1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
|
/********************************************************************
* *
* THIS FILE IS PART OF THE Ogg Vorbis SOFTWARE CODEC SOURCE CODE. *
* USE, DISTRIBUTION AND REPRODUCTION OF THIS SOURCE IS GOVERNED BY *
* THE GNU PUBLIC LICENSE 2, WHICH IS INCLUDED WITH THIS SOURCE. *
* PLEASE READ THESE TERMS DISTRIBUTING. *
* *
* THE OggSQUISH SOURCE CODE IS (C) COPYRIGHT 1994-2000 *
* by Monty <monty@xiph.org> and The XIPHOPHORUS Company *
* http://www.xiph.org/ *
* *
********************************************************************
function: train a VQ codebook
last mod: $Id: vqgen.c,v 1.25 1999/12/30 07:27:04 xiphmont Exp $
********************************************************************/
/* This code is *not* part of libvorbis. It is used to generate
trained codebooks offline and then spit the results into a
pregenerated codebook that is compiled into libvorbis. It is an
expensive (but good) algorithm. Run it on big iron. */
/* There are so many optimizations to explore in *both* stages that
considering the undertaking is almost withering. For now, we brute
force it all */
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <string.h>
#include "vqgen.h"
/* Codebook generation happens in two steps:
1) Train the codebook with data collected from the encoder: We use
one of a few error metrics (which represent the distance between a
given data point and a candidate point in the training set) to
divide the training set up into cells representing roughly equal
probability of occurring.
2) Generate the codebook and auxiliary data from the trained data set
*/
/* Codebook training ****************************************************
*
* The basic idea here is that a VQ codebook is like an m-dimensional
* foam with n bubbles. The bubbles compete for space/volume and are
* 'pressurized' [biased] according to some metric. The basic alg
* iterates through allowing the bubbles to compete for space until
* they converge (if the damping is dome properly) on a steady-state
* solution. Individual input points, collected from libvorbis, are
* used to train the algorithm monte-carlo style. */
/* internal helpers *****************************************************/
#define vN(data,i) (data+v->elements*i)
/* default metric; squared 'distance' from desired value. */
double _dist_sq(vqgen *v,double *a, double *b){
int i;
int el=v->elements;
double acc=0.;
for(i=0;i<el;i++){
double val=(a[i]-b[i]);
acc+=val*val;
}
return acc;
}
double *_weight_null(vqgen *v,double *a){
return a;
}
/* *must* be beefed up. */
void _vqgen_seed(vqgen *v){
long i;
for(i=0;i<v->entries;i++)
memcpy(_now(v,i),_point(v,i),sizeof(double)*v->elements);
}
/* External calls *******************************************************/
/* We have two forms of quantization; in the first, each vector
element in the codebook entry is orthogonal. Residues would use this
quantization for example.
In the second, we have a sequence of monotonically increasing
values that we wish to quantize as deltas (to save space). We
still need to quantize so that absolute values are accurate. For
example, LSP quantizes all absolute values, but the book encodes
distance between values because each successive value is larger
than the preceeding value. Thus the desired quantibits apply to
the encoded (delta) values, not abs positions. This requires minor
additional encode-side trickery. */
/* 24 bit float (not IEEE; nonnormalized mantissa +
biased exponent ): neeeeemm mmmmmmmm mmmmmmmm */
#define VQ_FEXP_BIAS 20 /* bias toward values smaller than 1. */
long float24_pack(double val){
int sign=0;
long exp;
long mant;
if(val<0){
sign=0x800000;
val= -val;
}
exp= floor(log(val)/log(2));
mant=rint(ldexp(val,17-exp));
exp=(exp+VQ_FEXP_BIAS)<<18;
return(sign|exp|mant);
}
double float24_unpack(long val){
double mant=val&0x3ffff;
double sign=val&0x800000;
double exp =(val&0x7c0000)>>18;
if(sign)mant= -mant;
return(ldexp(mant,exp-17-VQ_FEXP_BIAS));
}
void vqgen_quantize(vqgen *v,quant_meta *q){
double maxdel;
double mindel;
double delta;
double maxquant=((1<<q->quant)-1);
int j,k;
mindel=maxdel=_now(v,0)[0];
for(j=0;j<v->entries;j++){
double last=0.;
for(k=0;k<v->elements;k++){
if(mindel>_now(v,j)[k]-last)mindel=_now(v,j)[k]-last;
if(maxdel<_now(v,j)[k]-last)maxdel=_now(v,j)[k]-last;
if(q->sequencep)last=_now(v,j)[k];
}
}
/* first find the basic delta amount from the maximum span to be
encoded. Loosen the delta slightly to allow for additional error
during sequence quantization */
delta=(maxdel-mindel)/((1<<q->quant)-1.5);
q->min=float24_pack(mindel);
q->delta=float24_pack(delta);
for(j=0;j<v->entries;j++){
double last=0;
for(k=0;k<v->elements;k++){
double val=_now(v,j)[k];
double now=rint((val-last-mindel)/delta);
_now(v,j)[k]=now;
if(now<0){
/* be paranoid; this should be impossible */
fprintf(stderr,"fault; quantized value<0\n");
exit(1);
}
if(now>maxquant){
/* be paranoid; this should be impossible */
fprintf(stderr,"fault; quantized value>max\n");
exit(1);
}
if(q->sequencep)last=(now*delta)+mindel+last;
}
}
}
/* much easier :-) */
void vqgen_unquantize(vqgen *v,quant_meta *q){
long j,k;
double mindel=float24_unpack(q->min);
double delta=float24_unpack(q->delta);
for(j=0;j<v->entries;j++){
double last=0.;
for(k=0;k<v->elements;k++){
double now=_now(v,j)[k]*delta+last+mindel;
_now(v,j)[k]=now;
if(q->sequencep)last=now;
}
}
}
void vqgen_init(vqgen *v,int elements,int aux,int entries,
double (*metric)(vqgen *,double *, double *),
double *(*weight)(vqgen *,double *)){
memset(v,0,sizeof(vqgen));
v->elements=elements;
v->aux=aux;
v->allocated=32768;
v->pointlist=malloc(v->allocated*(v->elements+v->aux)*sizeof(double));
v->entries=entries;
v->entrylist=malloc(v->entries*v->elements*sizeof(double));
v->assigned=malloc(v->entries*sizeof(long));
v->bias=calloc(v->entries,sizeof(double));
if(metric)
v->metric_func=metric;
else
v->metric_func=_dist_sq;
if(weight)
v->weight_func=weight;
else
v->weight_func=_weight_null;
}
void vqgen_addpoint(vqgen *v, double *p,double *a){
if(v->points>=v->allocated){
v->allocated*=2;
v->pointlist=realloc(v->pointlist,v->allocated*(v->elements+v->aux)*
sizeof(double));
}
memcpy(_point(v,v->points),p,sizeof(double)*v->elements);
if(v->aux)memcpy(_point(v,v->points)+v->elements,a,sizeof(double)*v->aux);
v->points++;
if(v->points==v->entries)_vqgen_seed(v);
}
int directdsort(const void *a, const void *b){
double av=*((double *)a);
double bv=*((double *)b);
if(av>bv)return(-1);
return(1);
}
double vqgen_iterate(vqgen *v){
long i,j,k;
double fdesired=(double)v->points/v->entries;
long desired=fdesired;
long desired2=desired*2;
double asserror=0.;
double meterror=0.;
double *new=malloc(sizeof(double)*v->entries*v->elements);
long *nearcount=malloc(v->entries*sizeof(long));
double *nearbias=malloc(v->entries*desired2*sizeof(double));
#ifdef NOISY
char buff[80];
FILE *assig;
FILE *bias;
FILE *cells;
sprintf(buff,"cells%d.m",v->it);
cells=fopen(buff,"w");
sprintf(buff,"assig%d.m",v->it);
assig=fopen(buff,"w");
sprintf(buff,"bias%d.m",v->it);
bias=fopen(buff,"w");
#endif
fprintf(stderr,"Pass #%d... ",v->it);
if(v->entries<2){
fprintf(stderr,"generation requires at least two entries\n");
exit(1);
}
/* fill in nearest points for entries */
/*memset(v->bias,0,sizeof(double)*v->entries);*/
memset(nearcount,0,sizeof(long)*v->entries);
memset(v->assigned,0,sizeof(long)*v->entries);
for(i=0;i<v->points;i++){
double *ppt=v->weight_func(v,_point(v,i));
double firstmetric=v->metric_func(v,_now(v,0),ppt)+v->bias[0];
double secondmetric=v->metric_func(v,_now(v,1),ppt)+v->bias[1];
long firstentry=0;
long secondentry=1;
if(firstmetric>secondmetric){
double temp=firstmetric;
firstmetric=secondmetric;
secondmetric=temp;
firstentry=1;
secondentry=0;
}
for(j=2;j<v->entries;j++){
double thismetric=v->metric_func(v,_now(v,j),ppt)+v->bias[j];
if(thismetric<secondmetric){
if(thismetric<firstmetric){
secondmetric=firstmetric;
secondentry=firstentry;
firstmetric=thismetric;
firstentry=j;
}else{
secondmetric=thismetric;
secondentry=j;
}
}
}
j=firstentry;
meterror+=sqrt(_dist_sq(v,_now(v,j),ppt));
/* set up midpoints for next iter */
if(v->assigned[j]++)
for(k=0;k<v->elements;k++)
vN(new,j)[k]+=ppt[k];
else
for(k=0;k<v->elements;k++)
vN(new,j)[k]=ppt[k];
#ifdef NOISY
fprintf(cells,"%g %g\n%g %g\n\n",
_now(v,j)[0],_now(v,j)[1],
ppt[0],ppt[1]);
#endif
for(j=0;j<v->entries;j++){
double thismetric;
double *nearbiasptr=nearbias+desired2*j;
long k=nearcount[j];
/* 'thismetric' is to be the bias value necessary in the current
arrangement for entry j to capture point i */
if(firstentry==j){
/* use the secondary entry as the threshhold */
thismetric=secondmetric-v->metric_func(v,_now(v,j),ppt);
}else{
/* use the primary entry as the threshhold */
thismetric=firstmetric-v->metric_func(v,_now(v,j),ppt);
}
/* a cute two-stage delayed sorting hack */
if(k<desired){
nearbiasptr[k]=thismetric;
k++;
if(k==desired)
qsort(nearbiasptr,desired,sizeof(double),directdsort);
}else if(thismetric>nearbiasptr[desired-1]){
nearbiasptr[k]=thismetric;
k++;
if(k==desired2){
qsort(nearbiasptr,desired2,sizeof(double),directdsort);
k=desired;
}
}
nearcount[j]=k;
}
}
/* inflate/deflate */
for(i=0;i<v->entries;i++){
double *nearbiasptr=nearbias+desired2*i;
/* due to the delayed sorting, we likely need to finish it off....*/
if(nearcount[i]>desired)
qsort(nearbiasptr,nearcount[i],sizeof(double),directdsort);
v->bias[i]=nearbiasptr[desired-1];
}
/* assign midpoints */
for(j=0;j<v->entries;j++){
asserror+=fabs(v->assigned[j]-fdesired);
if(v->assigned[j])
for(k=0;k<v->elements;k++)
_now(v,j)[k]=vN(new,j)[k]/v->assigned[j];
#ifdef NOISY
fprintf(assig,"%ld\n",v->assigned[j]);
fprintf(bias,"%g\n",v->bias[j]);
#endif
}
asserror/=(v->entries*fdesired);
fprintf(stderr,": dist %g(%g) metric error=%g \n",
asserror,fdesired,meterror/v->points/v->elements);
v->it++;
free(new);
free(nearcount);
free(nearbias);
#ifdef NOISY
fclose(assig);
fclose(bias);
fclose(cells);
#endif
return(asserror);
}
|