VA_BOTTOM_FIELD * - 0100: Interleaved Top Field First --> VA_TOP_FIELD_FIRST * - 1000: Interleaved Bottom Field First --> VA_BOTTOM_FIELD_FIRST * * For interlaced scaling, examples as follow: * - 1. Interleaved to Interleaved (Suppose input is top field first) * -- set input_surface_flag as VA_TOP_FIELD_FIRST * -- set output_surface_flag as VA_TOP_FIELD_FIRST * - 2. Interleaved to Field (Suppose input is top field first) * An interleaved frame need to be passed twice. * First cycle to get the first field: * -- set input_surface_flag as VA_TOP_FIELD_FIRST * -- set output_surface_flag as VA_TOP_FIELD * Second cycle to get the second field: * -- set input_surface_flag as VA_TOP_FIELD_FIRST * -- set output_surface_flag as VA_BOTTOM_FIELD * - 3. Field to Interleaved (Suppose first field is top field) * -- create two surfaces, one for top field, the other for bottom field * -- set surface with the first field surface id * -- set backward_reference with the second field surface id * -- set input_surface_flag as VA_TOP_FIELD * -- set output_surface_flag as VA_TOP_FIELD_FIRST * - 4. Field to Field: * -- set flag according to each frame. * * bit31: Surface encryption * - 0: non-protected * - 1: protected * * bit4~30 for future */ uint32_t input_surface_flag; /** * \brief Flag to indicate the output surface flag * * bit0~3: Surface sample type * - 0000: Progressive --> VA_FRAME_PICTURE * - 0001: Top Field --> VA_TOP_FIELD * - 0010: Bottom Field --> VA_BOTTOM_FIELD * - 0100: Top Field First --> VA_TOP_FIELD_FIRST * - 1000: Bottom Field First --> VA_BOTTOM_FIELD_FIRST * * bit31: Surface encryption * - 0: non-protected * - 1: protected * * bit4~30 for future */ uint32_t output_surface_flag; /** * \brief Input Color Properties. See "VAProcColorProperties". */ VAProcColorProperties input_color_properties; /** * \brief Output Color Properties. See "VAProcColorProperties". */ VAProcColorProperties output_color_properties; /** * \brief Processing mode. See "VAProcMode". */ VAProcMode processing_mode; /** * \brief Output High Dynamic Metadata. * * If output_metadata is NULL, then output default to SDR. */ VAHdrMetaData *output_hdr_metadata; /** \brief Reserved bytes for future use, must be zero */ #if defined(__AMD64__) || defined(__x86_64__) || defined(__amd64__)|| defined(__LP64__) uint32_t va_reserved[VA_PADDING_LARGE - 16]; #else uint32_t va_reserved[VA_PADDING_LARGE - 13]; #endif } VAProcPipelineParameterBuffer; /** * \brief Filter parameter buffer base. * * This is a helper structure used by driver implementations only. * Users are not supposed to allocate filter parameter buffers of this * type. */ typedef struct _VAProcFilterParameterBufferBase { /** \brief Filter type. */ VAProcFilterType type; } VAProcFilterParameterBufferBase; /** * \brief Default filter parametrization. * * Unless there is a filter-specific parameter buffer, * #VAProcFilterParameterBuffer is the default type to use. */ typedef struct _VAProcFilterParameterBuffer { /** \brief Filter type. */ VAProcFilterType type; /** \brief Value. */ float value; /** \brief Reserved bytes for future use, must be zero */ uint32_t va_reserved[VA_PADDING_LOW]; } VAProcFilterParameterBuffer; /** @name De-interlacing flags */ /**@{*/ /** * \brief Bottom field first in the input frame. * if this is not set then assumes top field first. */ #define VA_DEINTERLACING_BOTTOM_FIELD_FIRST 0x0001 /** * \brief Bottom field used in deinterlacing. * if this is not set then assumes top field is used. */ #define VA_DEINTERLACING_BOTTOM_FIELD 0x0002 /** * \brief A single field is stored in the input frame. * if this is not set then assumes the frame contains two interleaved fields. */ #define VA_DEINTERLACING_ONE_FIELD 0x0004 /** * \brief Film Mode Detection is enabled. If enabled, driver performs inverse * of various pulldowns, such as 3:2 pulldown. * if this is not set then assumes FMD is disabled. */ #define VA_DEINTERLACING_FMD_ENABLE 0x0008 //Scene change parameter for ADI on Linux, if enabled, driver use spatial DI(Bob), instead of ADI. if not, use old behavior for ADI //Input stream is TFF(set flags = 0), SRC0,1,2,3 are interlaced frame (top +bottom fields), DSTs are progressive frames //30i->30p //SRC0 -> BOBDI, no reference, set flag = 0, output DST0 //SRC1 -> ADI, reference frame=SRC0, set flags = 0, call VP, output DST1 //SRC2 -> ADI, reference frame=SRC1, set flags = 0x0010(decimal 16), call VP, output DST2(T4) //SRC3 -> ADI, reference frame=SRC2, set flags = 0, call VP, output DST3 //30i->60p //SRC0 -> BOBDI, no reference, set flag = 0, output DST0 //SRC0 -> BOBDI, no reference, set flag =0x0002, output DST1 //SRC1 -> ADI, reference frame =SRC0, set flags = 0, call VP, output DST2 //SRC1 -> ADI, reference frame =SRC0, set flags = 0x0012(decimal18), call VP, output DST3(B3) //SRC2 -> ADI, reference frame =SRC1, set flags = 0x0010(decimal 16), call VP, output DST4(T4) //SRC2 -> ADI, reference frame =SRC1, set flags = 0x0002, call VP, output DST5 //SRC3 -> ADI, reference frame =SRC2, set flags = 0, call VP, output DST6 //SRC3 -> ADI, reference frame =SRC1, set flags = 0x0002, call VP, output DST7 #define VA_DEINTERLACING_SCD_ENABLE 0x0010 /**@}*/ /** \brief Deinterlacing filter parametrization. */ typedef struct _VAProcFilterParameterBufferDeinterlacing { /** \brief Filter type. Shall be set to #VAProcFilterDeinterlacing. */ VAProcFilterType type; /** \brief Deinterlacing algorithm. */ VAProcDeinterlacingType algorithm; /** \brief Deinterlacing flags. */ uint32_t flags; /** \brief Reserved bytes for future use, must be zero */ uint32_t va_reserved[VA_PADDING_LOW]; } VAProcFilterParameterBufferDeinterlacing; /** * \brief Color balance filter parametrization. * * This buffer defines color balance attributes. A VA buffer can hold * several color balance attributes by creating a VA buffer of desired * number of elements. This can be achieved by the following pseudo-code: * * \code * enum { kHue, kSaturation, kBrightness, kContrast }; * * // Initial color balance parameters * static const VAProcFilterParameterBufferColorBalance colorBalanceParams[4] = * { * [kHue] = * { VAProcFilterColorBalance, VAProcColorBalanceHue, 0.5 }, * [kSaturation] = * { VAProcFilterColorBalance, VAProcColorBalanceSaturation, 0.5 }, * [kBrightness] = * { VAProcFilterColorBalance, VAProcColorBalanceBrightness, 0.5 }, * [kSaturation] = * { VAProcFilterColorBalance, VAProcColorBalanceSaturation, 0.5 } * }; * * // Create buffer * VABufferID colorBalanceBuffer; * vaCreateBuffer(va_dpy, vpp_ctx, * VAProcFilterParameterBufferType, sizeof(*pColorBalanceParam), 4, * colorBalanceParams, * &colorBalanceBuffer * ); * * VAProcFilterParameterBufferColorBalance *pColorBalanceParam; * vaMapBuffer(va_dpy, colorBalanceBuffer, &pColorBalanceParam); * { * // Change brightness only * pColorBalanceBuffer[kBrightness].value = 0.75; * } * vaUnmapBuffer(va_dpy, colorBalanceBuffer); * \endcode */ typedef struct _VAProcFilterParameterBufferColorBalance { /** \brief Filter type. Shall be set to #VAProcFilterColorBalance. */ VAProcFilterType type; /** \brief Color balance attribute. */ VAProcColorBalanceType attrib; /** * \brief Color balance value. * * Special case for automatically adjusted attributes. e.g. * #VAProcColorBalanceAutoSaturation, * #VAProcColorBalanceAutoBrightness, * #VAProcColorBalanceAutoContrast. * - If \ref value is \c 1.0 +/- \c FLT_EPSILON, the attribute is * automatically adjusted and overrides any other attribute of * the same type that would have been set explicitly; * - If \ref value is \c 0.0 +/- \c FLT_EPSILON, the attribute is * disabled and other attribute of the same type is used instead. */ float value; /** \brief Reserved bytes for future use, must be zero */ uint32_t va_reserved[VA_PADDING_LOW]; } VAProcFilterParameterBufferColorBalance; /** \brief Total color correction filter parametrization. */ typedef struct _VAProcFilterParameterBufferTotalColorCorrection { /** \brief Filter type. Shall be set to #VAProcFilterTotalColorCorrection. */ VAProcFilterType type; /** \brief Color to correct. */ VAProcTotalColorCorrectionType attrib; /** \brief Color correction value. */ float value; } VAProcFilterParameterBufferTotalColorCorrection; /** \brief Human Vision System(HVS) Noise reduction filter parametrization. */ typedef struct _VAProcFilterParameterBufferHVSNoiseReduction { /** \brief Filter type. Shall be set to #VAProcFilterHVSNoiseReduction. */ VAProcFilterType type; /** \brief QP for encoding, used for HVS Denoise */ uint16_t qp; /** * \brief QP to Noise Reduction Strength Mode, used for Human Vision System Based Noise Reduction. * Controls Noise Reduction strength of conservative and aggressive mode. * It is an integer from [0-16]. * Value 0 means completely turn off Noise Reduction; * Value 16 means the most aggressive mode of Noise Reduction; * Value 10 is the default value. */ uint16_t strength; /** \brief Reserved bytes for future use, must be zero */ uint16_t va_reserved[VA_PADDING_HIGH]; } VAProcFilterParameterBufferHVSNoiseReduction; /** \brief High Dynamic Range(HDR) Tone Mapping filter parametrization. */ typedef struct _VAProcFilterParameterBufferHDRToneMapping { /** \brief Filter type. Shall be set to #VAProcFilterHighDynamicRangeToneMapping.*/ VAProcFilterType type; /** * \brief High Dynamic Range metadata, could be HDR10 etc. * * This metadata is mainly for the input surface. Given that dynamic metadata is changing * on frame-by-frame or scene-by-scene basis for HDR10 plus, differentiate the metadata * for the input and output. */ VAHdrMetaData data; /** \brief Reserved bytes for future use, must be zero */ uint32_t va_reserved[VA_PADDING_HIGH]; } VAProcFilterParameterBufferHDRToneMapping; /** * \brief Default filter cap specification (single range value). * * Unless there is a filter-specific cap structure, #VAProcFilterCap is the * default type to use for output caps from vaQueryVideoProcFilterCaps(). */ typedef struct _VAProcFilterCap { /** \brief Range of supported values for the filter. */ VAProcFilterValueRange range; /** \brief Reserved bytes for future use, must be zero */ uint32_t va_reserved[VA_PADDING_LOW]; } VAProcFilterCap; /** \brief Capabilities specification for the deinterlacing filter. */ typedef struct _VAProcFilterCapDeinterlacing { /** \brief Deinterlacing algorithm. */ VAProcDeinterlacingType type; /** \brief Reserved bytes for future use, must be zero */ uint32_t va_reserved[VA_PADDING_LOW]; } VAProcFilterCapDeinterlacing; /** \brief Capabilities specification for the color balance filter. */ typedef struct _VAProcFilterCapColorBalance { /** \brief Color balance operation. */ VAProcColorBalanceType type; /** \brief Range of supported values for the specified operation. */ VAProcFilterValueRange range; /** \brief Reserved bytes for future use, must be zero */ uint32_t va_reserved[VA_PADDING_LOW]; } VAProcFilterCapColorBalance; /** \brief Capabilities specification for the Total Color Correction filter. */ typedef struct _VAProcFilterCapTotalColorCorrection { /** \brief Color to correct. */ VAProcTotalColorCorrectionType type; /** \brief Range of supported values for the specified color. */ VAProcFilterValueRange range; } VAProcFilterCapTotalColorCorrection; /** * \brief Queries video processing filters. * * This function returns the list of video processing filters supported * by the driver. The \c filters array is allocated by the user and * \c num_filters shall be initialized to the number of allocated * elements in that array. Upon successful return, the actual number * of filters will be overwritten into \c num_filters. Otherwise, * \c VA_STATUS_ERROR_MAX_NUM_EXCEEDED is returned and \c num_filters * is adjusted to the number of elements that would be returned if enough * space was available. * * The list of video processing filters supported by the driver shall * be ordered in the way they can be iteratively applied. This is needed * for both correctness, i.e. some filters would not mean anything if * applied at the beginning of the pipeline; but also for performance * since some filters can be applied in a single pass (e.g. noise * reduction + deinterlacing). * * @param[in] dpy the VA display * @param[in] context the video processing context * @param[out] filters the output array of #VAProcFilterType elements * @param[in,out] num_filters the number of elements allocated on input, * the number of elements actually filled in on output */ VAStatus vaQueryVideoProcFilters( VADisplay dpy, VAContextID context, VAProcFilterType *filters, unsigned int *num_filters ); /** * \brief Queries video filter capabilities. * * This function returns the list of capabilities supported by the driver * for a specific video filter. The \c filter_caps array is allocated by * the user and \c num_filter_caps shall be initialized to the number * of allocated elements in that array. Upon successful return, the * actual number of filters will be overwritten into \c num_filter_caps. * Otherwise, \c VA_STATUS_ERROR_MAX_NUM_EXCEEDED is returned and * \c num_filter_caps is adjusted to the number of elements that would be * returned if enough space was available. * * @param[in] dpy the VA display * @param[in] context the video processing context * @param[in] type the video filter type * @param[out] filter_caps the output array of #VAProcFilterCap elements * @param[in,out] num_filter_caps the number of elements allocated on input, * the number of elements actually filled in output */ VAStatus vaQueryVideoProcFilterCaps( VADisplay dpy, VAContextID context, VAProcFilterType type, void *filter_caps, unsigned int *num_filter_caps ); /** * \brief Queries video processing pipeline capabilities. * * This function returns the video processing pipeline capabilities. The * \c filters array defines the video processing pipeline and is an array * of buffers holding filter parameters. * * Note: the #VAProcPipelineCaps structure contains user-provided arrays. * If non-NULL, the corresponding \c num_* fields shall be filled in on * input with the number of elements allocated. Upon successful return, * the actual number of elements will be overwritten into the \c num_* * fields. Otherwise, \c VA_STATUS_ERROR_MAX_NUM_EXCEEDED is returned * and \c num_* fields are adjusted to the number of elements that would * be returned if enough space was available. * * @param[in] dpy the VA display * @param[in] context the video processing context * @param[in] filters the array of VA buffers defining the video * processing pipeline * @param[in] num_filters the number of elements in filters * @param[in,out] pipeline_caps the video processing pipeline capabilities */ VAStatus vaQueryVideoProcPipelineCaps( VADisplay dpy, VAContextID context, VABufferID *filters, unsigned int num_filters, VAProcPipelineCaps *pipeline_caps ); /**@}*/ #ifdef __cplusplus } #endif #endif /* VA_VPP_H */