summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorArnd Bergmann <arnd@arndb.de>2018-08-03 09:26:20 +1000
committerStephen Rothwell <sfr@canb.auug.org.au>2018-08-09 16:56:39 +1000
commit16ef7b350bc20a49fb321aa3950cc0df87f13ff6 (patch)
tree57fcf20369061d59dd8115db0cc0ab02db0a890a
parent764a9d139da758ac1a6c4f7c56d1d5118c9bbe56 (diff)
downloadlinux-next-16ef7b350bc20a49fb321aa3950cc0df87f13ff6.tar.gz
vfs: replace current_kernel_time64 with ktime equivalent
current_time is the last remaining caller of current_kernel_time64(), which is a wrapper around ktime_get_coarse_real_ts64(). This calls the latter directly for consistency with the rest of the kernel that is moving to the ktime_get_ family of time accessors, as now documented in Documentation/core-api/timekeeping.rst. An open questions is whether we may want to actually call the more accurate ktime_get_real_ts64() for file systems that save high-resolution timestamps in their on-disk format. This would add a small overhead to each update of the inode stamps but lead to inode timestamps to actually have a usable resolution better than one jiffy (1 to 10 milliseconds normally). Experiments on a variety of hardware platforms show a typical time of around 100 CPU cycles to read the cycle counter and calculate the accurate time from that. On old platforms without a cycle counter, this can be signiciantly higher, up to several microseconds to access a hardware clock, but those have become very rare by now. I traced the original addition of the current_kernel_time() call to set the nanosecond fields back to linux-2.5.48, where Andi Kleen added a patch with subject "nanosecond stat timefields". Andi explains that the motivation was to introduce as little overhead as possible back then. At this time, reading the clock hardware was also more expensive when most architectures did not have a cycle counter. One side effect of having more accurate inode timestamp would be having to write out the inode every time that mtime/ctime/atime get touched on most systems, whereas many file systems today only write it when the timestamps have changed, i.e. at most once per jiffy unless something else changes as well. That change would certainly be noticed in some workloads, which is enough reason to not do it without a good reason, regardless of the cost of reading the time. One thing we could still consider however would be to round the timestamps from current_time() to multiples of NSEC_PER_JIFFY, e.g. full milliseconds rather than having six or seven meaningless but confusing digits at the end of the timestamp. Link: http://lkml.kernel.org/r/20180726130820.4174359-1-arnd@arndb.de Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
-rw-r--r--fs/inode.c4
1 files changed, 3 insertions, 1 deletions
diff --git a/fs/inode.c b/fs/inode.c
index 9b808986d440..ed7c18495cd9 100644
--- a/fs/inode.c
+++ b/fs/inode.c
@@ -2146,7 +2146,9 @@ EXPORT_SYMBOL(timespec64_trunc);
*/
struct timespec64 current_time(struct inode *inode)
{
- struct timespec64 now = current_kernel_time64();
+ struct timespec64 now;
+
+ ktime_get_coarse_real_ts64(&now);
if (unlikely(!inode->i_sb)) {
WARN(1, "current_time() called with uninitialized super_block in the inode");