summaryrefslogtreecommitdiff
path: root/Documentation/kdump
diff options
context:
space:
mode:
authorVivek Goyal <vgoyal@in.ibm.com>2005-06-25 14:58:15 -0700
committerLinus Torvalds <torvalds@ppc970.osdl.org>2005-06-25 16:24:52 -0700
commitb089f4a68eccd9782c89262c0d7cae146d5a8a40 (patch)
treea84874a801e54dd89e5093392aedf49cece4cb11 /Documentation/kdump
parenta3ea8ac8468f5c7fc65684331dfba3260d5b2d93 (diff)
downloadlinux-next-b089f4a68eccd9782c89262c0d7cae146d5a8a40.tar.gz
[PATCH] kdump: Documentation for Kdump
This patch contains the documentation for the kexec based crash dump tool. Quick kdump-howto ================================================================ 1) Download and build kexec-tools. 2) Download and build the latest kexec/kdump (-mm) kernel patchset. Two kernels need to be built in order to get this feature working. A) First kernel: a) Enable "kexec system call" feature: CONFIG_KEXEC=y b) Physical load address (use default): CONFIG_PHYSICAL_START=0x100000 c) Enable "sysfs file system support": CONFIG_SYSFS=y d) Boot into first kernel with the command line parameter "crashkernel=Y@X": For example: "crashkernel=64M@16M". B) Second kernel: a) Enable "kernel crash dumps" feature: CONFIG_CRASH_DUMP=y b) Physical load addreess, use same load address as X in "crashkernel" kernel parameter in d) above, e.g., 16 MB or 0x1000000. CONFIG_PHYSICAL_START=0x1000000 c) Enable "/proc/vmcore support" (Optional, in Pseudo filesystems). CONFIG_PROC_VMCORE=y 3) Boot into the first kernel. 4) Load the second kernel to be booted using: kexec -p <second-kernel> --crash-dump --args-linux --append="root=<root-dev> maxcpus=1 init 1" 5) System reboots into the second kernel when a panic occurs. A module can be written to force the panic, for testing purposes. 6) See Documentation/kdump.txt for how to read the first kernel's memory image and how to analyze it. Signed-off-by: Hariprasad Nellitheertha <hari@in.ibm.com> Signed-off-by: Eric Biederman <ebiederm@xmission.com> Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com> Signed-off-by: randy_dunlap <rdunlap@xenotime.net> Signed-off-by: Maneesh Soni <maneesh@in.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Diffstat (limited to 'Documentation/kdump')
-rw-r--r--Documentation/kdump/gdbmacros.txt179
-rw-r--r--Documentation/kdump/kdump.txt135
2 files changed, 314 insertions, 0 deletions
diff --git a/Documentation/kdump/gdbmacros.txt b/Documentation/kdump/gdbmacros.txt
new file mode 100644
index 000000000000..bc1b9eb92ae1
--- /dev/null
+++ b/Documentation/kdump/gdbmacros.txt
@@ -0,0 +1,179 @@
+#
+# This file contains a few gdb macros (user defined commands) to extract
+# useful information from kernel crashdump (kdump) like stack traces of
+# all the processes or a particular process and trapinfo.
+#
+# These macros can be used by copying this file in .gdbinit (put in home
+# directory or current directory) or by invoking gdb command with
+# --command=<command-file-name> option
+#
+# Credits:
+# Alexander Nyberg <alexn@telia.com>
+# V Srivatsa <vatsa@in.ibm.com>
+# Maneesh Soni <maneesh@in.ibm.com>
+#
+
+define bttnobp
+ set $tasks_off=((size_t)&((struct task_struct *)0)->tasks)
+ set $pid_off=((size_t)&((struct task_struct *)0)->pids[1].pid_list.next)
+ set $init_t=&init_task
+ set $next_t=(((char *)($init_t->tasks).next) - $tasks_off)
+ while ($next_t != $init_t)
+ set $next_t=(struct task_struct *)$next_t
+ printf "\npid %d; comm %s:\n", $next_t.pid, $next_t.comm
+ printf "===================\n"
+ set var $stackp = $next_t.thread.esp
+ set var $stack_top = ($stackp & ~4095) + 4096
+
+ while ($stackp < $stack_top)
+ if (*($stackp) > _stext && *($stackp) < _sinittext)
+ info symbol *($stackp)
+ end
+ set $stackp += 4
+ end
+ set $next_th=(((char *)$next_t->pids[1].pid_list.next) - $pid_off)
+ while ($next_th != $next_t)
+ set $next_th=(struct task_struct *)$next_th
+ printf "\npid %d; comm %s:\n", $next_t.pid, $next_t.comm
+ printf "===================\n"
+ set var $stackp = $next_t.thread.esp
+ set var $stack_top = ($stackp & ~4095) + 4096
+
+ while ($stackp < $stack_top)
+ if (*($stackp) > _stext && *($stackp) < _sinittext)
+ info symbol *($stackp)
+ end
+ set $stackp += 4
+ end
+ set $next_th=(((char *)$next_th->pids[1].pid_list.next) - $pid_off)
+ end
+ set $next_t=(char *)($next_t->tasks.next) - $tasks_off
+ end
+end
+document bttnobp
+ dump all thread stack traces on a kernel compiled with !CONFIG_FRAME_POINTER
+end
+
+define btt
+ set $tasks_off=((size_t)&((struct task_struct *)0)->tasks)
+ set $pid_off=((size_t)&((struct task_struct *)0)->pids[1].pid_list.next)
+ set $init_t=&init_task
+ set $next_t=(((char *)($init_t->tasks).next) - $tasks_off)
+ while ($next_t != $init_t)
+ set $next_t=(struct task_struct *)$next_t
+ printf "\npid %d; comm %s:\n", $next_t.pid, $next_t.comm
+ printf "===================\n"
+ set var $stackp = $next_t.thread.esp
+ set var $stack_top = ($stackp & ~4095) + 4096
+ set var $stack_bot = ($stackp & ~4095)
+
+ set $stackp = *($stackp)
+ while (($stackp < $stack_top) && ($stackp > $stack_bot))
+ set var $addr = *($stackp + 4)
+ info symbol $addr
+ set $stackp = *($stackp)
+ end
+
+ set $next_th=(((char *)$next_t->pids[1].pid_list.next) - $pid_off)
+ while ($next_th != $next_t)
+ set $next_th=(struct task_struct *)$next_th
+ printf "\npid %d; comm %s:\n", $next_t.pid, $next_t.comm
+ printf "===================\n"
+ set var $stackp = $next_t.thread.esp
+ set var $stack_top = ($stackp & ~4095) + 4096
+ set var $stack_bot = ($stackp & ~4095)
+
+ set $stackp = *($stackp)
+ while (($stackp < $stack_top) && ($stackp > $stack_bot))
+ set var $addr = *($stackp + 4)
+ info symbol $addr
+ set $stackp = *($stackp)
+ end
+ set $next_th=(((char *)$next_th->pids[1].pid_list.next) - $pid_off)
+ end
+ set $next_t=(char *)($next_t->tasks.next) - $tasks_off
+ end
+end
+document btt
+ dump all thread stack traces on a kernel compiled with CONFIG_FRAME_POINTER
+end
+
+define btpid
+ set var $pid = $arg0
+ set $tasks_off=((size_t)&((struct task_struct *)0)->tasks)
+ set $pid_off=((size_t)&((struct task_struct *)0)->pids[1].pid_list.next)
+ set $init_t=&init_task
+ set $next_t=(((char *)($init_t->tasks).next) - $tasks_off)
+ set var $pid_task = 0
+
+ while ($next_t != $init_t)
+ set $next_t=(struct task_struct *)$next_t
+
+ if ($next_t.pid == $pid)
+ set $pid_task = $next_t
+ end
+
+ set $next_th=(((char *)$next_t->pids[1].pid_list.next) - $pid_off)
+ while ($next_th != $next_t)
+ set $next_th=(struct task_struct *)$next_th
+ if ($next_th.pid == $pid)
+ set $pid_task = $next_th
+ end
+ set $next_th=(((char *)$next_th->pids[1].pid_list.next) - $pid_off)
+ end
+ set $next_t=(char *)($next_t->tasks.next) - $tasks_off
+ end
+
+ printf "\npid %d; comm %s:\n", $pid_task.pid, $pid_task.comm
+ printf "===================\n"
+ set var $stackp = $pid_task.thread.esp
+ set var $stack_top = ($stackp & ~4095) + 4096
+ set var $stack_bot = ($stackp & ~4095)
+
+ set $stackp = *($stackp)
+ while (($stackp < $stack_top) && ($stackp > $stack_bot))
+ set var $addr = *($stackp + 4)
+ info symbol $addr
+ set $stackp = *($stackp)
+ end
+end
+document btpid
+ backtrace of pid
+end
+
+
+define trapinfo
+ set var $pid = $arg0
+ set $tasks_off=((size_t)&((struct task_struct *)0)->tasks)
+ set $pid_off=((size_t)&((struct task_struct *)0)->pids[1].pid_list.next)
+ set $init_t=&init_task
+ set $next_t=(((char *)($init_t->tasks).next) - $tasks_off)
+ set var $pid_task = 0
+
+ while ($next_t != $init_t)
+ set $next_t=(struct task_struct *)$next_t
+
+ if ($next_t.pid == $pid)
+ set $pid_task = $next_t
+ end
+
+ set $next_th=(((char *)$next_t->pids[1].pid_list.next) - $pid_off)
+ while ($next_th != $next_t)
+ set $next_th=(struct task_struct *)$next_th
+ if ($next_th.pid == $pid)
+ set $pid_task = $next_th
+ end
+ set $next_th=(((char *)$next_th->pids[1].pid_list.next) - $pid_off)
+ end
+ set $next_t=(char *)($next_t->tasks.next) - $tasks_off
+ end
+
+ printf "Trapno %ld, cr2 0x%lx, error_code %ld\n", $pid_task.thread.trap_no, \
+ $pid_task.thread.cr2, $pid_task.thread.error_code
+
+end
+document trapinfo
+ Run info threads and lookup pid of thread #1
+ 'trapinfo <pid>' will tell you by which trap & possibly
+ addresthe kernel paniced.
+end
diff --git a/Documentation/kdump/kdump.txt b/Documentation/kdump/kdump.txt
new file mode 100644
index 000000000000..b0f412e42791
--- /dev/null
+++ b/Documentation/kdump/kdump.txt
@@ -0,0 +1,135 @@
+Documentation for kdump - the kexec-based crash dumping solution
+================================================================
+
+DESIGN
+======
+
+Kdump uses kexec to reboot to a second kernel whenever a dump needs to be taken.
+This second kernel is booted with very little memory. The first kernel reserves
+the section of memory that the second kernel uses. This ensures that on-going
+DMA from the first kernel does not corrupt the second kernel.
+
+All the necessary information about Core image is encoded in ELF format and
+stored in reserved area of memory before crash. Physical address of start of
+ELF header is passed to new kernel through command line parameter elfcorehdr=.
+
+On i386, the first 640 KB of physical memory is needed to boot, irrespective
+of where the kernel loads. Hence, this region is backed up by kexec just before
+rebooting into the new kernel.
+
+In the second kernel, "old memory" can be accessed in two ways.
+
+- The first one is through a /dev/oldmem device interface. A capture utility
+ can read the device file and write out the memory in raw format. This is raw
+ dump of memory and analysis/capture tool should be intelligent enough to
+ determine where to look for the right information. ELF headers (elfcorehdr=)
+ can become handy here.
+
+- The second interface is through /proc/vmcore. This exports the dump as an ELF
+ format file which can be written out using any file copy command
+ (cp, scp, etc). Further, gdb can be used to perform limited debugging on
+ the dump file. This method ensures methods ensure that there is correct
+ ordering of the dump pages (corresponding to the first 640 KB that has been
+ relocated).
+
+SETUP
+=====
+
+1) Download http://www.xmission.com/~ebiederm/files/kexec/kexec-tools-1.101.tar.gz
+ and apply http://lse.sourceforge.net/kdump/patches/kexec-tools-1.101-kdump.patch
+ and after that build the source.
+
+2) Download and build the appropriate (latest) kexec/kdump (-mm) kernel
+ patchset and apply it to the vanilla kernel tree.
+
+ Two kernels need to be built in order to get this feature working.
+
+ A) First kernel:
+ a) Enable "kexec system call" feature (in Processor type and features).
+ CONFIG_KEXEC=y
+ b) This kernel's physical load address should be the default value of
+ 0x100000 (0x100000, 1 MB) (in Processor type and features).
+ CONFIG_PHYSICAL_START=0x100000
+ c) Enable "sysfs file system support" (in Pseudo filesystems).
+ CONFIG_SYSFS=y
+ d) Boot into first kernel with the command line parameter "crashkernel=Y@X".
+ Use appropriate values for X and Y. Y denotes how much memory to reserve
+ for the second kernel, and X denotes at what physical address the reserved
+ memory section starts. For example: "crashkernel=64M@16M".
+
+ B) Second kernel:
+ a) Enable "kernel crash dumps" feature (in Processor type and features).
+ CONFIG_CRASH_DUMP=y
+ b) Specify a suitable value for "Physical address where the kernel is
+ loaded" (in Processor type and features). Typically this value
+ should be same as X (See option d) above, e.g., 16 MB or 0x1000000.
+ CONFIG_PHYSICAL_START=0x1000000
+ c) Enable "/proc/vmcore support" (Optional, in Pseudo filesystems).
+ CONFIG_PROC_VMCORE=y
+
+ Note: Options a) and b) depend upon "Configure standard kernel features
+ (for small systems)" (under General setup).
+ Option a) also depends on CONFIG_HIGHMEM (under Processor
+ type and features).
+ Both option a) and b) are under "Processor type and features".
+
+3) Boot into the first kernel. You are now ready to try out kexec-based crash
+ dumps.
+
+4) Load the second kernel to be booted using:
+
+ kexec -p <second-kernel> --crash-dump --args-linux --append="root=<root-dev>
+ maxcpus=1 init 1"
+
+ Note: i) <second-kernel> has to be a vmlinux image. bzImage will not work,
+ as of now.
+ ii) By default ELF headers are stored in ELF32 format (for i386). This
+ is sufficient to represent the physical memory up to 4GB. To store
+ headers in ELF64 format, specifiy "--elf64-core-headers" on the
+ kexec command line additionally.
+ iii) For now (or until it is fixed), it's best to build the
+ second-kernel without multi-processor support, i.e., make it
+ a uniprocessor kernel.
+
+5) System reboots into the second kernel when a panic occurs. A module can be
+ written to force the panic, for testing purposes.
+
+6) Write out the dump file using
+
+ cp /proc/vmcore <dump-file>
+
+ Dump memory can also be accessed as a /dev/oldmem device for a linear/raw
+ view. To create the device, type:
+
+ mknod /dev/oldmem c 1 12
+
+ Use "dd" with suitable options for count, bs and skip to access specific
+ portions of the dump.
+
+ Entire memory: dd if=/dev/oldmem of=oldmem.001
+
+ANALYSIS
+========
+
+Limited analysis can be done using gdb on the dump file copied out of
+/proc/vmcore. Use vmlinux built with -g and run
+
+ gdb vmlinux <dump-file>
+
+Stack trace for the task on processor 0, register display, memory display
+work fine.
+
+Note: gdb cannot analyse core files generated in ELF64 format for i386.
+
+TODO
+====
+
+1) Provide a kernel pages filtering mechanism so that core file size is not
+ insane on systems having huge memory banks.
+2) Modify "crash" tool to make it recognize this dump.
+
+CONTACT
+=======
+
+Hariprasad Nellitheertha - hari at in dot ibm dot com
+Vivek Goyal (vgoyal@in.ibm.com)