summaryrefslogtreecommitdiff
path: root/include/rdma
diff options
context:
space:
mode:
authorMichal Hocko <mhocko@suse.com>2018-07-22 00:39:51 +1000
committerStephen Rothwell <sfr@canb.auug.org.au>2018-07-22 17:38:12 +1000
commit743b0a2fd354ea0792375f42e3cf9297c3524622 (patch)
tree5158d5d985d65bd4986a207f9762d6694562157d /include/rdma
parent959bab8a73d8a498ec327a3f3695e639ebb3b6e7 (diff)
downloadlinux-next-743b0a2fd354ea0792375f42e3cf9297c3524622.tar.gz
mm, oom: distinguish blockable mode for mmu notifiers
There are several blockable mmu notifiers which might sleep in mmu_notifier_invalidate_range_start and that is a problem for the oom_reaper because it needs to guarantee a forward progress so it cannot depend on any sleepable locks. Currently we simply back off and mark an oom victim with blockable mmu notifiers as done after a short sleep. That can result in selecting a new oom victim prematurely because the previous one still hasn't torn its memory down yet. We can do much better though. Even if mmu notifiers use sleepable locks there is no reason to automatically assume those locks are held. Moreover majority of notifiers only care about a portion of the address space and there is absolutely zero reason to fail when we are unmapping an unrelated range. Many notifiers do really block and wait for HW which is harder to handle and we have to bail out though. This patch handles the low hanging fruit. __mmu_notifier_invalidate_range_start gets a blockable flag and callbacks are not allowed to sleep if the flag is set to false. This is achieved by using trylock instead of the sleepable lock for most callbacks and continue as long as we do not block down the call chain. I think we can improve that even further because there is a common pattern to do a range lookup first and then do something about that. The first part can be done without a sleeping lock in most cases AFAICS. The oom_reaper end then simply retries if there is at least one notifier which couldn't make any progress in !blockable mode. A retry loop is already implemented to wait for the mmap_sem and this is basically the same thing. The simplest way for driver developers to test this code path is to wrap userspace code which uses these notifiers into a memcg and set the hard limit to hit the oom. This can be done e.g. after the test faults in all the mmu notifier managed memory and set the hard limit to something really small. Then we are looking for a proper process tear down. Link: http://lkml.kernel.org/r/20180716115058.5559-1-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Christian König <christian.koenig@amd.com> # AMD notifiers Acked-by: Leon Romanovsky <leonro@mellanox.com> # mlx and umem_odp Reported-by: David Rientjes <rientjes@google.com> Cc: "David (ChunMing) Zhou" <David1.Zhou@amd.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: "Radim KrčmÃ`ř" <rkrcmar@redhat.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: David Airlie <airlied@linux.ie> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Cc: Doug Ledford <dledford@redhat.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Mike Marciniszyn <mike.marciniszyn@intel.com> Cc: Dennis Dalessandro <dennis.dalessandro@intel.com> Cc: Sudeep Dutt <sudeep.dutt@intel.com> Cc: Ashutosh Dixit <ashutosh.dixit@intel.com> Cc: Dimitri Sivanich <sivanich@sgi.com> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Juergen Gross <jgross@suse.com> Cc: "Jérôme Glisse" <jglisse@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Felix Kuehling <felix.kuehling@amd.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Diffstat (limited to 'include/rdma')
-rw-r--r--include/rdma/ib_umem_odp.h3
1 files changed, 2 insertions, 1 deletions
diff --git a/include/rdma/ib_umem_odp.h b/include/rdma/ib_umem_odp.h
index 6a17f856f841..381cdf5a9bd1 100644
--- a/include/rdma/ib_umem_odp.h
+++ b/include/rdma/ib_umem_odp.h
@@ -119,7 +119,8 @@ typedef int (*umem_call_back)(struct ib_umem *item, u64 start, u64 end,
*/
int rbt_ib_umem_for_each_in_range(struct rb_root_cached *root,
u64 start, u64 end,
- umem_call_back cb, void *cookie);
+ umem_call_back cb,
+ bool blockable, void *cookie);
/*
* Find first region intersecting with address range.