summaryrefslogtreecommitdiff
path: root/i965_drv_video/shaders/h264/mc/intra_Pred_8x8_Y.asm
blob: c4f245ed16d809ee9d0109557ede78c78394cb1c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
/*
 * Intra predict 8X8 luma block
 * Copyright © <2010>, Intel Corporation.
 *
 * This program is licensed under the terms and conditions of the
 * Eclipse Public License (EPL), version 1.0.  The full text of the EPL is at
 * http://www.opensource.org/licenses/eclipse-1.0.php.
 *
 */
#if !defined(__INTRA_PRED_8X8_Y__)		// Make sure this is only included once
#define __INTRA_PRED_8X8_Y__

// Module name: intra_Pred_8X8_Y.asm
//
// Intra predict 8X8 luma block
//
//--------------------------------------------------------------------------
//  Input data:
//
//  REF_TOP:	Top reference data stored in BYTE with p[-1,-1] at REF_TOP(0,-1), p[-1,-1] and [15,-1] adjusted
//  REF_LEFT:	Left reference data stored in BYTE with p[-1,0] at REF_LEFT(0,2), REF_LEFT(0,1) (p[-1,-1]) adjusted
//	PRED_MODE:	Intra prediction mode stored in 4 LSBs
//	INTRA_PRED_AVAIL:	Top/Left available flag, (Bit0: Left, Bit1: Top)
//
//	Output data:
//
//	REG_INTRA_8X8_PRED: Predicted 8X8 block data
//--------------------------------------------------------------------------

#define INTRA_REF	REG_INTRA_TEMP_1
#define REF_TMP		REG_INTRA_TEMP_2

intra_Pred_8x8_Y:

//	Reference sample filtering
//
	// Set up boundary pixels for unified filtering
	mov (1)		REF_TOP(0,16)<1>	REF_TOP(0,15)REGION(1,0)	// p[16,-1] = p[15,-1]
	mov	(8)		REF_LEFT(0,2+8)<1>	REF_LEFT(0,2+7)REGION(1,0)	// p[-1,8] = p[-1,7]

	// Top reference sample filtering (!!Consider instruction compression later)
	add (16)	acc0<1>:w	REF_TOP(0,-1)REGION(16,1)	2:w		// p[x-1,-1]+2
	mac (16)	acc0<1>:w	REF_TOP(0)REGION(16,1)		2:w		// p[x-1,-1]+2*p[x,-1]+2
	mac (16)	acc0<1>:w	REF_TOP(0,1)REGION(16,1)	1:w		// p[x-1,-1]+2*p[x,-1]+p[x+1,-1]+2
	shr	(16)	REF_TMP<1>:w	acc0:w	2:w		// (p[x-1,-1]+2*p[x,-1]+p[x+1,-1]+2)>>2

	// Left reference sample filtering
	add (16)	acc0<1>:w	REF_LEFT(0)REGION(16,1)		2:w		// p[-1,y-1]+2
	mac (16)	acc0<1>:w	REF_LEFT(0,1)REGION(16,1)	2:w		// p[-1,y-1]+2*p[-1,y]+2
	mac (16)	acc0<1>:w	REF_LEFT(0,2)REGION(16,1)	1:w		// p[-1,y-1]+2*p[-1,y]+p[-1,y+1]+2
	shr	(16)	INTRA_REF<1>:w	acc0:w	2:w		// (p[-1,y-1]+2*p[-1,y]+p[-1,y+1]+2)>>2

	// Re-assign filtered reference samples
	mov	(16)	REF_TOP(0)<1>	REF_TMP<32;16,2>:ub			// p'[x,-1], x=0...15
	mov	(8)		REF_LEFT(0)<1>	INTRA_REF.2<16;8,2>:ub		// p'[-1,y], y=0...7
	mov	(1)		REF_TOP(0,-1)<1>	INTRA_REF<0;1,0>:ub		// p'[-1,-1]

//	Select intra_8x8 prediction mode
//
	and	(1)	PINTRAPRED_Y<1>:w	PRED_MODE<0;1,0>:w	0x0F:w
	// WA for "jmpi" restriction
	mov (1)	REG_INTRA_TEMP_1<1>:ud	r[PINTRAPRED_Y, INTRA_8X8_OFFSET]:ub
	jmpi (1) REG_INTRA_TEMP_1<0;1,0>:d

// Mode 0
#define	PTMP	a0.6
#define PTMP_D	a0.3
INTRA_8X8_VERTICAL:
    $for(0,0; <4; 1,32) {
	add.sat (16)	r[PPREDBUF_Y,%2]<2>:ub	r[PERROR,%2]<16;16,1>:w	REF_TOP(0)<0;8,1>
	}
	RETURN

// Mode 1
INTRA_8X8_HORIZONTAL:
    $for(0,0; <8; 2,32) {
	add.sat (16)	r[PPREDBUF_Y,%2]<2>:ub	r[PERROR,%2]<16;16,1>:w	REF_LEFT(0,%1)<1;8,0>
	}
	RETURN

// Mode 2
INTRA_8X8_DC:
// Rearrange reference samples for unified DC prediction code
//
    and.nz.f0.0 (16)	NULLREG		INTRA_PRED_AVAIL<0;1,0>:w	2:w	// Top macroblock available for intra prediction?
    and.nz.f0.1 (8)		NULLREG		INTRA_PRED_AVAIL<0;1,0>:w	1:w	// Left macroblock available for intra prediction?
	(-f0.0.any16h) mov (16)	REF_TOP_W(0)<1>	0x8080:uw
	(-f0.1.any8h) mov (8)	REF_LEFT(0)<1>	REF_TOP(0)REGION(8,1)
	(-f0.0.any8h) mov (8)	REF_TOP(0)<1>	REF_LEFT(0)REGION(8,1)

// Perform DC prediction
//
	add (8)		PRED_YW(15)<1>	REF_TOP(0)REGION(8,1)	REF_LEFT(0)REGION(8,1)
	add (4)		PRED_YW(15)<1>	PRED_YW(15)REGION(4,1)	PRED_YW(15,4)REGION(4,1)
	add (2)		PRED_YW(15)<1>	PRED_YW(15)REGION(2,1)	PRED_YW(15,2)REGION(2,1)
	add (16)	acc0<1>:w		PRED_YW(15)REGION(1,0)	PRED_YW(15,1)REGION(1,0)
	add	(16)	acc0<1>:w		acc0:w	8:w
	shr (16)	REG_INTRA_TEMP_0<1>:w	acc0:w	4:w

	// Add error block
    $for(0,0; <4; 1,32) {
	add.sat (16)	r[PPREDBUF_Y,%2]<2>:ub	r[PERROR,%2]<16;16,1>:w	REG_INTRA_TEMP_0<16;16,1>:w
	}
	RETURN

// Mode 3
INTRA_8X8_DIAG_DOWN_LEFT:
	mov	(8)		REF_TOP(0,16)<1>	REF_TOP(0,15)REGION(8,1)	// p[16,-1] = p[15,-1]
	add (16)	acc0<1>:w		REF_TOP(0,2)REGION(16,1)	2:w		// p[x+2]+2
	mac (16)	acc0<1>:w		REF_TOP(0,1)REGION(16,1)	2:w		// 2*p[x+1]+p[x+2]+2
	mac (16)	acc0<1>:w		REF_TOP(0)REGION(16,1)		1:w		// p[x]+2*p[x+1]+p[x+2]+2
	shr (16)	REG_INTRA_TEMP_0<1>:w	acc0<16;16,1>:w		2:w		// (p[x]+2*p[x+1]+p[x+2]+2)>>2

	// Add error block
    $for(0,0; <8; 2,32) {
	add.sat (16)	r[PPREDBUF_Y,%2]<2>:ub	r[PERROR,%2]<16;16,1>:w	REG_INTRA_TEMP_0.%1<1;8,1>:w
	}
	RETURN

// Mode 4
INTRA_8X8_DIAG_DOWN_RIGHT:
#define INTRA_REF	REG_INTRA_TEMP_1
#define REF_TMP		REG_INTRA_TEMP_2

//	Set inverse shift count
	shl	(4)		REF_TMP<1>:ud	REF_LEFT_D(0,1)REGION(1,0)	INV_SHIFT<4;4,1>:b	// Reverse order bottom 4 pixels of left ref.
	shl	(4)		REF_TMP.4<1>:ud	REF_LEFT_D(0)REGION(1,0)	INV_SHIFT<4;4,1>:b	// Reverse order top 4 pixels of left ref.
	mov	(8)		INTRA_REF<1>:ub	REF_TMP.3<32;8,4>:ub
	mov	(16)	INTRA_REF.8<1>:ub	REF_TOP(0,-1)REGION(16,1)	// INTRA_REF holds all reference data

	add (16)	acc0<1>:w		INTRA_REF.2<16;16,1>:ub		2:w		// p[x+2]+2
	mac (16)	acc0<1>:w		INTRA_REF.1<16;16,1>:ub		2:w		// 2*p[x+1]+p[x+2]+2
	mac (16)	acc0<1>:w		INTRA_REF<16;16,1>:ub		1:w		// p[x]+2*p[x+1]+p[x+2]+2
	shr (16)	INTRA_REF<1>:w	acc0<16;16,1>:w				2:w		// (p[x]+2*p[x+1]+p[x+2]+2)>>2

//	Store data in reversed order
	add (2)		PBWDCOPY_8<1>:w	INV_TRANS48<2;2,1>:b	INTRA_TEMP_1*GRFWIB:w	// Must match with INTRA_REF

	// Add error block
    $for(0,96; <8; 2,-32) {
	add.sat (16)	r[PPREDBUF_Y,%2]<2>:ub	r[PBWDCOPY_8,%1*2]<8,1>:w	r[PERROR,%2]<16;16,1>:w
	}
	RETURN

// Mode 5
INTRA_8X8_VERT_RIGHT:
#define INTRA_REF	REG_INTRA_TEMP_1
#define REF_TMP		REG_INTRA_TEMP_2
#define REF_TMP1	REG_INTRA_TEMP_3

//	Set inverse shift count
	shl	(4)		REF_TMP<1>:ud	REF_LEFT_D(0,1)REGION(1,0)	INV_SHIFT<4;4,1>:b	// Reverse order bottom 4 pixels of left ref.
	shl	(4)		REF_TMP.4<1>:ud	REF_LEFT_D(0)REGION(1,0)	INV_SHIFT<4;4,1>:b	// Reverse order top 4 pixels of left ref.
	mov	(8)		INTRA_REF<1>:ub	REF_TMP.3<32;8,4>:ub
	mov	(16)	INTRA_REF.8<1>:ub	REF_TOP(0,-1)REGION(16,1)	// INTRA_REF holds all reference data

	// Even rows
	avg (16)	PRED_YW(14)<1>	INTRA_REF.8<16;16,1>	INTRA_REF.9<16;16,1>	// avg(p[x-1],p[x])
	// Odd rows
	add (16)	acc0<1>:w		INTRA_REF.3<16;16,1>:ub		2:w		// p[x]+2
	mac (16)	acc0<1>:w		INTRA_REF.2<16;16,1>:ub		2:w		// 2*p[x-1]+p[x]+2
	mac (16)	acc0<1>:w		INTRA_REF.1<16;16,1>:ub		1:w		// p[x-2]+2*p[x-1]+p[x]+2
	shr (16)	REF_TMP<1>:w	acc0:w	2:w		// (p[x-2]+2*p[x-1]+p[x]+2)>>2

	mov	(8)		INTRA_REF<1>:ub		REF_TMP<16;8,2>:ub		// Keep zVR = -1,-2,-3,-4,-5,-6,-7 sequencially
	mov	(8)		INTRA_REF.6<2>:ub	REF_TMP.12<16;8,2>:ub	// Keep zVR = -1,1,3,5,7,9,11,13 at even byte
	mov	(8)		INTRA_REF.7<2>:ub	PRED_Y(14)REGION(8,2)	// Combining zVR = 0,2,4,6,8,10,12,14 at odd byte

	add (2)		PBWDCOPY_8<1>:w	INV_TRANS8<2;2,1>:b	INTRA_TEMP_1*GRFWIB:w	// Must match with INTRA_REF

	// Add error block
    $for(0,96; <8; 2,-32) {
	add.sat (16)	r[PPREDBUF_Y,%2]<2>:ub	r[PBWDCOPY_8,%1]<8,2>:ub	r[PERROR,%2]<16;16,1>:w
	}
	RETURN

// Mode 6
INTRA_8X8_HOR_DOWN:
//	Set inverse shift count
	shl	(4)		REF_TMP<1>:ud	REF_LEFT_D(0,1)REGION(1,0)	INV_SHIFT<4;4,1>:b	// Reverse order bottom 4 pixels of left ref.
	shl	(4)		REF_TMP.4<1>:ud	REF_LEFT_D(0)REGION(1,0)	INV_SHIFT<4;4,1>:b	// Reverse order top 4 pixels of left ref.
	mov	(8)		INTRA_REF<1>:ub	REF_TMP.3<16;4,4>:ub
	mov	(16)	INTRA_REF.8<1>:ub	REF_TOP(0,-1)REGION(16,1)	// INTRA_REF holds all reference data

	// Odd pixels
	add (16)	acc0<1>:w	INTRA_REF.2<16;16,1>:ub		2:w		// p[y]+2
	mac (16)	acc0<1>:w	INTRA_REF.1<16;16,1>:ub		2:w		// 2*p[y-1]+p[y]+2
	mac (16)	acc0<1>:w	INTRA_REF.0<16;16,1>:ub		1:w		// p[y-2]+2*p[y-1]+p[y]+2
	shr (16)	PRED_YW(14)<1>	acc0:w	2:w		// (p[y-2]+2*p[y-1]+p[y]+2)>>2
	// Even pixels
	avg (16)	INTRA_REF<1>:w	INTRA_REF<16;16,1>:ub	INTRA_REF.1<16;16,1>:ub	// avg(p[y-1],p[y])

	mov	(8)		INTRA_REF.1<2>:ub	PRED_Y(14)REGION(8,2)		// Combining odd pixels to form byte type
	mov	(8)		INTRA_REF.16<1>:ub	PRED_Y(14,16)REGION(8,2)	// Keep zVR = -2,-3,-4,-5,-6,-7 unchanged
	// Now INTRA_REF.0 - INTRA_REF.21 contain predicted data

	add (2)		PBWDCOPY_8<1>:w	INV_TRANS48<2;2,1>:b	INTRA_TEMP_1*GRFWIB:w	// Must match with INTRA_REF

	// Add error block
    $for(0,96; <13; 4,-32) {
	add.sat (16)	r[PPREDBUF_Y,%2]<2>:ub	r[PBWDCOPY_8,%1]<8,1>:ub	r[PERROR,%2]<16;16,1>:w
	}
	RETURN

// Mode 7
INTRA_8X8_VERT_LEFT:
	// Even rows
	avg (16)		PRED_YW(14)<1>	REF_TOP(0)REGION(16,1)	REF_TOP(0,1)REGION(16,1)	// avg(p[x],p[x+1])
	// Odd rows
	add (16)		acc0<1>:w		REF_TOP(0,2)REGION(16,1)	2:w		// p[x+2]+2
	mac (16)		acc0<1>:w		REF_TOP(0,1)REGION(16,1)	2:w		// 2*p[x+1]+p[x+2]+2
	mac (16)		acc0<1>:w		REF_TOP(0)REGION(16,1)		1:w		// p[x]+2*p[x+1]+p[x+2]+2
	shr (16)		PRED_YW(15)<1>	acc0<1;8,1>:w	2:w		// (p[x]+2*p[x+1]+p[x+2]+2)>>2

	// Add error block
    $for(0,0; <4; 1,32) {
	add.sat (16)	r[PPREDBUF_Y,%2]<2>:ub	PRED_YW(14,%1)<16;8,1>	r[PERROR,%2]<16;16,1>:w
	}
	RETURN

// Mode 8
INTRA_8X8_HOR_UP:
//	Set extra left reference pixels for unified prediction
	mov	(8)		REF_LEFT(0,8)<1>	REF_LEFT(0,7)REGION(1,0)	// Copy p[-1,7] to p[-1,y],y=8...15

	// Even pixels
	avg (16)	PRED_YW(14)<1>	REF_LEFT(0)REGION(16,1)	REF_LEFT(0,1)REGION(16,1)	// avg(p[y],p[y+1])
	// Odd pixels
	add (16)	acc0<1>:w		REF_LEFT(0,2)REGION(16,1)	2:w		// p[y+2]+2
	mac (16)	acc0<1>:w		REF_LEFT(0,1)REGION(16,1)	2:w		// 2*p[y+1]+p[y+2]+2
	mac (16)	acc0<1>:w		REF_LEFT(0)REGION(16,1)		1:w		// p[y]+2*p[y+1]+p[y+2]+2
	shr (16)	PRED_YW(15)<1>	acc0<1;8,1>:w	2:w		// (p[y]+2*p[y+1]+p[y+2]+2)>>2

	// Merge even/odd pixels
	// The predicted data need to be stored in byte type (22 bytes are required)
	mov (16)	PRED_Y(14,1)<2>	PRED_Y(15)REGION(16,2)

	// Add error block
    $for(0,0; <4; 1,32) {
	add.sat (16)	r[PPREDBUF_Y,%2]<2>:ub	PRED_Y(14,%1*4)<2;8,1>	r[PERROR,%2]<16;16,1>:w
	}
	RETURN

// End of intra_Pred_8X8_Y

#endif	// !defined(__INTRA_PRED_8X8_Y__)