diff options
author | Steven Rostedt <srostedt@redhat.com> | 2010-05-14 09:29:52 -0400 |
---|---|---|
committer | Steven Rostedt <rostedt@goodmis.org> | 2010-05-14 09:29:52 -0400 |
commit | 23e117fa44429cc054cb27d5621d64e4ced91e52 (patch) | |
tree | a4b9d0902b9c6f009b2c297515221c1b9bed3af8 /kernel | |
parent | 668eb65f092902eb7dd526af73d4a7f025a94612 (diff) | |
parent | a93d2f1744206827ccf416e2cdc5018aa503314e (diff) | |
download | linux-next-23e117fa44429cc054cb27d5621d64e4ced91e52.tar.gz |
Merge branch 'sched/core' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip into trace/tip/tracing/core-4
Diffstat (limited to 'kernel')
-rw-r--r-- | kernel/Makefile | 2 | ||||
-rw-r--r-- | kernel/capability.c | 1 | ||||
-rw-r--r-- | kernel/cgroup.c | 2 | ||||
-rw-r--r-- | kernel/cpu.c | 26 | ||||
-rw-r--r-- | kernel/cpuset.c | 67 | ||||
-rw-r--r-- | kernel/cred-internals.h | 21 | ||||
-rw-r--r-- | kernel/cred.c | 7 | ||||
-rw-r--r-- | kernel/exit.c | 1 | ||||
-rw-r--r-- | kernel/module.c | 14 | ||||
-rw-r--r-- | kernel/rcutorture.c | 2 | ||||
-rw-r--r-- | kernel/sched.c | 726 | ||||
-rw-r--r-- | kernel/sched_debug.c | 108 | ||||
-rw-r--r-- | kernel/sched_fair.c | 350 | ||||
-rw-r--r-- | kernel/sched_features.h | 55 | ||||
-rw-r--r-- | kernel/sched_idletask.c | 8 | ||||
-rw-r--r-- | kernel/sched_rt.c | 15 | ||||
-rw-r--r-- | kernel/stop_machine.c | 534 | ||||
-rw-r--r-- | kernel/sys.c | 2 | ||||
-rw-r--r-- | kernel/time/tick-sched.c | 84 | ||||
-rw-r--r-- | kernel/time/timer_list.c | 1 | ||||
-rw-r--r-- | kernel/trace/ftrace.c | 3 | ||||
-rw-r--r-- | kernel/trace/trace_sched_switch.c | 5 | ||||
-rw-r--r-- | kernel/trace/trace_sched_wakeup.c | 5 | ||||
-rw-r--r-- | kernel/user.c | 11 |
24 files changed, 1001 insertions, 1049 deletions
diff --git a/kernel/Makefile b/kernel/Makefile index a987aa1676b5..149e18ef1ab1 100644 --- a/kernel/Makefile +++ b/kernel/Makefile @@ -68,7 +68,7 @@ obj-$(CONFIG_USER_NS) += user_namespace.o obj-$(CONFIG_PID_NS) += pid_namespace.o obj-$(CONFIG_IKCONFIG) += configs.o obj-$(CONFIG_RESOURCE_COUNTERS) += res_counter.o -obj-$(CONFIG_STOP_MACHINE) += stop_machine.o +obj-$(CONFIG_SMP) += stop_machine.o obj-$(CONFIG_KPROBES_SANITY_TEST) += test_kprobes.o obj-$(CONFIG_AUDIT) += audit.o auditfilter.o audit_watch.o obj-$(CONFIG_AUDITSYSCALL) += auditsc.o diff --git a/kernel/capability.c b/kernel/capability.c index 9e4697e9b276..2f05303715a5 100644 --- a/kernel/capability.c +++ b/kernel/capability.c @@ -15,7 +15,6 @@ #include <linux/syscalls.h> #include <linux/pid_namespace.h> #include <asm/uaccess.h> -#include "cred-internals.h" /* * Leveraged for setting/resetting capabilities diff --git a/kernel/cgroup.c b/kernel/cgroup.c index e2769e13980c..4a07d057a265 100644 --- a/kernel/cgroup.c +++ b/kernel/cgroup.c @@ -3010,7 +3010,7 @@ static int cgroup_event_wake(wait_queue_t *wait, unsigned mode, unsigned long flags = (unsigned long)key; if (flags & POLLHUP) { - remove_wait_queue_locked(event->wqh, &event->wait); + __remove_wait_queue(event->wqh, &event->wait); spin_lock(&cgrp->event_list_lock); list_del(&event->list); spin_unlock(&cgrp->event_list_lock); diff --git a/kernel/cpu.c b/kernel/cpu.c index 25bba73b1be3..545777574779 100644 --- a/kernel/cpu.c +++ b/kernel/cpu.c @@ -164,6 +164,7 @@ static inline void check_for_tasks(int cpu) } struct take_cpu_down_param { + struct task_struct *caller; unsigned long mod; void *hcpu; }; @@ -172,6 +173,7 @@ struct take_cpu_down_param { static int __ref take_cpu_down(void *_param) { struct take_cpu_down_param *param = _param; + unsigned int cpu = (unsigned long)param->hcpu; int err; /* Ensure this CPU doesn't handle any more interrupts. */ @@ -182,6 +184,8 @@ static int __ref take_cpu_down(void *_param) raw_notifier_call_chain(&cpu_chain, CPU_DYING | param->mod, param->hcpu); + if (task_cpu(param->caller) == cpu) + move_task_off_dead_cpu(cpu, param->caller); /* Force idle task to run as soon as we yield: it should immediately notice cpu is offline and die quickly. */ sched_idle_next(); @@ -192,10 +196,10 @@ static int __ref take_cpu_down(void *_param) static int __ref _cpu_down(unsigned int cpu, int tasks_frozen) { int err, nr_calls = 0; - cpumask_var_t old_allowed; void *hcpu = (void *)(long)cpu; unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0; struct take_cpu_down_param tcd_param = { + .caller = current, .mod = mod, .hcpu = hcpu, }; @@ -206,9 +210,6 @@ static int __ref _cpu_down(unsigned int cpu, int tasks_frozen) if (!cpu_online(cpu)) return -EINVAL; - if (!alloc_cpumask_var(&old_allowed, GFP_KERNEL)) - return -ENOMEM; - cpu_hotplug_begin(); set_cpu_active(cpu, false); err = __raw_notifier_call_chain(&cpu_chain, CPU_DOWN_PREPARE | mod, @@ -225,10 +226,6 @@ static int __ref _cpu_down(unsigned int cpu, int tasks_frozen) goto out_release; } - /* Ensure that we are not runnable on dying cpu */ - cpumask_copy(old_allowed, ¤t->cpus_allowed); - set_cpus_allowed_ptr(current, cpu_active_mask); - err = __stop_machine(take_cpu_down, &tcd_param, cpumask_of(cpu)); if (err) { set_cpu_active(cpu, true); @@ -237,7 +234,7 @@ static int __ref _cpu_down(unsigned int cpu, int tasks_frozen) hcpu) == NOTIFY_BAD) BUG(); - goto out_allowed; + goto out_release; } BUG_ON(cpu_online(cpu)); @@ -255,8 +252,6 @@ static int __ref _cpu_down(unsigned int cpu, int tasks_frozen) check_for_tasks(cpu); -out_allowed: - set_cpus_allowed_ptr(current, old_allowed); out_release: cpu_hotplug_done(); if (!err) { @@ -264,7 +259,6 @@ out_release: hcpu) == NOTIFY_BAD) BUG(); } - free_cpumask_var(old_allowed); return err; } @@ -272,9 +266,6 @@ int __ref cpu_down(unsigned int cpu) { int err; - err = stop_machine_create(); - if (err) - return err; cpu_maps_update_begin(); if (cpu_hotplug_disabled) { @@ -286,7 +277,6 @@ int __ref cpu_down(unsigned int cpu) out: cpu_maps_update_done(); - stop_machine_destroy(); return err; } EXPORT_SYMBOL(cpu_down); @@ -367,9 +357,6 @@ int disable_nonboot_cpus(void) { int cpu, first_cpu, error; - error = stop_machine_create(); - if (error) - return error; cpu_maps_update_begin(); first_cpu = cpumask_first(cpu_online_mask); /* @@ -400,7 +387,6 @@ int disable_nonboot_cpus(void) printk(KERN_ERR "Non-boot CPUs are not disabled\n"); } cpu_maps_update_done(); - stop_machine_destroy(); return error; } diff --git a/kernel/cpuset.c b/kernel/cpuset.c index d10946748ec2..9a50c5f6e727 100644 --- a/kernel/cpuset.c +++ b/kernel/cpuset.c @@ -2182,19 +2182,52 @@ void __init cpuset_init_smp(void) void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask) { mutex_lock(&callback_mutex); - cpuset_cpus_allowed_locked(tsk, pmask); + task_lock(tsk); + guarantee_online_cpus(task_cs(tsk), pmask); + task_unlock(tsk); mutex_unlock(&callback_mutex); } -/** - * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset. - * Must be called with callback_mutex held. - **/ -void cpuset_cpus_allowed_locked(struct task_struct *tsk, struct cpumask *pmask) +int cpuset_cpus_allowed_fallback(struct task_struct *tsk) { - task_lock(tsk); - guarantee_online_cpus(task_cs(tsk), pmask); - task_unlock(tsk); + const struct cpuset *cs; + int cpu; + + rcu_read_lock(); + cs = task_cs(tsk); + if (cs) + cpumask_copy(&tsk->cpus_allowed, cs->cpus_allowed); + rcu_read_unlock(); + + /* + * We own tsk->cpus_allowed, nobody can change it under us. + * + * But we used cs && cs->cpus_allowed lockless and thus can + * race with cgroup_attach_task() or update_cpumask() and get + * the wrong tsk->cpus_allowed. However, both cases imply the + * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr() + * which takes task_rq_lock(). + * + * If we are called after it dropped the lock we must see all + * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary + * set any mask even if it is not right from task_cs() pov, + * the pending set_cpus_allowed_ptr() will fix things. + */ + + cpu = cpumask_any_and(&tsk->cpus_allowed, cpu_active_mask); + if (cpu >= nr_cpu_ids) { + /* + * Either tsk->cpus_allowed is wrong (see above) or it + * is actually empty. The latter case is only possible + * if we are racing with remove_tasks_in_empty_cpuset(). + * Like above we can temporary set any mask and rely on + * set_cpus_allowed_ptr() as synchronization point. + */ + cpumask_copy(&tsk->cpus_allowed, cpu_possible_mask); + cpu = cpumask_any(cpu_active_mask); + } + + return cpu; } void cpuset_init_current_mems_allowed(void) @@ -2383,22 +2416,6 @@ int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask) } /** - * cpuset_lock - lock out any changes to cpuset structures - * - * The out of memory (oom) code needs to mutex_lock cpusets - * from being changed while it scans the tasklist looking for a - * task in an overlapping cpuset. Expose callback_mutex via this - * cpuset_lock() routine, so the oom code can lock it, before - * locking the task list. The tasklist_lock is a spinlock, so - * must be taken inside callback_mutex. - */ - -void cpuset_lock(void) -{ - mutex_lock(&callback_mutex); -} - -/** * cpuset_unlock - release lock on cpuset changes * * Undo the lock taken in a previous cpuset_lock() call. diff --git a/kernel/cred-internals.h b/kernel/cred-internals.h deleted file mode 100644 index 2dc4fc2d0bf1..000000000000 --- a/kernel/cred-internals.h +++ /dev/null @@ -1,21 +0,0 @@ -/* Internal credentials stuff - * - * Copyright (C) 2008 Red Hat, Inc. All Rights Reserved. - * Written by David Howells (dhowells@redhat.com) - * - * This program is free software; you can redistribute it and/or - * modify it under the terms of the GNU General Public Licence - * as published by the Free Software Foundation; either version - * 2 of the Licence, or (at your option) any later version. - */ - -/* - * user.c - */ -static inline void sched_switch_user(struct task_struct *p) -{ -#ifdef CONFIG_USER_SCHED - sched_move_task(p); -#endif /* CONFIG_USER_SCHED */ -} - diff --git a/kernel/cred.c b/kernel/cred.c index e1dbe9eef800..8f3672a58a1e 100644 --- a/kernel/cred.c +++ b/kernel/cred.c @@ -17,7 +17,6 @@ #include <linux/init_task.h> #include <linux/security.h> #include <linux/cn_proc.h> -#include "cred-internals.h" #if 0 #define kdebug(FMT, ...) \ @@ -398,6 +397,8 @@ struct cred *prepare_usermodehelper_creds(void) error: put_cred(new); + return NULL; + free_tgcred: #ifdef CONFIG_KEYS kfree(tgcred); @@ -558,8 +559,6 @@ int commit_creds(struct cred *new) atomic_dec(&old->user->processes); alter_cred_subscribers(old, -2); - sched_switch_user(task); - /* send notifications */ if (new->uid != old->uid || new->euid != old->euid || @@ -791,8 +790,6 @@ bool creds_are_invalid(const struct cred *cred) { if (cred->magic != CRED_MAGIC) return true; - if (atomic_read(&cred->usage) < atomic_read(&cred->subscribers)) - return true; #ifdef CONFIG_SECURITY_SELINUX if (selinux_is_enabled()) { if ((unsigned long) cred->security < PAGE_SIZE) diff --git a/kernel/exit.c b/kernel/exit.c index 7f2683a10ac4..eabca5a73a85 100644 --- a/kernel/exit.c +++ b/kernel/exit.c @@ -55,7 +55,6 @@ #include <asm/unistd.h> #include <asm/pgtable.h> #include <asm/mmu_context.h> -#include "cred-internals.h" static void exit_mm(struct task_struct * tsk); diff --git a/kernel/module.c b/kernel/module.c index b8a1e313448c..e2564580f3f1 100644 --- a/kernel/module.c +++ b/kernel/module.c @@ -724,16 +724,8 @@ SYSCALL_DEFINE2(delete_module, const char __user *, name_user, return -EFAULT; name[MODULE_NAME_LEN-1] = '\0'; - /* Create stop_machine threads since free_module relies on - * a non-failing stop_machine call. */ - ret = stop_machine_create(); - if (ret) - return ret; - - if (mutex_lock_interruptible(&module_mutex) != 0) { - ret = -EINTR; - goto out_stop; - } + if (mutex_lock_interruptible(&module_mutex) != 0) + return -EINTR; mod = find_module(name); if (!mod) { @@ -793,8 +785,6 @@ SYSCALL_DEFINE2(delete_module, const char __user *, name_user, out: mutex_unlock(&module_mutex); -out_stop: - stop_machine_destroy(); return ret; } diff --git a/kernel/rcutorture.c b/kernel/rcutorture.c index 58df55bf83ed..2b676f3a0f26 100644 --- a/kernel/rcutorture.c +++ b/kernel/rcutorture.c @@ -669,7 +669,7 @@ static struct rcu_torture_ops sched_expedited_ops = { .sync = synchronize_sched_expedited, .cb_barrier = NULL, .fqs = rcu_sched_force_quiescent_state, - .stats = rcu_expedited_torture_stats, + .stats = NULL, .irq_capable = 1, .name = "sched_expedited" }; diff --git a/kernel/sched.c b/kernel/sched.c index 6af210a7de70..b531d7934083 100644 --- a/kernel/sched.c +++ b/kernel/sched.c @@ -55,9 +55,9 @@ #include <linux/cpu.h> #include <linux/cpuset.h> #include <linux/percpu.h> -#include <linux/kthread.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> +#include <linux/stop_machine.h> #include <linux/sysctl.h> #include <linux/syscalls.h> #include <linux/times.h> @@ -493,8 +493,11 @@ struct rq { #define CPU_LOAD_IDX_MAX 5 unsigned long cpu_load[CPU_LOAD_IDX_MAX]; #ifdef CONFIG_NO_HZ + u64 nohz_stamp; unsigned char in_nohz_recently; #endif + unsigned int skip_clock_update; + /* capture load from *all* tasks on this cpu: */ struct load_weight load; unsigned long nr_load_updates; @@ -536,15 +539,13 @@ struct rq { int post_schedule; int active_balance; int push_cpu; + struct cpu_stop_work active_balance_work; /* cpu of this runqueue: */ int cpu; int online; unsigned long avg_load_per_task; - struct task_struct *migration_thread; - struct list_head migration_queue; - u64 rt_avg; u64 age_stamp; u64 idle_stamp; @@ -592,6 +593,13 @@ static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) { rq->curr->sched_class->check_preempt_curr(rq, p, flags); + + /* + * A queue event has occurred, and we're going to schedule. In + * this case, we can save a useless back to back clock update. + */ + if (test_tsk_need_resched(p)) + rq->skip_clock_update = 1; } static inline int cpu_of(struct rq *rq) @@ -626,7 +634,8 @@ static inline int cpu_of(struct rq *rq) inline void update_rq_clock(struct rq *rq) { - rq->clock = sched_clock_cpu(cpu_of(rq)); + if (!rq->skip_clock_update) + rq->clock = sched_clock_cpu(cpu_of(rq)); } /* @@ -904,16 +913,12 @@ static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) #endif /* __ARCH_WANT_UNLOCKED_CTXSW */ /* - * Check whether the task is waking, we use this to synchronize against - * ttwu() so that task_cpu() reports a stable number. - * - * We need to make an exception for PF_STARTING tasks because the fork - * path might require task_rq_lock() to work, eg. it can call - * set_cpus_allowed_ptr() from the cpuset clone_ns code. + * Check whether the task is waking, we use this to synchronize ->cpus_allowed + * against ttwu(). */ static inline int task_is_waking(struct task_struct *p) { - return unlikely((p->state == TASK_WAKING) && !(p->flags & PF_STARTING)); + return unlikely(p->state == TASK_WAKING); } /* @@ -926,11 +931,9 @@ static inline struct rq *__task_rq_lock(struct task_struct *p) struct rq *rq; for (;;) { - while (task_is_waking(p)) - cpu_relax(); rq = task_rq(p); raw_spin_lock(&rq->lock); - if (likely(rq == task_rq(p) && !task_is_waking(p))) + if (likely(rq == task_rq(p))) return rq; raw_spin_unlock(&rq->lock); } @@ -947,12 +950,10 @@ static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) struct rq *rq; for (;;) { - while (task_is_waking(p)) - cpu_relax(); local_irq_save(*flags); rq = task_rq(p); raw_spin_lock(&rq->lock); - if (likely(rq == task_rq(p) && !task_is_waking(p))) + if (likely(rq == task_rq(p))) return rq; raw_spin_unlock_irqrestore(&rq->lock, *flags); } @@ -1229,6 +1230,17 @@ void wake_up_idle_cpu(int cpu) if (!tsk_is_polling(rq->idle)) smp_send_reschedule(cpu); } + +int nohz_ratelimit(int cpu) +{ + struct rq *rq = cpu_rq(cpu); + u64 diff = rq->clock - rq->nohz_stamp; + + rq->nohz_stamp = rq->clock; + + return diff < (NSEC_PER_SEC / HZ) >> 1; +} + #endif /* CONFIG_NO_HZ */ static u64 sched_avg_period(void) @@ -1771,8 +1783,6 @@ static void double_rq_lock(struct rq *rq1, struct rq *rq2) raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); } } - update_rq_clock(rq1); - update_rq_clock(rq2); } /* @@ -1803,7 +1813,7 @@ static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares) } #endif -static void calc_load_account_active(struct rq *this_rq); +static void calc_load_account_idle(struct rq *this_rq); static void update_sysctl(void); static int get_update_sysctl_factor(void); @@ -1860,62 +1870,43 @@ static void set_load_weight(struct task_struct *p) p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO]; } -static void update_avg(u64 *avg, u64 sample) +static void enqueue_task(struct rq *rq, struct task_struct *p, int flags) { - s64 diff = sample - *avg; - *avg += diff >> 3; -} - -static void -enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, bool head) -{ - if (wakeup) - p->se.start_runtime = p->se.sum_exec_runtime; - + update_rq_clock(rq); sched_info_queued(p); - p->sched_class->enqueue_task(rq, p, wakeup, head); + p->sched_class->enqueue_task(rq, p, flags); p->se.on_rq = 1; } -static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep) +static void dequeue_task(struct rq *rq, struct task_struct *p, int flags) { - if (sleep) { - if (p->se.last_wakeup) { - update_avg(&p->se.avg_overlap, - p->se.sum_exec_runtime - p->se.last_wakeup); - p->se.last_wakeup = 0; - } else { - update_avg(&p->se.avg_wakeup, - sysctl_sched_wakeup_granularity); - } - } - + update_rq_clock(rq); sched_info_dequeued(p); - p->sched_class->dequeue_task(rq, p, sleep); + p->sched_class->dequeue_task(rq, p, flags); p->se.on_rq = 0; } /* * activate_task - move a task to the runqueue. */ -static void activate_task(struct rq *rq, struct task_struct *p, int wakeup) +static void activate_task(struct rq *rq, struct task_struct *p, int flags) { if (task_contributes_to_load(p)) rq->nr_uninterruptible--; - enqueue_task(rq, p, wakeup, false); + enqueue_task(rq, p, flags); inc_nr_running(rq); } /* * deactivate_task - remove a task from the runqueue. */ -static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep) +static void deactivate_task(struct rq *rq, struct task_struct *p, int flags) { if (task_contributes_to_load(p)) rq->nr_uninterruptible++; - dequeue_task(rq, p, sleep); + dequeue_task(rq, p, flags); dec_nr_running(rq); } @@ -2044,21 +2035,18 @@ void set_task_cpu(struct task_struct *p, unsigned int new_cpu) __set_task_cpu(p, new_cpu); } -struct migration_req { - struct list_head list; - +struct migration_arg { struct task_struct *task; int dest_cpu; - - struct completion done; }; +static int migration_cpu_stop(void *data); + /* * The task's runqueue lock must be held. * Returns true if you have to wait for migration thread. */ -static int -migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req) +static bool migrate_task(struct task_struct *p, int dest_cpu) { struct rq *rq = task_rq(p); @@ -2066,15 +2054,7 @@ migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req) * If the task is not on a runqueue (and not running), then * the next wake-up will properly place the task. */ - if (!p->se.on_rq && !task_running(rq, p)) - return 0; - - init_completion(&req->done); - req->task = p; - req->dest_cpu = dest_cpu; - list_add(&req->list, &rq->migration_queue); - - return 1; + return p->se.on_rq || task_running(rq, p); } /* @@ -2175,7 +2155,7 @@ unsigned long wait_task_inactive(struct task_struct *p, long match_state) * just go back and repeat. */ rq = task_rq_lock(p, &flags); - trace_sched_wait_task(rq, p); + trace_sched_wait_task(p); running = task_running(rq, p); on_rq = p->se.on_rq; ncsw = 0; @@ -2273,6 +2253,9 @@ void task_oncpu_function_call(struct task_struct *p, } #ifdef CONFIG_SMP +/* + * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held. + */ static int select_fallback_rq(int cpu, struct task_struct *p) { int dest_cpu; @@ -2289,12 +2272,8 @@ static int select_fallback_rq(int cpu, struct task_struct *p) return dest_cpu; /* No more Mr. Nice Guy. */ - if (dest_cpu >= nr_cpu_ids) { - rcu_read_lock(); - cpuset_cpus_allowed_locked(p, &p->cpus_allowed); - rcu_read_unlock(); - dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed); - + if (unlikely(dest_cpu >= nr_cpu_ids)) { + dest_cpu = cpuset_cpus_allowed_fallback(p); /* * Don't tell them about moving exiting tasks or * kernel threads (both mm NULL), since they never @@ -2311,17 +2290,12 @@ static int select_fallback_rq(int cpu, struct task_struct *p) } /* - * Gets called from 3 sites (exec, fork, wakeup), since it is called without - * holding rq->lock we need to ensure ->cpus_allowed is stable, this is done - * by: - * - * exec: is unstable, retry loop - * fork & wake-up: serialize ->cpus_allowed against TASK_WAKING + * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable. */ static inline -int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags) +int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags) { - int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags); + int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags); /* * In order not to call set_task_cpu() on a blocking task we need @@ -2339,6 +2313,12 @@ int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags) return cpu; } + +static void update_avg(u64 *avg, u64 sample) +{ + s64 diff = sample - *avg; + *avg += diff >> 3; +} #endif /*** @@ -2360,16 +2340,13 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, { int cpu, orig_cpu, this_cpu, success = 0; unsigned long flags; + unsigned long en_flags = ENQUEUE_WAKEUP; struct rq *rq; - if (!sched_feat(SYNC_WAKEUPS)) - wake_flags &= ~WF_SYNC; - this_cpu = get_cpu(); smp_wmb(); rq = task_rq_lock(p, &flags); - update_rq_clock(rq); if (!(p->state & state)) goto out; @@ -2389,28 +2366,26 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, * * First fix up the nr_uninterruptible count: */ - if (task_contributes_to_load(p)) - rq->nr_uninterruptible--; + if (task_contributes_to_load(p)) { + if (likely(cpu_online(orig_cpu))) + rq->nr_uninterruptible--; + else + this_rq()->nr_uninterruptible--; + } p->state = TASK_WAKING; - if (p->sched_class->task_waking) + if (p->sched_class->task_waking) { p->sched_class->task_waking(rq, p); + en_flags |= ENQUEUE_WAKING; + } - __task_rq_unlock(rq); - - cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags); - if (cpu != orig_cpu) { - /* - * Since we migrate the task without holding any rq->lock, - * we need to be careful with task_rq_lock(), since that - * might end up locking an invalid rq. - */ + cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags); + if (cpu != orig_cpu) set_task_cpu(p, cpu); - } + __task_rq_unlock(rq); rq = cpu_rq(cpu); raw_spin_lock(&rq->lock); - update_rq_clock(rq); /* * We migrated the task without holding either rq->lock, however @@ -2438,36 +2413,20 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, out_activate: #endif /* CONFIG_SMP */ - schedstat_inc(p, se.nr_wakeups); + schedstat_inc(p, se.statistics.nr_wakeups); if (wake_flags & WF_SYNC) - schedstat_inc(p, se.nr_wakeups_sync); + schedstat_inc(p, se.statistics.nr_wakeups_sync); if (orig_cpu != cpu) - schedstat_inc(p, se.nr_wakeups_migrate); + schedstat_inc(p, se.statistics.nr_wakeups_migrate); if (cpu == this_cpu) - schedstat_inc(p, se.nr_wakeups_local); + schedstat_inc(p, se.statistics.nr_wakeups_local); else - schedstat_inc(p, se.nr_wakeups_remote); - activate_task(rq, p, 1); + schedstat_inc(p, se.statistics.nr_wakeups_remote); + activate_task(rq, p, en_flags); success = 1; - /* - * Only attribute actual wakeups done by this task. - */ - if (!in_interrupt()) { - struct sched_entity *se = ¤t->se; - u64 sample = se->sum_exec_runtime; - - if (se->last_wakeup) - sample -= se->last_wakeup; - else - sample -= se->start_runtime; - update_avg(&se->avg_wakeup, sample); - - se->last_wakeup = se->sum_exec_runtime; - } - out_running: - trace_sched_wakeup(rq, p, success); + trace_sched_wakeup(p, success); check_preempt_curr(rq, p, wake_flags); p->state = TASK_RUNNING; @@ -2527,42 +2486,9 @@ static void __sched_fork(struct task_struct *p) p->se.sum_exec_runtime = 0; p->se.prev_sum_exec_runtime = 0; p->se.nr_migrations = 0; - p->se.last_wakeup = 0; - p->se.avg_overlap = 0; - p->se.start_runtime = 0; - p->se.avg_wakeup = sysctl_sched_wakeup_granularity; #ifdef CONFIG_SCHEDSTATS - p->se.wait_start = 0; - p->se.wait_max = 0; - p->se.wait_count = 0; - p->se.wait_sum = 0; - - p->se.sleep_start = 0; - p->se.sleep_max = 0; - p->se.sum_sleep_runtime = 0; - - p->se.block_start = 0; - p->se.block_max = 0; - p->se.exec_max = 0; - p->se.slice_max = 0; - - p->se.nr_migrations_cold = 0; - p->se.nr_failed_migrations_affine = 0; - p->se.nr_failed_migrations_running = 0; - p->se.nr_failed_migrations_hot = 0; - p->se.nr_forced_migrations = 0; - - p->se.nr_wakeups = 0; - p->se.nr_wakeups_sync = 0; - p->se.nr_wakeups_migrate = 0; - p->se.nr_wakeups_local = 0; - p->se.nr_wakeups_remote = 0; - p->se.nr_wakeups_affine = 0; - p->se.nr_wakeups_affine_attempts = 0; - p->se.nr_wakeups_passive = 0; - p->se.nr_wakeups_idle = 0; - + memset(&p->se.statistics, 0, sizeof(p->se.statistics)); #endif INIT_LIST_HEAD(&p->rt.run_list); @@ -2583,11 +2509,11 @@ void sched_fork(struct task_struct *p, int clone_flags) __sched_fork(p); /* - * We mark the process as waking here. This guarantees that + * We mark the process as running here. This guarantees that * nobody will actually run it, and a signal or other external * event cannot wake it up and insert it on the runqueue either. */ - p->state = TASK_WAKING; + p->state = TASK_RUNNING; /* * Revert to default priority/policy on fork if requested. @@ -2654,31 +2580,27 @@ void wake_up_new_task(struct task_struct *p, unsigned long clone_flags) int cpu __maybe_unused = get_cpu(); #ifdef CONFIG_SMP + rq = task_rq_lock(p, &flags); + p->state = TASK_WAKING; + /* * Fork balancing, do it here and not earlier because: * - cpus_allowed can change in the fork path * - any previously selected cpu might disappear through hotplug * - * We still have TASK_WAKING but PF_STARTING is gone now, meaning - * ->cpus_allowed is stable, we have preemption disabled, meaning - * cpu_online_mask is stable. + * We set TASK_WAKING so that select_task_rq() can drop rq->lock + * without people poking at ->cpus_allowed. */ - cpu = select_task_rq(p, SD_BALANCE_FORK, 0); + cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0); set_task_cpu(p, cpu); -#endif - /* - * Since the task is not on the rq and we still have TASK_WAKING set - * nobody else will migrate this task. - */ - rq = cpu_rq(cpu); - raw_spin_lock_irqsave(&rq->lock, flags); - - BUG_ON(p->state != TASK_WAKING); p->state = TASK_RUNNING; - update_rq_clock(rq); + task_rq_unlock(rq, &flags); +#endif + + rq = task_rq_lock(p, &flags); activate_task(rq, p, 0); - trace_sched_wakeup_new(rq, p, 1); + trace_sched_wakeup_new(p, 1); check_preempt_curr(rq, p, WF_FORK); #ifdef CONFIG_SMP if (p->sched_class->task_woken) @@ -2898,7 +2820,7 @@ context_switch(struct rq *rq, struct task_struct *prev, struct mm_struct *mm, *oldmm; prepare_task_switch(rq, prev, next); - trace_sched_switch(rq, prev, next); + trace_sched_switch(prev, next); mm = next->mm; oldmm = prev->active_mm; /* @@ -3015,6 +2937,61 @@ static unsigned long calc_load_update; unsigned long avenrun[3]; EXPORT_SYMBOL(avenrun); +static long calc_load_fold_active(struct rq *this_rq) +{ + long nr_active, delta = 0; + + nr_active = this_rq->nr_running; + nr_active += (long) this_rq->nr_uninterruptible; + + if (nr_active != this_rq->calc_load_active) { + delta = nr_active - this_rq->calc_load_active; + this_rq->calc_load_active = nr_active; + } + + return delta; +} + +#ifdef CONFIG_NO_HZ +/* + * For NO_HZ we delay the active fold to the next LOAD_FREQ update. + * + * When making the ILB scale, we should try to pull this in as well. + */ +static atomic_long_t calc_load_tasks_idle; + +static void calc_load_account_idle(struct rq *this_rq) +{ + long delta; + + delta = calc_load_fold_active(this_rq); + if (delta) + atomic_long_add(delta, &calc_load_tasks_idle); +} + +static long calc_load_fold_idle(void) +{ + long delta = 0; + + /* + * Its got a race, we don't care... + */ + if (atomic_long_read(&calc_load_tasks_idle)) + delta = atomic_long_xchg(&calc_load_tasks_idle, 0); + + return delta; +} +#else +static void calc_load_account_idle(struct rq *this_rq) +{ +} + +static inline long calc_load_fold_idle(void) +{ + return 0; +} +#endif + /** * get_avenrun - get the load average array * @loads: pointer to dest load array @@ -3061,20 +3038,22 @@ void calc_global_load(void) } /* - * Either called from update_cpu_load() or from a cpu going idle + * Called from update_cpu_load() to periodically update this CPU's + * active count. */ static void calc_load_account_active(struct rq *this_rq) { - long nr_active, delta; + long delta; - nr_active = this_rq->nr_running; - nr_active += (long) this_rq->nr_uninterruptible; + if (time_before(jiffies, this_rq->calc_load_update)) + return; - if (nr_active != this_rq->calc_load_active) { - delta = nr_active - this_rq->calc_load_active; - this_rq->calc_load_active = nr_active; + delta = calc_load_fold_active(this_rq); + delta += calc_load_fold_idle(); + if (delta) atomic_long_add(delta, &calc_load_tasks); - } + + this_rq->calc_load_update += LOAD_FREQ; } /* @@ -3106,10 +3085,7 @@ static void update_cpu_load(struct rq *this_rq) this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i; } - if (time_after_eq(jiffies, this_rq->calc_load_update)) { - this_rq->calc_load_update += LOAD_FREQ; - calc_load_account_active(this_rq); - } + calc_load_account_active(this_rq); } #ifdef CONFIG_SMP @@ -3121,44 +3097,27 @@ static void update_cpu_load(struct rq *this_rq) void sched_exec(void) { struct task_struct *p = current; - struct migration_req req; - int dest_cpu, this_cpu; unsigned long flags; struct rq *rq; - -again: - this_cpu = get_cpu(); - dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0); - if (dest_cpu == this_cpu) { - put_cpu(); - return; - } + int dest_cpu; rq = task_rq_lock(p, &flags); - put_cpu(); + dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0); + if (dest_cpu == smp_processor_id()) + goto unlock; /* * select_task_rq() can race against ->cpus_allowed */ - if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed) - || unlikely(!cpu_active(dest_cpu))) { - task_rq_unlock(rq, &flags); - goto again; - } + if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) && + likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) { + struct migration_arg arg = { p, dest_cpu }; - /* force the process onto the specified CPU */ - if (migrate_task(p, dest_cpu, &req)) { - /* Need to wait for migration thread (might exit: take ref). */ - struct task_struct *mt = rq->migration_thread; - - get_task_struct(mt); task_rq_unlock(rq, &flags); - wake_up_process(mt); - put_task_struct(mt); - wait_for_completion(&req.done); - + stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); return; } +unlock: task_rq_unlock(rq, &flags); } @@ -3630,23 +3589,9 @@ static inline void schedule_debug(struct task_struct *prev) static void put_prev_task(struct rq *rq, struct task_struct *prev) { - if (prev->state == TASK_RUNNING) { - u64 runtime = prev->se.sum_exec_runtime; - - runtime -= prev->se.prev_sum_exec_runtime; - runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost); - - /* - * In order to avoid avg_overlap growing stale when we are - * indeed overlapping and hence not getting put to sleep, grow - * the avg_overlap on preemption. - * - * We use the average preemption runtime because that - * correlates to the amount of cache footprint a task can - * build up. - */ - update_avg(&prev->se.avg_overlap, runtime); - } + if (prev->se.on_rq) + update_rq_clock(rq); + rq->skip_clock_update = 0; prev->sched_class->put_prev_task(rq, prev); } @@ -3709,14 +3654,13 @@ need_resched_nonpreemptible: hrtick_clear(rq); raw_spin_lock_irq(&rq->lock); - update_rq_clock(rq); clear_tsk_need_resched(prev); if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { if (unlikely(signal_pending_state(prev->state, prev))) prev->state = TASK_RUNNING; else - deactivate_task(rq, prev, 1); + deactivate_task(rq, prev, DEQUEUE_SLEEP); switch_count = &prev->nvcsw; } @@ -4039,8 +3983,7 @@ do_wait_for_common(struct completion *x, long timeout, int state) if (!x->done) { DECLARE_WAITQUEUE(wait, current); - wait.flags |= WQ_FLAG_EXCLUSIVE; - __add_wait_queue_tail(&x->wait, &wait); + __add_wait_queue_tail_exclusive(&x->wait, &wait); do { if (signal_pending_state(state, current)) { timeout = -ERESTARTSYS; @@ -4266,7 +4209,6 @@ void rt_mutex_setprio(struct task_struct *p, int prio) BUG_ON(prio < 0 || prio > MAX_PRIO); rq = task_rq_lock(p, &flags); - update_rq_clock(rq); oldprio = p->prio; prev_class = p->sched_class; @@ -4287,7 +4229,7 @@ void rt_mutex_setprio(struct task_struct *p, int prio) if (running) p->sched_class->set_curr_task(rq); if (on_rq) { - enqueue_task(rq, p, 0, oldprio < prio); + enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0); check_class_changed(rq, p, prev_class, oldprio, running); } @@ -4309,7 +4251,6 @@ void set_user_nice(struct task_struct *p, long nice) * the task might be in the middle of scheduling on another CPU. */ rq = task_rq_lock(p, &flags); - update_rq_clock(rq); /* * The RT priorities are set via sched_setscheduler(), but we still * allow the 'normal' nice value to be set - but as expected @@ -4331,7 +4272,7 @@ void set_user_nice(struct task_struct *p, long nice) delta = p->prio - old_prio; if (on_rq) { - enqueue_task(rq, p, 0, false); + enqueue_task(rq, p, 0); /* * If the task increased its priority or is running and * lowered its priority, then reschedule its CPU: @@ -4592,7 +4533,6 @@ recheck: raw_spin_unlock_irqrestore(&p->pi_lock, flags); goto recheck; } - update_rq_clock(rq); on_rq = p->se.on_rq; running = task_current(rq, p); if (on_rq) @@ -5329,17 +5269,15 @@ static inline void sched_init_granularity(void) /* * This is how migration works: * - * 1) we queue a struct migration_req structure in the source CPU's - * runqueue and wake up that CPU's migration thread. - * 2) we down() the locked semaphore => thread blocks. - * 3) migration thread wakes up (implicitly it forces the migrated - * thread off the CPU) - * 4) it gets the migration request and checks whether the migrated - * task is still in the wrong runqueue. - * 5) if it's in the wrong runqueue then the migration thread removes + * 1) we invoke migration_cpu_stop() on the target CPU using + * stop_one_cpu(). + * 2) stopper starts to run (implicitly forcing the migrated thread + * off the CPU) + * 3) it checks whether the migrated task is still in the wrong runqueue. + * 4) if it's in the wrong runqueue then the migration thread removes * it and puts it into the right queue. - * 6) migration thread up()s the semaphore. - * 7) we wake up and the migration is done. + * 5) stopper completes and stop_one_cpu() returns and the migration + * is done. */ /* @@ -5353,12 +5291,23 @@ static inline void sched_init_granularity(void) */ int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) { - struct migration_req req; unsigned long flags; struct rq *rq; + unsigned int dest_cpu; int ret = 0; + /* + * Serialize against TASK_WAKING so that ttwu() and wunt() can + * drop the rq->lock and still rely on ->cpus_allowed. + */ +again: + while (task_is_waking(p)) + cpu_relax(); rq = task_rq_lock(p, &flags); + if (task_is_waking(p)) { + task_rq_unlock(rq, &flags); + goto again; + } if (!cpumask_intersects(new_mask, cpu_active_mask)) { ret = -EINVAL; @@ -5382,15 +5331,12 @@ int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) if (cpumask_test_cpu(task_cpu(p), new_mask)) goto out; - if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) { + dest_cpu = cpumask_any_and(cpu_active_mask, new_mask); + if (migrate_task(p, dest_cpu)) { + struct migration_arg arg = { p, dest_cpu }; /* Need help from migration thread: drop lock and wait. */ - struct task_struct *mt = rq->migration_thread; - - get_task_struct(mt); task_rq_unlock(rq, &flags); - wake_up_process(mt); - put_task_struct(mt); - wait_for_completion(&req.done); + stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); tlb_migrate_finish(p->mm); return 0; } @@ -5448,98 +5394,49 @@ fail: return ret; } -#define RCU_MIGRATION_IDLE 0 -#define RCU_MIGRATION_NEED_QS 1 -#define RCU_MIGRATION_GOT_QS 2 -#define RCU_MIGRATION_MUST_SYNC 3 - /* - * migration_thread - this is a highprio system thread that performs - * thread migration by bumping thread off CPU then 'pushing' onto - * another runqueue. + * migration_cpu_stop - this will be executed by a highprio stopper thread + * and performs thread migration by bumping thread off CPU then + * 'pushing' onto another runqueue. */ -static int migration_thread(void *data) +static int migration_cpu_stop(void *data) { - int badcpu; - int cpu = (long)data; - struct rq *rq; - - rq = cpu_rq(cpu); - BUG_ON(rq->migration_thread != current); - - set_current_state(TASK_INTERRUPTIBLE); - while (!kthread_should_stop()) { - struct migration_req *req; - struct list_head *head; - - raw_spin_lock_irq(&rq->lock); - - if (cpu_is_offline(cpu)) { - raw_spin_unlock_irq(&rq->lock); - break; - } - - if (rq->active_balance) { - active_load_balance(rq, cpu); - rq->active_balance = 0; - } - - head = &rq->migration_queue; - - if (list_empty(head)) { - raw_spin_unlock_irq(&rq->lock); - schedule(); - set_current_state(TASK_INTERRUPTIBLE); - continue; - } - req = list_entry(head->next, struct migration_req, list); - list_del_init(head->next); - - if (req->task != NULL) { - raw_spin_unlock(&rq->lock); - __migrate_task(req->task, cpu, req->dest_cpu); - } else if (likely(cpu == (badcpu = smp_processor_id()))) { - req->dest_cpu = RCU_MIGRATION_GOT_QS; - raw_spin_unlock(&rq->lock); - } else { - req->dest_cpu = RCU_MIGRATION_MUST_SYNC; - raw_spin_unlock(&rq->lock); - WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu); - } - local_irq_enable(); - - complete(&req->done); - } - __set_current_state(TASK_RUNNING); - - return 0; -} - -#ifdef CONFIG_HOTPLUG_CPU - -static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu) -{ - int ret; + struct migration_arg *arg = data; + /* + * The original target cpu might have gone down and we might + * be on another cpu but it doesn't matter. + */ local_irq_disable(); - ret = __migrate_task(p, src_cpu, dest_cpu); + __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu); local_irq_enable(); - return ret; + return 0; } +#ifdef CONFIG_HOTPLUG_CPU /* * Figure out where task on dead CPU should go, use force if necessary. */ -static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p) +void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p) { - int dest_cpu; + struct rq *rq = cpu_rq(dead_cpu); + int needs_cpu, uninitialized_var(dest_cpu); + unsigned long flags; -again: - dest_cpu = select_fallback_rq(dead_cpu, p); + local_irq_save(flags); - /* It can have affinity changed while we were choosing. */ - if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu))) - goto again; + raw_spin_lock(&rq->lock); + needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING); + if (needs_cpu) + dest_cpu = select_fallback_rq(dead_cpu, p); + raw_spin_unlock(&rq->lock); + /* + * It can only fail if we race with set_cpus_allowed(), + * in the racer should migrate the task anyway. + */ + if (needs_cpu) + __migrate_task(p, dead_cpu, dest_cpu); + local_irq_restore(flags); } /* @@ -5603,7 +5500,6 @@ void sched_idle_next(void) __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1); - update_rq_clock(rq); activate_task(rq, p, 0); raw_spin_unlock_irqrestore(&rq->lock, flags); @@ -5658,7 +5554,6 @@ static void migrate_dead_tasks(unsigned int dead_cpu) for ( ; ; ) { if (!rq->nr_running) break; - update_rq_clock(rq); next = pick_next_task(rq); if (!next) break; @@ -5881,35 +5776,20 @@ static void set_rq_offline(struct rq *rq) static int __cpuinit migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) { - struct task_struct *p; int cpu = (long)hcpu; unsigned long flags; - struct rq *rq; + struct rq *rq = cpu_rq(cpu); switch (action) { case CPU_UP_PREPARE: case CPU_UP_PREPARE_FROZEN: - p = kthread_create(migration_thread, hcpu, "migration/%d", cpu); - if (IS_ERR(p)) - return NOTIFY_BAD; - kthread_bind(p, cpu); - /* Must be high prio: stop_machine expects to yield to it. */ - rq = task_rq_lock(p, &flags); - __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1); - task_rq_unlock(rq, &flags); - get_task_struct(p); - cpu_rq(cpu)->migration_thread = p; rq->calc_load_update = calc_load_update; break; case CPU_ONLINE: case CPU_ONLINE_FROZEN: - /* Strictly unnecessary, as first user will wake it. */ - wake_up_process(cpu_rq(cpu)->migration_thread); - /* Update our root-domain */ - rq = cpu_rq(cpu); raw_spin_lock_irqsave(&rq->lock, flags); if (rq->rd) { BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); @@ -5920,61 +5800,24 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) break; #ifdef CONFIG_HOTPLUG_CPU - case CPU_UP_CANCELED: - case CPU_UP_CANCELED_FROZEN: - if (!cpu_rq(cpu)->migration_thread) - break; - /* Unbind it from offline cpu so it can run. Fall thru. */ - kthread_bind(cpu_rq(cpu)->migration_thread, - cpumask_any(cpu_online_mask)); - kthread_stop(cpu_rq(cpu)->migration_thread); - put_task_struct(cpu_rq(cpu)->migration_thread); - cpu_rq(cpu)->migration_thread = NULL; - break; - case CPU_DEAD: case CPU_DEAD_FROZEN: - cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */ migrate_live_tasks(cpu); - rq = cpu_rq(cpu); - kthread_stop(rq->migration_thread); - put_task_struct(rq->migration_thread); - rq->migration_thread = NULL; /* Idle task back to normal (off runqueue, low prio) */ raw_spin_lock_irq(&rq->lock); - update_rq_clock(rq); deactivate_task(rq, rq->idle, 0); __setscheduler(rq, rq->idle, SCHED_NORMAL, 0); rq->idle->sched_class = &idle_sched_class; migrate_dead_tasks(cpu); raw_spin_unlock_irq(&rq->lock); - cpuset_unlock(); migrate_nr_uninterruptible(rq); BUG_ON(rq->nr_running != 0); calc_global_load_remove(rq); - /* - * No need to migrate the tasks: it was best-effort if - * they didn't take sched_hotcpu_mutex. Just wake up - * the requestors. - */ - raw_spin_lock_irq(&rq->lock); - while (!list_empty(&rq->migration_queue)) { - struct migration_req *req; - - req = list_entry(rq->migration_queue.next, - struct migration_req, list); - list_del_init(&req->list); - raw_spin_unlock_irq(&rq->lock); - complete(&req->done); - raw_spin_lock_irq(&rq->lock); - } - raw_spin_unlock_irq(&rq->lock); break; case CPU_DYING: case CPU_DYING_FROZEN: /* Update our root-domain */ - rq = cpu_rq(cpu); raw_spin_lock_irqsave(&rq->lock, flags); if (rq->rd) { BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); @@ -6305,6 +6148,9 @@ cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) struct rq *rq = cpu_rq(cpu); struct sched_domain *tmp; + for (tmp = sd; tmp; tmp = tmp->parent) + tmp->span_weight = cpumask_weight(sched_domain_span(tmp)); + /* Remove the sched domains which do not contribute to scheduling. */ for (tmp = sd; tmp; ) { struct sched_domain *parent = tmp->parent; @@ -7788,10 +7634,8 @@ void __init sched_init(void) rq->push_cpu = 0; rq->cpu = i; rq->online = 0; - rq->migration_thread = NULL; rq->idle_stamp = 0; rq->avg_idle = 2*sysctl_sched_migration_cost; - INIT_LIST_HEAD(&rq->migration_queue); rq_attach_root(rq, &def_root_domain); #endif init_rq_hrtick(rq); @@ -7892,7 +7736,6 @@ static void normalize_task(struct rq *rq, struct task_struct *p) { int on_rq; - update_rq_clock(rq); on_rq = p->se.on_rq; if (on_rq) deactivate_task(rq, p, 0); @@ -7919,9 +7762,9 @@ void normalize_rt_tasks(void) p->se.exec_start = 0; #ifdef CONFIG_SCHEDSTATS - p->se.wait_start = 0; - p->se.sleep_start = 0; - p->se.block_start = 0; + p->se.statistics.wait_start = 0; + p->se.statistics.sleep_start = 0; + p->se.statistics.block_start = 0; #endif if (!rt_task(p)) { @@ -8254,8 +8097,6 @@ void sched_move_task(struct task_struct *tsk) rq = task_rq_lock(tsk, &flags); - update_rq_clock(rq); - running = task_current(rq, tsk); on_rq = tsk->se.on_rq; @@ -8274,7 +8115,7 @@ void sched_move_task(struct task_struct *tsk) if (unlikely(running)) tsk->sched_class->set_curr_task(rq); if (on_rq) - enqueue_task(rq, tsk, 0, false); + enqueue_task(rq, tsk, 0); task_rq_unlock(rq, &flags); } @@ -9088,43 +8929,32 @@ struct cgroup_subsys cpuacct_subsys = { #ifndef CONFIG_SMP -int rcu_expedited_torture_stats(char *page) -{ - return 0; -} -EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats); - void synchronize_sched_expedited(void) { + barrier(); } EXPORT_SYMBOL_GPL(synchronize_sched_expedited); #else /* #ifndef CONFIG_SMP */ -static DEFINE_PER_CPU(struct migration_req, rcu_migration_req); -static DEFINE_MUTEX(rcu_sched_expedited_mutex); - -#define RCU_EXPEDITED_STATE_POST -2 -#define RCU_EXPEDITED_STATE_IDLE -1 - -static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE; +static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0); -int rcu_expedited_torture_stats(char *page) +static int synchronize_sched_expedited_cpu_stop(void *data) { - int cnt = 0; - int cpu; - - cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state); - for_each_online_cpu(cpu) { - cnt += sprintf(&page[cnt], " %d:%d", - cpu, per_cpu(rcu_migration_req, cpu).dest_cpu); - } - cnt += sprintf(&page[cnt], "\n"); - return cnt; + /* + * There must be a full memory barrier on each affected CPU + * between the time that try_stop_cpus() is called and the + * time that it returns. + * + * In the current initial implementation of cpu_stop, the + * above condition is already met when the control reaches + * this point and the following smp_mb() is not strictly + * necessary. Do smp_mb() anyway for documentation and + * robustness against future implementation changes. + */ + smp_mb(); /* See above comment block. */ + return 0; } -EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats); - -static long synchronize_sched_expedited_count; /* * Wait for an rcu-sched grace period to elapse, but use "big hammer" @@ -9138,18 +8968,14 @@ static long synchronize_sched_expedited_count; */ void synchronize_sched_expedited(void) { - int cpu; - unsigned long flags; - bool need_full_sync = 0; - struct rq *rq; - struct migration_req *req; - long snap; - int trycount = 0; + int snap, trycount = 0; smp_mb(); /* ensure prior mod happens before capturing snap. */ - snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1; + snap = atomic_read(&synchronize_sched_expedited_count) + 1; get_online_cpus(); - while (!mutex_trylock(&rcu_sched_expedited_mutex)) { + while (try_stop_cpus(cpu_online_mask, + synchronize_sched_expedited_cpu_stop, + NULL) == -EAGAIN) { put_online_cpus(); if (trycount++ < 10) udelay(trycount * num_online_cpus()); @@ -9157,41 +8983,15 @@ void synchronize_sched_expedited(void) synchronize_sched(); return; } - if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) { + if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) { smp_mb(); /* ensure test happens before caller kfree */ return; } get_online_cpus(); } - rcu_expedited_state = RCU_EXPEDITED_STATE_POST; - for_each_online_cpu(cpu) { - rq = cpu_rq(cpu); - req = &per_cpu(rcu_migration_req, cpu); - init_completion(&req->done); - req->task = NULL; - req->dest_cpu = RCU_MIGRATION_NEED_QS; - raw_spin_lock_irqsave(&rq->lock, flags); - list_add(&req->list, &rq->migration_queue); - raw_spin_unlock_irqrestore(&rq->lock, flags); - wake_up_process(rq->migration_thread); - } - for_each_online_cpu(cpu) { - rcu_expedited_state = cpu; - req = &per_cpu(rcu_migration_req, cpu); - rq = cpu_rq(cpu); - wait_for_completion(&req->done); - raw_spin_lock_irqsave(&rq->lock, flags); - if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC)) - need_full_sync = 1; - req->dest_cpu = RCU_MIGRATION_IDLE; - raw_spin_unlock_irqrestore(&rq->lock, flags); - } - rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE; - synchronize_sched_expedited_count++; - mutex_unlock(&rcu_sched_expedited_mutex); + atomic_inc(&synchronize_sched_expedited_count); + smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */ put_online_cpus(); - if (need_full_sync) - synchronize_sched(); } EXPORT_SYMBOL_GPL(synchronize_sched_expedited); diff --git a/kernel/sched_debug.c b/kernel/sched_debug.c index 9b49db144037..9cf1baf6616a 100644 --- a/kernel/sched_debug.c +++ b/kernel/sched_debug.c @@ -70,16 +70,16 @@ static void print_cfs_group_stats(struct seq_file *m, int cpu, PN(se->vruntime); PN(se->sum_exec_runtime); #ifdef CONFIG_SCHEDSTATS - PN(se->wait_start); - PN(se->sleep_start); - PN(se->block_start); - PN(se->sleep_max); - PN(se->block_max); - PN(se->exec_max); - PN(se->slice_max); - PN(se->wait_max); - PN(se->wait_sum); - P(se->wait_count); + PN(se->statistics.wait_start); + PN(se->statistics.sleep_start); + PN(se->statistics.block_start); + PN(se->statistics.sleep_max); + PN(se->statistics.block_max); + PN(se->statistics.exec_max); + PN(se->statistics.slice_max); + PN(se->statistics.wait_max); + PN(se->statistics.wait_sum); + P(se->statistics.wait_count); #endif P(se->load.weight); #undef PN @@ -104,7 +104,7 @@ print_task(struct seq_file *m, struct rq *rq, struct task_struct *p) SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld", SPLIT_NS(p->se.vruntime), SPLIT_NS(p->se.sum_exec_runtime), - SPLIT_NS(p->se.sum_sleep_runtime)); + SPLIT_NS(p->se.statistics.sum_sleep_runtime)); #else SEQ_printf(m, "%15Ld %15Ld %15Ld.%06ld %15Ld.%06ld %15Ld.%06ld", 0LL, 0LL, 0LL, 0L, 0LL, 0L, 0LL, 0L); @@ -173,11 +173,6 @@ void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) task_group_path(tg, path, sizeof(path)); SEQ_printf(m, "\ncfs_rq[%d]:%s\n", cpu, path); -#elif defined(CONFIG_USER_SCHED) && defined(CONFIG_FAIR_GROUP_SCHED) - { - uid_t uid = cfs_rq->tg->uid; - SEQ_printf(m, "\ncfs_rq[%d] for UID: %u\n", cpu, uid); - } #else SEQ_printf(m, "\ncfs_rq[%d]:\n", cpu); #endif @@ -407,40 +402,38 @@ void proc_sched_show_task(struct task_struct *p, struct seq_file *m) PN(se.exec_start); PN(se.vruntime); PN(se.sum_exec_runtime); - PN(se.avg_overlap); - PN(se.avg_wakeup); nr_switches = p->nvcsw + p->nivcsw; #ifdef CONFIG_SCHEDSTATS - PN(se.wait_start); - PN(se.sleep_start); - PN(se.block_start); - PN(se.sleep_max); - PN(se.block_max); - PN(se.exec_max); - PN(se.slice_max); - PN(se.wait_max); - PN(se.wait_sum); - P(se.wait_count); - PN(se.iowait_sum); - P(se.iowait_count); + PN(se.statistics.wait_start); + PN(se.statistics.sleep_start); + PN(se.statistics.block_start); + PN(se.statistics.sleep_max); + PN(se.statistics.block_max); + PN(se.statistics.exec_max); + PN(se.statistics.slice_max); + PN(se.statistics.wait_max); + PN(se.statistics.wait_sum); + P(se.statistics.wait_count); + PN(se.statistics.iowait_sum); + P(se.statistics.iowait_count); P(sched_info.bkl_count); P(se.nr_migrations); - P(se.nr_migrations_cold); - P(se.nr_failed_migrations_affine); - P(se.nr_failed_migrations_running); - P(se.nr_failed_migrations_hot); - P(se.nr_forced_migrations); - P(se.nr_wakeups); - P(se.nr_wakeups_sync); - P(se.nr_wakeups_migrate); - P(se.nr_wakeups_local); - P(se.nr_wakeups_remote); - P(se.nr_wakeups_affine); - P(se.nr_wakeups_affine_attempts); - P(se.nr_wakeups_passive); - P(se.nr_wakeups_idle); + P(se.statistics.nr_migrations_cold); + P(se.statistics.nr_failed_migrations_affine); + P(se.statistics.nr_failed_migrations_running); + P(se.statistics.nr_failed_migrations_hot); + P(se.statistics.nr_forced_migrations); + P(se.statistics.nr_wakeups); + P(se.statistics.nr_wakeups_sync); + P(se.statistics.nr_wakeups_migrate); + P(se.statistics.nr_wakeups_local); + P(se.statistics.nr_wakeups_remote); + P(se.statistics.nr_wakeups_affine); + P(se.statistics.nr_wakeups_affine_attempts); + P(se.statistics.nr_wakeups_passive); + P(se.statistics.nr_wakeups_idle); { u64 avg_atom, avg_per_cpu; @@ -491,31 +484,6 @@ void proc_sched_show_task(struct task_struct *p, struct seq_file *m) void proc_sched_set_task(struct task_struct *p) { #ifdef CONFIG_SCHEDSTATS - p->se.wait_max = 0; - p->se.wait_sum = 0; - p->se.wait_count = 0; - p->se.iowait_sum = 0; - p->se.iowait_count = 0; - p->se.sleep_max = 0; - p->se.sum_sleep_runtime = 0; - p->se.block_max = 0; - p->se.exec_max = 0; - p->se.slice_max = 0; - p->se.nr_migrations = 0; - p->se.nr_migrations_cold = 0; - p->se.nr_failed_migrations_affine = 0; - p->se.nr_failed_migrations_running = 0; - p->se.nr_failed_migrations_hot = 0; - p->se.nr_forced_migrations = 0; - p->se.nr_wakeups = 0; - p->se.nr_wakeups_sync = 0; - p->se.nr_wakeups_migrate = 0; - p->se.nr_wakeups_local = 0; - p->se.nr_wakeups_remote = 0; - p->se.nr_wakeups_affine = 0; - p->se.nr_wakeups_affine_attempts = 0; - p->se.nr_wakeups_passive = 0; - p->se.nr_wakeups_idle = 0; - p->sched_info.bkl_count = 0; + memset(&p->se.statistics, 0, sizeof(p->se.statistics)); #endif } diff --git a/kernel/sched_fair.c b/kernel/sched_fair.c index 5a5ea2cd924f..217e4a9393e4 100644 --- a/kernel/sched_fair.c +++ b/kernel/sched_fair.c @@ -35,8 +35,8 @@ * (to see the precise effective timeslice length of your workload, * run vmstat and monitor the context-switches (cs) field) */ -unsigned int sysctl_sched_latency = 5000000ULL; -unsigned int normalized_sysctl_sched_latency = 5000000ULL; +unsigned int sysctl_sched_latency = 6000000ULL; +unsigned int normalized_sysctl_sched_latency = 6000000ULL; /* * The initial- and re-scaling of tunables is configurable @@ -52,15 +52,15 @@ enum sched_tunable_scaling sysctl_sched_tunable_scaling /* * Minimal preemption granularity for CPU-bound tasks: - * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) + * (default: 2 msec * (1 + ilog(ncpus)), units: nanoseconds) */ -unsigned int sysctl_sched_min_granularity = 1000000ULL; -unsigned int normalized_sysctl_sched_min_granularity = 1000000ULL; +unsigned int sysctl_sched_min_granularity = 2000000ULL; +unsigned int normalized_sysctl_sched_min_granularity = 2000000ULL; /* * is kept at sysctl_sched_latency / sysctl_sched_min_granularity */ -static unsigned int sched_nr_latency = 5; +static unsigned int sched_nr_latency = 3; /* * After fork, child runs first. If set to 0 (default) then @@ -505,7 +505,8 @@ __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr, { unsigned long delta_exec_weighted; - schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max)); + schedstat_set(curr->statistics.exec_max, + max((u64)delta_exec, curr->statistics.exec_max)); curr->sum_exec_runtime += delta_exec; schedstat_add(cfs_rq, exec_clock, delta_exec); @@ -548,7 +549,7 @@ static void update_curr(struct cfs_rq *cfs_rq) static inline void update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) { - schedstat_set(se->wait_start, rq_of(cfs_rq)->clock); + schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock); } /* @@ -567,18 +568,18 @@ static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) static void update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) { - schedstat_set(se->wait_max, max(se->wait_max, - rq_of(cfs_rq)->clock - se->wait_start)); - schedstat_set(se->wait_count, se->wait_count + 1); - schedstat_set(se->wait_sum, se->wait_sum + - rq_of(cfs_rq)->clock - se->wait_start); + schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max, + rq_of(cfs_rq)->clock - se->statistics.wait_start)); + schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1); + schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum + + rq_of(cfs_rq)->clock - se->statistics.wait_start); #ifdef CONFIG_SCHEDSTATS if (entity_is_task(se)) { trace_sched_stat_wait(task_of(se), - rq_of(cfs_rq)->clock - se->wait_start); + rq_of(cfs_rq)->clock - se->statistics.wait_start); } #endif - schedstat_set(se->wait_start, 0); + schedstat_set(se->statistics.wait_start, 0); } static inline void @@ -657,39 +658,39 @@ static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) if (entity_is_task(se)) tsk = task_of(se); - if (se->sleep_start) { - u64 delta = rq_of(cfs_rq)->clock - se->sleep_start; + if (se->statistics.sleep_start) { + u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start; if ((s64)delta < 0) delta = 0; - if (unlikely(delta > se->sleep_max)) - se->sleep_max = delta; + if (unlikely(delta > se->statistics.sleep_max)) + se->statistics.sleep_max = delta; - se->sleep_start = 0; - se->sum_sleep_runtime += delta; + se->statistics.sleep_start = 0; + se->statistics.sum_sleep_runtime += delta; if (tsk) { account_scheduler_latency(tsk, delta >> 10, 1); trace_sched_stat_sleep(tsk, delta); } } - if (se->block_start) { - u64 delta = rq_of(cfs_rq)->clock - se->block_start; + if (se->statistics.block_start) { + u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start; if ((s64)delta < 0) delta = 0; - if (unlikely(delta > se->block_max)) - se->block_max = delta; + if (unlikely(delta > se->statistics.block_max)) + se->statistics.block_max = delta; - se->block_start = 0; - se->sum_sleep_runtime += delta; + se->statistics.block_start = 0; + se->statistics.sum_sleep_runtime += delta; if (tsk) { if (tsk->in_iowait) { - se->iowait_sum += delta; - se->iowait_count++; + se->statistics.iowait_sum += delta; + se->statistics.iowait_count++; trace_sched_stat_iowait(tsk, delta); } @@ -737,20 +738,10 @@ place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) vruntime += sched_vslice(cfs_rq, se); /* sleeps up to a single latency don't count. */ - if (!initial && sched_feat(FAIR_SLEEPERS)) { + if (!initial) { unsigned long thresh = sysctl_sched_latency; /* - * Convert the sleeper threshold into virtual time. - * SCHED_IDLE is a special sub-class. We care about - * fairness only relative to other SCHED_IDLE tasks, - * all of which have the same weight. - */ - if (sched_feat(NORMALIZED_SLEEPER) && (!entity_is_task(se) || - task_of(se)->policy != SCHED_IDLE)) - thresh = calc_delta_fair(thresh, se); - - /* * Halve their sleep time's effect, to allow * for a gentler effect of sleepers: */ @@ -766,9 +757,6 @@ place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) se->vruntime = vruntime; } -#define ENQUEUE_WAKEUP 1 -#define ENQUEUE_MIGRATE 2 - static void enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) { @@ -776,7 +764,7 @@ enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) * Update the normalized vruntime before updating min_vruntime * through callig update_curr(). */ - if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATE)) + if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING)) se->vruntime += cfs_rq->min_vruntime; /* @@ -812,7 +800,7 @@ static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) } static void -dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep) +dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) { /* * Update run-time statistics of the 'current'. @@ -820,15 +808,15 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep) update_curr(cfs_rq); update_stats_dequeue(cfs_rq, se); - if (sleep) { + if (flags & DEQUEUE_SLEEP) { #ifdef CONFIG_SCHEDSTATS if (entity_is_task(se)) { struct task_struct *tsk = task_of(se); if (tsk->state & TASK_INTERRUPTIBLE) - se->sleep_start = rq_of(cfs_rq)->clock; + se->statistics.sleep_start = rq_of(cfs_rq)->clock; if (tsk->state & TASK_UNINTERRUPTIBLE) - se->block_start = rq_of(cfs_rq)->clock; + se->statistics.block_start = rq_of(cfs_rq)->clock; } #endif } @@ -845,7 +833,7 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep) * update can refer to the ->curr item and we need to reflect this * movement in our normalized position. */ - if (!sleep) + if (!(flags & DEQUEUE_SLEEP)) se->vruntime -= cfs_rq->min_vruntime; } @@ -912,7 +900,7 @@ set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) * when there are only lesser-weight tasks around): */ if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { - se->slice_max = max(se->slice_max, + se->statistics.slice_max = max(se->statistics.slice_max, se->sum_exec_runtime - se->prev_sum_exec_runtime); } #endif @@ -1054,16 +1042,10 @@ static inline void hrtick_update(struct rq *rq) * then put the task into the rbtree: */ static void -enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup, bool head) +enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) { struct cfs_rq *cfs_rq; struct sched_entity *se = &p->se; - int flags = 0; - - if (wakeup) - flags |= ENQUEUE_WAKEUP; - if (p->state == TASK_WAKING) - flags |= ENQUEUE_MIGRATE; for_each_sched_entity(se) { if (se->on_rq) @@ -1081,18 +1063,18 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup, bool head) * decreased. We remove the task from the rbtree and * update the fair scheduling stats: */ -static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep) +static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) { struct cfs_rq *cfs_rq; struct sched_entity *se = &p->se; for_each_sched_entity(se) { cfs_rq = cfs_rq_of(se); - dequeue_entity(cfs_rq, se, sleep); + dequeue_entity(cfs_rq, se, flags); /* Don't dequeue parent if it has other entities besides us */ if (cfs_rq->load.weight) break; - sleep = 1; + flags |= DEQUEUE_SLEEP; } hrtick_update(rq); @@ -1240,7 +1222,6 @@ static inline unsigned long effective_load(struct task_group *tg, int cpu, static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) { - struct task_struct *curr = current; unsigned long this_load, load; int idx, this_cpu, prev_cpu; unsigned long tl_per_task; @@ -1255,18 +1236,6 @@ static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) load = source_load(prev_cpu, idx); this_load = target_load(this_cpu, idx); - if (sync) { - if (sched_feat(SYNC_LESS) && - (curr->se.avg_overlap > sysctl_sched_migration_cost || - p->se.avg_overlap > sysctl_sched_migration_cost)) - sync = 0; - } else { - if (sched_feat(SYNC_MORE) && - (curr->se.avg_overlap < sysctl_sched_migration_cost && - p->se.avg_overlap < sysctl_sched_migration_cost)) - sync = 1; - } - /* * If sync wakeup then subtract the (maximum possible) * effect of the currently running task from the load @@ -1306,7 +1275,7 @@ static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) if (sync && balanced) return 1; - schedstat_inc(p, se.nr_wakeups_affine_attempts); + schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts); tl_per_task = cpu_avg_load_per_task(this_cpu); if (balanced || @@ -1318,7 +1287,7 @@ static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) * there is no bad imbalance. */ schedstat_inc(sd, ttwu_move_affine); - schedstat_inc(p, se.nr_wakeups_affine); + schedstat_inc(p, se.statistics.nr_wakeups_affine); return 1; } @@ -1406,29 +1375,48 @@ find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) /* * Try and locate an idle CPU in the sched_domain. */ -static int -select_idle_sibling(struct task_struct *p, struct sched_domain *sd, int target) +static int select_idle_sibling(struct task_struct *p, int target) { int cpu = smp_processor_id(); int prev_cpu = task_cpu(p); + struct sched_domain *sd; int i; /* - * If this domain spans both cpu and prev_cpu (see the SD_WAKE_AFFINE - * test in select_task_rq_fair) and the prev_cpu is idle then that's - * always a better target than the current cpu. + * If the task is going to be woken-up on this cpu and if it is + * already idle, then it is the right target. */ - if (target == cpu && !cpu_rq(prev_cpu)->cfs.nr_running) + if (target == cpu && idle_cpu(cpu)) + return cpu; + + /* + * If the task is going to be woken-up on the cpu where it previously + * ran and if it is currently idle, then it the right target. + */ + if (target == prev_cpu && idle_cpu(prev_cpu)) return prev_cpu; /* - * Otherwise, iterate the domain and find an elegible idle cpu. + * Otherwise, iterate the domains and find an elegible idle cpu. */ - for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) { - if (!cpu_rq(i)->cfs.nr_running) { - target = i; + for_each_domain(target, sd) { + if (!(sd->flags & SD_SHARE_PKG_RESOURCES)) break; + + for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) { + if (idle_cpu(i)) { + target = i; + break; + } } + + /* + * Lets stop looking for an idle sibling when we reached + * the domain that spans the current cpu and prev_cpu. + */ + if (cpumask_test_cpu(cpu, sched_domain_span(sd)) && + cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) + break; } return target; @@ -1445,7 +1433,8 @@ select_idle_sibling(struct task_struct *p, struct sched_domain *sd, int target) * * preempt must be disabled. */ -static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags) +static int +select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_flags) { struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; int cpu = smp_processor_id(); @@ -1456,8 +1445,7 @@ static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flag int sync = wake_flags & WF_SYNC; if (sd_flag & SD_BALANCE_WAKE) { - if (sched_feat(AFFINE_WAKEUPS) && - cpumask_test_cpu(cpu, &p->cpus_allowed)) + if (cpumask_test_cpu(cpu, &p->cpus_allowed)) want_affine = 1; new_cpu = prev_cpu; } @@ -1491,34 +1479,13 @@ static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flag } /* - * While iterating the domains looking for a spanning - * WAKE_AFFINE domain, adjust the affine target to any idle cpu - * in cache sharing domains along the way. + * If both cpu and prev_cpu are part of this domain, + * cpu is a valid SD_WAKE_AFFINE target. */ - if (want_affine) { - int target = -1; - - /* - * If both cpu and prev_cpu are part of this domain, - * cpu is a valid SD_WAKE_AFFINE target. - */ - if (cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) - target = cpu; - - /* - * If there's an idle sibling in this domain, make that - * the wake_affine target instead of the current cpu. - */ - if (tmp->flags & SD_SHARE_PKG_RESOURCES) - target = select_idle_sibling(p, tmp, target); - - if (target >= 0) { - if (tmp->flags & SD_WAKE_AFFINE) { - affine_sd = tmp; - want_affine = 0; - } - cpu = target; - } + if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && + cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { + affine_sd = tmp; + want_affine = 0; } if (!want_sd && !want_affine) @@ -1531,22 +1498,29 @@ static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flag sd = tmp; } +#ifdef CONFIG_FAIR_GROUP_SCHED if (sched_feat(LB_SHARES_UPDATE)) { /* * Pick the largest domain to update shares over */ tmp = sd; - if (affine_sd && (!tmp || - cpumask_weight(sched_domain_span(affine_sd)) > - cpumask_weight(sched_domain_span(sd)))) + if (affine_sd && (!tmp || affine_sd->span_weight > sd->span_weight)) tmp = affine_sd; - if (tmp) + if (tmp) { + raw_spin_unlock(&rq->lock); update_shares(tmp); + raw_spin_lock(&rq->lock); + } } +#endif - if (affine_sd && wake_affine(affine_sd, p, sync)) - return cpu; + if (affine_sd) { + if (cpu == prev_cpu || wake_affine(affine_sd, p, sync)) + return select_idle_sibling(p, cpu); + else + return select_idle_sibling(p, prev_cpu); + } while (sd) { int load_idx = sd->forkexec_idx; @@ -1576,10 +1550,10 @@ static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flag /* Now try balancing at a lower domain level of new_cpu */ cpu = new_cpu; - weight = cpumask_weight(sched_domain_span(sd)); + weight = sd->span_weight; sd = NULL; for_each_domain(cpu, tmp) { - if (weight <= cpumask_weight(sched_domain_span(tmp))) + if (weight <= tmp->span_weight) break; if (tmp->flags & sd_flag) sd = tmp; @@ -1591,63 +1565,26 @@ static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flag } #endif /* CONFIG_SMP */ -/* - * Adaptive granularity - * - * se->avg_wakeup gives the average time a task runs until it does a wakeup, - * with the limit of wakeup_gran -- when it never does a wakeup. - * - * So the smaller avg_wakeup is the faster we want this task to preempt, - * but we don't want to treat the preemptee unfairly and therefore allow it - * to run for at least the amount of time we'd like to run. - * - * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one - * - * NOTE: we use *nr_running to scale with load, this nicely matches the - * degrading latency on load. - */ -static unsigned long -adaptive_gran(struct sched_entity *curr, struct sched_entity *se) -{ - u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; - u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running; - u64 gran = 0; - - if (this_run < expected_wakeup) - gran = expected_wakeup - this_run; - - return min_t(s64, gran, sysctl_sched_wakeup_granularity); -} - static unsigned long wakeup_gran(struct sched_entity *curr, struct sched_entity *se) { unsigned long gran = sysctl_sched_wakeup_granularity; - if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN)) - gran = adaptive_gran(curr, se); - /* * Since its curr running now, convert the gran from real-time * to virtual-time in his units. + * + * By using 'se' instead of 'curr' we penalize light tasks, so + * they get preempted easier. That is, if 'se' < 'curr' then + * the resulting gran will be larger, therefore penalizing the + * lighter, if otoh 'se' > 'curr' then the resulting gran will + * be smaller, again penalizing the lighter task. + * + * This is especially important for buddies when the leftmost + * task is higher priority than the buddy. */ - if (sched_feat(ASYM_GRAN)) { - /* - * By using 'se' instead of 'curr' we penalize light tasks, so - * they get preempted easier. That is, if 'se' < 'curr' then - * the resulting gran will be larger, therefore penalizing the - * lighter, if otoh 'se' > 'curr' then the resulting gran will - * be smaller, again penalizing the lighter task. - * - * This is especially important for buddies when the leftmost - * task is higher priority than the buddy. - */ - if (unlikely(se->load.weight != NICE_0_LOAD)) - gran = calc_delta_fair(gran, se); - } else { - if (unlikely(curr->load.weight != NICE_0_LOAD)) - gran = calc_delta_fair(gran, curr); - } + if (unlikely(se->load.weight != NICE_0_LOAD)) + gran = calc_delta_fair(gran, se); return gran; } @@ -1705,7 +1642,6 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_ struct task_struct *curr = rq->curr; struct sched_entity *se = &curr->se, *pse = &p->se; struct cfs_rq *cfs_rq = task_cfs_rq(curr); - int sync = wake_flags & WF_SYNC; int scale = cfs_rq->nr_running >= sched_nr_latency; if (unlikely(rt_prio(p->prio))) @@ -1738,14 +1674,6 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_ if (unlikely(curr->policy == SCHED_IDLE)) goto preempt; - if (sched_feat(WAKEUP_SYNC) && sync) - goto preempt; - - if (sched_feat(WAKEUP_OVERLAP) && - se->avg_overlap < sysctl_sched_migration_cost && - pse->avg_overlap < sysctl_sched_migration_cost) - goto preempt; - if (!sched_feat(WAKEUP_PREEMPT)) return; @@ -1844,13 +1772,13 @@ int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, * 3) are cache-hot on their current CPU. */ if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) { - schedstat_inc(p, se.nr_failed_migrations_affine); + schedstat_inc(p, se.statistics.nr_failed_migrations_affine); return 0; } *all_pinned = 0; if (task_running(rq, p)) { - schedstat_inc(p, se.nr_failed_migrations_running); + schedstat_inc(p, se.statistics.nr_failed_migrations_running); return 0; } @@ -1866,14 +1794,14 @@ int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, #ifdef CONFIG_SCHEDSTATS if (tsk_cache_hot) { schedstat_inc(sd, lb_hot_gained[idle]); - schedstat_inc(p, se.nr_forced_migrations); + schedstat_inc(p, se.statistics.nr_forced_migrations); } #endif return 1; } if (tsk_cache_hot) { - schedstat_inc(p, se.nr_failed_migrations_hot); + schedstat_inc(p, se.statistics.nr_failed_migrations_hot); return 0; } return 1; @@ -2311,7 +2239,7 @@ unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu) unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu) { - unsigned long weight = cpumask_weight(sched_domain_span(sd)); + unsigned long weight = sd->span_weight; unsigned long smt_gain = sd->smt_gain; smt_gain /= weight; @@ -2344,7 +2272,7 @@ unsigned long scale_rt_power(int cpu) static void update_cpu_power(struct sched_domain *sd, int cpu) { - unsigned long weight = cpumask_weight(sched_domain_span(sd)); + unsigned long weight = sd->span_weight; unsigned long power = SCHED_LOAD_SCALE; struct sched_group *sdg = sd->groups; @@ -2870,6 +2798,8 @@ static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle) return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); } +static int active_load_balance_cpu_stop(void *data); + /* * Check this_cpu to ensure it is balanced within domain. Attempt to move * tasks if there is an imbalance. @@ -2959,8 +2889,9 @@ redo: if (need_active_balance(sd, sd_idle, idle)) { raw_spin_lock_irqsave(&busiest->lock, flags); - /* don't kick the migration_thread, if the curr - * task on busiest cpu can't be moved to this_cpu + /* don't kick the active_load_balance_cpu_stop, + * if the curr task on busiest cpu can't be + * moved to this_cpu */ if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) { @@ -2970,14 +2901,22 @@ redo: goto out_one_pinned; } + /* + * ->active_balance synchronizes accesses to + * ->active_balance_work. Once set, it's cleared + * only after active load balance is finished. + */ if (!busiest->active_balance) { busiest->active_balance = 1; busiest->push_cpu = this_cpu; active_balance = 1; } raw_spin_unlock_irqrestore(&busiest->lock, flags); + if (active_balance) - wake_up_process(busiest->migration_thread); + stop_one_cpu_nowait(cpu_of(busiest), + active_load_balance_cpu_stop, busiest, + &busiest->active_balance_work); /* * We've kicked active balancing, reset the failure @@ -3084,24 +3023,29 @@ static void idle_balance(int this_cpu, struct rq *this_rq) } /* - * active_load_balance is run by migration threads. It pushes running tasks - * off the busiest CPU onto idle CPUs. It requires at least 1 task to be - * running on each physical CPU where possible, and avoids physical / - * logical imbalances. - * - * Called with busiest_rq locked. + * active_load_balance_cpu_stop is run by cpu stopper. It pushes + * running tasks off the busiest CPU onto idle CPUs. It requires at + * least 1 task to be running on each physical CPU where possible, and + * avoids physical / logical imbalances. */ -static void active_load_balance(struct rq *busiest_rq, int busiest_cpu) +static int active_load_balance_cpu_stop(void *data) { + struct rq *busiest_rq = data; + int busiest_cpu = cpu_of(busiest_rq); int target_cpu = busiest_rq->push_cpu; + struct rq *target_rq = cpu_rq(target_cpu); struct sched_domain *sd; - struct rq *target_rq; + + raw_spin_lock_irq(&busiest_rq->lock); + + /* make sure the requested cpu hasn't gone down in the meantime */ + if (unlikely(busiest_cpu != smp_processor_id() || + !busiest_rq->active_balance)) + goto out_unlock; /* Is there any task to move? */ if (busiest_rq->nr_running <= 1) - return; - - target_rq = cpu_rq(target_cpu); + goto out_unlock; /* * This condition is "impossible", if it occurs @@ -3112,8 +3056,6 @@ static void active_load_balance(struct rq *busiest_rq, int busiest_cpu) /* move a task from busiest_rq to target_rq */ double_lock_balance(busiest_rq, target_rq); - update_rq_clock(busiest_rq); - update_rq_clock(target_rq); /* Search for an sd spanning us and the target CPU. */ for_each_domain(target_cpu, sd) { @@ -3132,6 +3074,10 @@ static void active_load_balance(struct rq *busiest_rq, int busiest_cpu) schedstat_inc(sd, alb_failed); } double_unlock_balance(busiest_rq, target_rq); +out_unlock: + busiest_rq->active_balance = 0; + raw_spin_unlock_irq(&busiest_rq->lock); + return 0; } #ifdef CONFIG_NO_HZ diff --git a/kernel/sched_features.h b/kernel/sched_features.h index d5059fd761d9..83c66e8ad3ee 100644 --- a/kernel/sched_features.h +++ b/kernel/sched_features.h @@ -1,11 +1,4 @@ /* - * Disregards a certain amount of sleep time (sched_latency_ns) and - * considers the task to be running during that period. This gives it - * a service deficit on wakeup, allowing it to run sooner. - */ -SCHED_FEAT(FAIR_SLEEPERS, 1) - -/* * Only give sleepers 50% of their service deficit. This allows * them to run sooner, but does not allow tons of sleepers to * rip the spread apart. @@ -13,13 +6,6 @@ SCHED_FEAT(FAIR_SLEEPERS, 1) SCHED_FEAT(GENTLE_FAIR_SLEEPERS, 1) /* - * By not normalizing the sleep time, heavy tasks get an effective - * longer period, and lighter task an effective shorter period they - * are considered running. - */ -SCHED_FEAT(NORMALIZED_SLEEPER, 0) - -/* * Place new tasks ahead so that they do not starve already running * tasks */ @@ -31,37 +17,6 @@ SCHED_FEAT(START_DEBIT, 1) SCHED_FEAT(WAKEUP_PREEMPT, 1) /* - * Compute wakeup_gran based on task behaviour, clipped to - * [0, sched_wakeup_gran_ns] - */ -SCHED_FEAT(ADAPTIVE_GRAN, 1) - -/* - * When converting the wakeup granularity to virtual time, do it such - * that heavier tasks preempting a lighter task have an edge. - */ -SCHED_FEAT(ASYM_GRAN, 1) - -/* - * Always wakeup-preempt SYNC wakeups, see SYNC_WAKEUPS. - */ -SCHED_FEAT(WAKEUP_SYNC, 0) - -/* - * Wakeup preempt based on task behaviour. Tasks that do not overlap - * don't get preempted. - */ -SCHED_FEAT(WAKEUP_OVERLAP, 0) - -/* - * Use the SYNC wakeup hint, pipes and the likes use this to indicate - * the remote end is likely to consume the data we just wrote, and - * therefore has cache benefit from being placed on the same cpu, see - * also AFFINE_WAKEUPS. - */ -SCHED_FEAT(SYNC_WAKEUPS, 1) - -/* * Based on load and program behaviour, see if it makes sense to place * a newly woken task on the same cpu as the task that woke it -- * improve cache locality. Typically used with SYNC wakeups as @@ -70,16 +25,6 @@ SCHED_FEAT(SYNC_WAKEUPS, 1) SCHED_FEAT(AFFINE_WAKEUPS, 1) /* - * Weaken SYNC hint based on overlap - */ -SCHED_FEAT(SYNC_LESS, 1) - -/* - * Add SYNC hint based on overlap - */ -SCHED_FEAT(SYNC_MORE, 0) - -/* * Prefer to schedule the task we woke last (assuming it failed * wakeup-preemption), since its likely going to consume data we * touched, increases cache locality. diff --git a/kernel/sched_idletask.c b/kernel/sched_idletask.c index a8a6d8a50947..9fa0f402c87c 100644 --- a/kernel/sched_idletask.c +++ b/kernel/sched_idletask.c @@ -6,7 +6,8 @@ */ #ifdef CONFIG_SMP -static int select_task_rq_idle(struct task_struct *p, int sd_flag, int flags) +static int +select_task_rq_idle(struct rq *rq, struct task_struct *p, int sd_flag, int flags) { return task_cpu(p); /* IDLE tasks as never migrated */ } @@ -22,8 +23,7 @@ static void check_preempt_curr_idle(struct rq *rq, struct task_struct *p, int fl static struct task_struct *pick_next_task_idle(struct rq *rq) { schedstat_inc(rq, sched_goidle); - /* adjust the active tasks as we might go into a long sleep */ - calc_load_account_active(rq); + calc_load_account_idle(rq); return rq->idle; } @@ -32,7 +32,7 @@ static struct task_struct *pick_next_task_idle(struct rq *rq) * message if some code attempts to do it: */ static void -dequeue_task_idle(struct rq *rq, struct task_struct *p, int sleep) +dequeue_task_idle(struct rq *rq, struct task_struct *p, int flags) { raw_spin_unlock_irq(&rq->lock); printk(KERN_ERR "bad: scheduling from the idle thread!\n"); diff --git a/kernel/sched_rt.c b/kernel/sched_rt.c index b5b920ae2ea7..8afb953e31c6 100644 --- a/kernel/sched_rt.c +++ b/kernel/sched_rt.c @@ -613,7 +613,7 @@ static void update_curr_rt(struct rq *rq) if (unlikely((s64)delta_exec < 0)) delta_exec = 0; - schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec)); + schedstat_set(curr->se.statistics.exec_max, max(curr->se.statistics.exec_max, delta_exec)); curr->se.sum_exec_runtime += delta_exec; account_group_exec_runtime(curr, delta_exec); @@ -888,20 +888,20 @@ static void dequeue_rt_entity(struct sched_rt_entity *rt_se) * Adding/removing a task to/from a priority array: */ static void -enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup, bool head) +enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags) { struct sched_rt_entity *rt_se = &p->rt; - if (wakeup) + if (flags & ENQUEUE_WAKEUP) rt_se->timeout = 0; - enqueue_rt_entity(rt_se, head); + enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD); if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1) enqueue_pushable_task(rq, p); } -static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep) +static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags) { struct sched_rt_entity *rt_se = &p->rt; @@ -948,10 +948,9 @@ static void yield_task_rt(struct rq *rq) #ifdef CONFIG_SMP static int find_lowest_rq(struct task_struct *task); -static int select_task_rq_rt(struct task_struct *p, int sd_flag, int flags) +static int +select_task_rq_rt(struct rq *rq, struct task_struct *p, int sd_flag, int flags) { - struct rq *rq = task_rq(p); - if (sd_flag != SD_BALANCE_WAKE) return smp_processor_id(); diff --git a/kernel/stop_machine.c b/kernel/stop_machine.c index 9bb9fb1bd79c..ef51d1fcf5e6 100644 --- a/kernel/stop_machine.c +++ b/kernel/stop_machine.c @@ -1,17 +1,381 @@ -/* Copyright 2008, 2005 Rusty Russell rusty@rustcorp.com.au IBM Corporation. - * GPL v2 and any later version. +/* + * kernel/stop_machine.c + * + * Copyright (C) 2008, 2005 IBM Corporation. + * Copyright (C) 2008, 2005 Rusty Russell rusty@rustcorp.com.au + * Copyright (C) 2010 SUSE Linux Products GmbH + * Copyright (C) 2010 Tejun Heo <tj@kernel.org> + * + * This file is released under the GPLv2 and any later version. */ +#include <linux/completion.h> #include <linux/cpu.h> -#include <linux/err.h> +#include <linux/init.h> #include <linux/kthread.h> #include <linux/module.h> +#include <linux/percpu.h> #include <linux/sched.h> #include <linux/stop_machine.h> -#include <linux/syscalls.h> #include <linux/interrupt.h> +#include <linux/kallsyms.h> #include <asm/atomic.h> -#include <asm/uaccess.h> + +/* + * Structure to determine completion condition and record errors. May + * be shared by works on different cpus. + */ +struct cpu_stop_done { + atomic_t nr_todo; /* nr left to execute */ + bool executed; /* actually executed? */ + int ret; /* collected return value */ + struct completion completion; /* fired if nr_todo reaches 0 */ +}; + +/* the actual stopper, one per every possible cpu, enabled on online cpus */ +struct cpu_stopper { + spinlock_t lock; + struct list_head works; /* list of pending works */ + struct task_struct *thread; /* stopper thread */ + bool enabled; /* is this stopper enabled? */ +}; + +static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper); + +static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo) +{ + memset(done, 0, sizeof(*done)); + atomic_set(&done->nr_todo, nr_todo); + init_completion(&done->completion); +} + +/* signal completion unless @done is NULL */ +static void cpu_stop_signal_done(struct cpu_stop_done *done, bool executed) +{ + if (done) { + if (executed) + done->executed = true; + if (atomic_dec_and_test(&done->nr_todo)) + complete(&done->completion); + } +} + +/* queue @work to @stopper. if offline, @work is completed immediately */ +static void cpu_stop_queue_work(struct cpu_stopper *stopper, + struct cpu_stop_work *work) +{ + unsigned long flags; + + spin_lock_irqsave(&stopper->lock, flags); + + if (stopper->enabled) { + list_add_tail(&work->list, &stopper->works); + wake_up_process(stopper->thread); + } else + cpu_stop_signal_done(work->done, false); + + spin_unlock_irqrestore(&stopper->lock, flags); +} + +/** + * stop_one_cpu - stop a cpu + * @cpu: cpu to stop + * @fn: function to execute + * @arg: argument to @fn + * + * Execute @fn(@arg) on @cpu. @fn is run in a process context with + * the highest priority preempting any task on the cpu and + * monopolizing it. This function returns after the execution is + * complete. + * + * This function doesn't guarantee @cpu stays online till @fn + * completes. If @cpu goes down in the middle, execution may happen + * partially or fully on different cpus. @fn should either be ready + * for that or the caller should ensure that @cpu stays online until + * this function completes. + * + * CONTEXT: + * Might sleep. + * + * RETURNS: + * -ENOENT if @fn(@arg) was not executed because @cpu was offline; + * otherwise, the return value of @fn. + */ +int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg) +{ + struct cpu_stop_done done; + struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done }; + + cpu_stop_init_done(&done, 1); + cpu_stop_queue_work(&per_cpu(cpu_stopper, cpu), &work); + wait_for_completion(&done.completion); + return done.executed ? done.ret : -ENOENT; +} + +/** + * stop_one_cpu_nowait - stop a cpu but don't wait for completion + * @cpu: cpu to stop + * @fn: function to execute + * @arg: argument to @fn + * + * Similar to stop_one_cpu() but doesn't wait for completion. The + * caller is responsible for ensuring @work_buf is currently unused + * and will remain untouched until stopper starts executing @fn. + * + * CONTEXT: + * Don't care. + */ +void stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg, + struct cpu_stop_work *work_buf) +{ + *work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, }; + cpu_stop_queue_work(&per_cpu(cpu_stopper, cpu), work_buf); +} + +/* static data for stop_cpus */ +static DEFINE_MUTEX(stop_cpus_mutex); +static DEFINE_PER_CPU(struct cpu_stop_work, stop_cpus_work); + +int __stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg) +{ + struct cpu_stop_work *work; + struct cpu_stop_done done; + unsigned int cpu; + + /* initialize works and done */ + for_each_cpu(cpu, cpumask) { + work = &per_cpu(stop_cpus_work, cpu); + work->fn = fn; + work->arg = arg; + work->done = &done; + } + cpu_stop_init_done(&done, cpumask_weight(cpumask)); + + /* + * Disable preemption while queueing to avoid getting + * preempted by a stopper which might wait for other stoppers + * to enter @fn which can lead to deadlock. + */ + preempt_disable(); + for_each_cpu(cpu, cpumask) + cpu_stop_queue_work(&per_cpu(cpu_stopper, cpu), + &per_cpu(stop_cpus_work, cpu)); + preempt_enable(); + + wait_for_completion(&done.completion); + return done.executed ? done.ret : -ENOENT; +} + +/** + * stop_cpus - stop multiple cpus + * @cpumask: cpus to stop + * @fn: function to execute + * @arg: argument to @fn + * + * Execute @fn(@arg) on online cpus in @cpumask. On each target cpu, + * @fn is run in a process context with the highest priority + * preempting any task on the cpu and monopolizing it. This function + * returns after all executions are complete. + * + * This function doesn't guarantee the cpus in @cpumask stay online + * till @fn completes. If some cpus go down in the middle, execution + * on the cpu may happen partially or fully on different cpus. @fn + * should either be ready for that or the caller should ensure that + * the cpus stay online until this function completes. + * + * All stop_cpus() calls are serialized making it safe for @fn to wait + * for all cpus to start executing it. + * + * CONTEXT: + * Might sleep. + * + * RETURNS: + * -ENOENT if @fn(@arg) was not executed at all because all cpus in + * @cpumask were offline; otherwise, 0 if all executions of @fn + * returned 0, any non zero return value if any returned non zero. + */ +int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg) +{ + int ret; + + /* static works are used, process one request at a time */ + mutex_lock(&stop_cpus_mutex); + ret = __stop_cpus(cpumask, fn, arg); + mutex_unlock(&stop_cpus_mutex); + return ret; +} + +/** + * try_stop_cpus - try to stop multiple cpus + * @cpumask: cpus to stop + * @fn: function to execute + * @arg: argument to @fn + * + * Identical to stop_cpus() except that it fails with -EAGAIN if + * someone else is already using the facility. + * + * CONTEXT: + * Might sleep. + * + * RETURNS: + * -EAGAIN if someone else is already stopping cpus, -ENOENT if + * @fn(@arg) was not executed at all because all cpus in @cpumask were + * offline; otherwise, 0 if all executions of @fn returned 0, any non + * zero return value if any returned non zero. + */ +int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg) +{ + int ret; + + /* static works are used, process one request at a time */ + if (!mutex_trylock(&stop_cpus_mutex)) + return -EAGAIN; + ret = __stop_cpus(cpumask, fn, arg); + mutex_unlock(&stop_cpus_mutex); + return ret; +} + +static int cpu_stopper_thread(void *data) +{ + struct cpu_stopper *stopper = data; + struct cpu_stop_work *work; + int ret; + +repeat: + set_current_state(TASK_INTERRUPTIBLE); /* mb paired w/ kthread_stop */ + + if (kthread_should_stop()) { + __set_current_state(TASK_RUNNING); + return 0; + } + + work = NULL; + spin_lock_irq(&stopper->lock); + if (!list_empty(&stopper->works)) { + work = list_first_entry(&stopper->works, + struct cpu_stop_work, list); + list_del_init(&work->list); + } + spin_unlock_irq(&stopper->lock); + + if (work) { + cpu_stop_fn_t fn = work->fn; + void *arg = work->arg; + struct cpu_stop_done *done = work->done; + char ksym_buf[KSYM_NAME_LEN]; + + __set_current_state(TASK_RUNNING); + + /* cpu stop callbacks are not allowed to sleep */ + preempt_disable(); + + ret = fn(arg); + if (ret) + done->ret = ret; + + /* restore preemption and check it's still balanced */ + preempt_enable(); + WARN_ONCE(preempt_count(), + "cpu_stop: %s(%p) leaked preempt count\n", + kallsyms_lookup((unsigned long)fn, NULL, NULL, NULL, + ksym_buf), arg); + + cpu_stop_signal_done(done, true); + } else + schedule(); + + goto repeat; +} + +/* manage stopper for a cpu, mostly lifted from sched migration thread mgmt */ +static int __cpuinit cpu_stop_cpu_callback(struct notifier_block *nfb, + unsigned long action, void *hcpu) +{ + struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; + unsigned int cpu = (unsigned long)hcpu; + struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); + struct cpu_stop_work *work; + struct task_struct *p; + + switch (action & ~CPU_TASKS_FROZEN) { + case CPU_UP_PREPARE: + BUG_ON(stopper->thread || stopper->enabled || + !list_empty(&stopper->works)); + p = kthread_create(cpu_stopper_thread, stopper, "migration/%d", + cpu); + if (IS_ERR(p)) + return NOTIFY_BAD; + sched_setscheduler_nocheck(p, SCHED_FIFO, ¶m); + get_task_struct(p); + stopper->thread = p; + break; + + case CPU_ONLINE: + kthread_bind(stopper->thread, cpu); + /* strictly unnecessary, as first user will wake it */ + wake_up_process(stopper->thread); + /* mark enabled */ + spin_lock_irq(&stopper->lock); + stopper->enabled = true; + spin_unlock_irq(&stopper->lock); + break; + +#ifdef CONFIG_HOTPLUG_CPU + case CPU_UP_CANCELED: + case CPU_DEAD: + /* kill the stopper */ + kthread_stop(stopper->thread); + /* drain remaining works */ + spin_lock_irq(&stopper->lock); + list_for_each_entry(work, &stopper->works, list) + cpu_stop_signal_done(work->done, false); + stopper->enabled = false; + spin_unlock_irq(&stopper->lock); + /* release the stopper */ + put_task_struct(stopper->thread); + stopper->thread = NULL; + break; +#endif + } + + return NOTIFY_OK; +} + +/* + * Give it a higher priority so that cpu stopper is available to other + * cpu notifiers. It currently shares the same priority as sched + * migration_notifier. + */ +static struct notifier_block __cpuinitdata cpu_stop_cpu_notifier = { + .notifier_call = cpu_stop_cpu_callback, + .priority = 10, +}; + +static int __init cpu_stop_init(void) +{ + void *bcpu = (void *)(long)smp_processor_id(); + unsigned int cpu; + int err; + + for_each_possible_cpu(cpu) { + struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); + + spin_lock_init(&stopper->lock); + INIT_LIST_HEAD(&stopper->works); + } + + /* start one for the boot cpu */ + err = cpu_stop_cpu_callback(&cpu_stop_cpu_notifier, CPU_UP_PREPARE, + bcpu); + BUG_ON(err == NOTIFY_BAD); + cpu_stop_cpu_callback(&cpu_stop_cpu_notifier, CPU_ONLINE, bcpu); + register_cpu_notifier(&cpu_stop_cpu_notifier); + + return 0; +} +early_initcall(cpu_stop_init); + +#ifdef CONFIG_STOP_MACHINE /* This controls the threads on each CPU. */ enum stopmachine_state { @@ -26,174 +390,94 @@ enum stopmachine_state { /* Exit */ STOPMACHINE_EXIT, }; -static enum stopmachine_state state; struct stop_machine_data { - int (*fn)(void *); - void *data; - int fnret; + int (*fn)(void *); + void *data; + /* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */ + unsigned int num_threads; + const struct cpumask *active_cpus; + + enum stopmachine_state state; + atomic_t thread_ack; }; -/* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */ -static unsigned int num_threads; -static atomic_t thread_ack; -static DEFINE_MUTEX(lock); -/* setup_lock protects refcount, stop_machine_wq and stop_machine_work. */ -static DEFINE_MUTEX(setup_lock); -/* Users of stop_machine. */ -static int refcount; -static struct workqueue_struct *stop_machine_wq; -static struct stop_machine_data active, idle; -static const struct cpumask *active_cpus; -static void __percpu *stop_machine_work; - -static void set_state(enum stopmachine_state newstate) +static void set_state(struct stop_machine_data *smdata, + enum stopmachine_state newstate) { /* Reset ack counter. */ - atomic_set(&thread_ack, num_threads); + atomic_set(&smdata->thread_ack, smdata->num_threads); smp_wmb(); - state = newstate; + smdata->state = newstate; } /* Last one to ack a state moves to the next state. */ -static void ack_state(void) +static void ack_state(struct stop_machine_data *smdata) { - if (atomic_dec_and_test(&thread_ack)) - set_state(state + 1); + if (atomic_dec_and_test(&smdata->thread_ack)) + set_state(smdata, smdata->state + 1); } -/* This is the actual function which stops the CPU. It runs - * in the context of a dedicated stopmachine workqueue. */ -static void stop_cpu(struct work_struct *unused) +/* This is the cpu_stop function which stops the CPU. */ +static int stop_machine_cpu_stop(void *data) { + struct stop_machine_data *smdata = data; enum stopmachine_state curstate = STOPMACHINE_NONE; - struct stop_machine_data *smdata = &idle; - int cpu = smp_processor_id(); - int err; + int cpu = smp_processor_id(), err = 0; + bool is_active; + + if (!smdata->active_cpus) + is_active = cpu == cpumask_first(cpu_online_mask); + else + is_active = cpumask_test_cpu(cpu, smdata->active_cpus); - if (!active_cpus) { - if (cpu == cpumask_first(cpu_online_mask)) - smdata = &active; - } else { - if (cpumask_test_cpu(cpu, active_cpus)) - smdata = &active; - } /* Simple state machine */ do { /* Chill out and ensure we re-read stopmachine_state. */ cpu_relax(); - if (state != curstate) { - curstate = state; + if (smdata->state != curstate) { + curstate = smdata->state; switch (curstate) { case STOPMACHINE_DISABLE_IRQ: local_irq_disable(); hard_irq_disable(); break; case STOPMACHINE_RUN: - /* On multiple CPUs only a single error code - * is needed to tell that something failed. */ - err = smdata->fn(smdata->data); - if (err) - smdata->fnret = err; + if (is_active) + err = smdata->fn(smdata->data); break; default: break; } - ack_state(); + ack_state(smdata); } } while (curstate != STOPMACHINE_EXIT); local_irq_enable(); + return err; } -/* Callback for CPUs which aren't supposed to do anything. */ -static int chill(void *unused) -{ - return 0; -} - -int stop_machine_create(void) -{ - mutex_lock(&setup_lock); - if (refcount) - goto done; - stop_machine_wq = create_rt_workqueue("kstop"); - if (!stop_machine_wq) - goto err_out; - stop_machine_work = alloc_percpu(struct work_struct); - if (!stop_machine_work) - goto err_out; -done: - refcount++; - mutex_unlock(&setup_lock); - return 0; - -err_out: - if (stop_machine_wq) - destroy_workqueue(stop_machine_wq); - mutex_unlock(&setup_lock); - return -ENOMEM; -} -EXPORT_SYMBOL_GPL(stop_machine_create); - -void stop_machine_destroy(void) -{ - mutex_lock(&setup_lock); - refcount--; - if (refcount) - goto done; - destroy_workqueue(stop_machine_wq); - free_percpu(stop_machine_work); -done: - mutex_unlock(&setup_lock); -} -EXPORT_SYMBOL_GPL(stop_machine_destroy); - int __stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus) { - struct work_struct *sm_work; - int i, ret; - - /* Set up initial state. */ - mutex_lock(&lock); - num_threads = num_online_cpus(); - active_cpus = cpus; - active.fn = fn; - active.data = data; - active.fnret = 0; - idle.fn = chill; - idle.data = NULL; - - set_state(STOPMACHINE_PREPARE); - - /* Schedule the stop_cpu work on all cpus: hold this CPU so one - * doesn't hit this CPU until we're ready. */ - get_cpu(); - for_each_online_cpu(i) { - sm_work = per_cpu_ptr(stop_machine_work, i); - INIT_WORK(sm_work, stop_cpu); - queue_work_on(i, stop_machine_wq, sm_work); - } - /* This will release the thread on our CPU. */ - put_cpu(); - flush_workqueue(stop_machine_wq); - ret = active.fnret; - mutex_unlock(&lock); - return ret; + struct stop_machine_data smdata = { .fn = fn, .data = data, + .num_threads = num_online_cpus(), + .active_cpus = cpus }; + + /* Set the initial state and stop all online cpus. */ + set_state(&smdata, STOPMACHINE_PREPARE); + return stop_cpus(cpu_online_mask, stop_machine_cpu_stop, &smdata); } int stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus) { int ret; - ret = stop_machine_create(); - if (ret) - return ret; /* No CPUs can come up or down during this. */ get_online_cpus(); ret = __stop_machine(fn, data, cpus); put_online_cpus(); - stop_machine_destroy(); return ret; } EXPORT_SYMBOL_GPL(stop_machine); + +#endif /* CONFIG_STOP_MACHINE */ diff --git a/kernel/sys.c b/kernel/sys.c index 6d1a7e0f9d5b..7cb426a58965 100644 --- a/kernel/sys.c +++ b/kernel/sys.c @@ -1118,7 +1118,7 @@ DECLARE_RWSEM(uts_sem); #ifdef COMPAT_UTS_MACHINE #define override_architecture(name) \ - (current->personality == PER_LINUX32 && \ + (personality(current->personality) == PER_LINUX32 && \ copy_to_user(name->machine, COMPAT_UTS_MACHINE, \ sizeof(COMPAT_UTS_MACHINE))) #else diff --git a/kernel/time/tick-sched.c b/kernel/time/tick-sched.c index f992762d7f51..1d7b9bc1c034 100644 --- a/kernel/time/tick-sched.c +++ b/kernel/time/tick-sched.c @@ -150,14 +150,32 @@ static void tick_nohz_update_jiffies(ktime_t now) touch_softlockup_watchdog(); } +/* + * Updates the per cpu time idle statistics counters + */ +static void +update_ts_time_stats(struct tick_sched *ts, ktime_t now, u64 *last_update_time) +{ + ktime_t delta; + + if (ts->idle_active) { + delta = ktime_sub(now, ts->idle_entrytime); + ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); + if (nr_iowait_cpu() > 0) + ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta); + ts->idle_entrytime = now; + } + + if (last_update_time) + *last_update_time = ktime_to_us(now); + +} + static void tick_nohz_stop_idle(int cpu, ktime_t now) { struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); - ktime_t delta; - delta = ktime_sub(now, ts->idle_entrytime); - ts->idle_lastupdate = now; - ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); + update_ts_time_stats(ts, now, NULL); ts->idle_active = 0; sched_clock_idle_wakeup_event(0); @@ -165,20 +183,32 @@ static void tick_nohz_stop_idle(int cpu, ktime_t now) static ktime_t tick_nohz_start_idle(struct tick_sched *ts) { - ktime_t now, delta; + ktime_t now; now = ktime_get(); - if (ts->idle_active) { - delta = ktime_sub(now, ts->idle_entrytime); - ts->idle_lastupdate = now; - ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); - } + + update_ts_time_stats(ts, now, NULL); + ts->idle_entrytime = now; ts->idle_active = 1; sched_clock_idle_sleep_event(); return now; } +/** + * get_cpu_idle_time_us - get the total idle time of a cpu + * @cpu: CPU number to query + * @last_update_time: variable to store update time in + * + * Return the cummulative idle time (since boot) for a given + * CPU, in microseconds. The idle time returned includes + * the iowait time (unlike what "top" and co report). + * + * This time is measured via accounting rather than sampling, + * and is as accurate as ktime_get() is. + * + * This function returns -1 if NOHZ is not enabled. + */ u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) { struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); @@ -186,15 +216,38 @@ u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) if (!tick_nohz_enabled) return -1; - if (ts->idle_active) - *last_update_time = ktime_to_us(ts->idle_lastupdate); - else - *last_update_time = ktime_to_us(ktime_get()); + update_ts_time_stats(ts, ktime_get(), last_update_time); return ktime_to_us(ts->idle_sleeptime); } EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); +/* + * get_cpu_iowait_time_us - get the total iowait time of a cpu + * @cpu: CPU number to query + * @last_update_time: variable to store update time in + * + * Return the cummulative iowait time (since boot) for a given + * CPU, in microseconds. + * + * This time is measured via accounting rather than sampling, + * and is as accurate as ktime_get() is. + * + * This function returns -1 if NOHZ is not enabled. + */ +u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time) +{ + struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); + + if (!tick_nohz_enabled) + return -1; + + update_ts_time_stats(ts, ktime_get(), last_update_time); + + return ktime_to_us(ts->iowait_sleeptime); +} +EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us); + /** * tick_nohz_stop_sched_tick - stop the idle tick from the idle task * @@ -262,6 +315,9 @@ void tick_nohz_stop_sched_tick(int inidle) goto end; } + if (nohz_ratelimit(cpu)) + goto end; + ts->idle_calls++; /* Read jiffies and the time when jiffies were updated last */ do { diff --git a/kernel/time/timer_list.c b/kernel/time/timer_list.c index 1a4a7dd78777..ab8f5e33fa92 100644 --- a/kernel/time/timer_list.c +++ b/kernel/time/timer_list.c @@ -176,6 +176,7 @@ static void print_cpu(struct seq_file *m, int cpu, u64 now) P_ns(idle_waketime); P_ns(idle_exittime); P_ns(idle_sleeptime); + P_ns(iowait_sleeptime); P(last_jiffies); P(next_jiffies); P_ns(idle_expires); diff --git a/kernel/trace/ftrace.c b/kernel/trace/ftrace.c index 8c9c2934c45f..32837e19e3bd 100644 --- a/kernel/trace/ftrace.c +++ b/kernel/trace/ftrace.c @@ -3234,8 +3234,7 @@ free: } static void -ftrace_graph_probe_sched_switch(struct rq *__rq, struct task_struct *prev, - struct task_struct *next) +ftrace_graph_probe_sched_switch(struct task_struct *prev, struct task_struct *next) { unsigned long long timestamp; int index; diff --git a/kernel/trace/trace_sched_switch.c b/kernel/trace/trace_sched_switch.c index 5fca0f51fde4..a55fccfede5d 100644 --- a/kernel/trace/trace_sched_switch.c +++ b/kernel/trace/trace_sched_switch.c @@ -50,8 +50,7 @@ tracing_sched_switch_trace(struct trace_array *tr, } static void -probe_sched_switch(struct rq *__rq, struct task_struct *prev, - struct task_struct *next) +probe_sched_switch(struct task_struct *prev, struct task_struct *next) { struct trace_array_cpu *data; unsigned long flags; @@ -109,7 +108,7 @@ tracing_sched_wakeup_trace(struct trace_array *tr, } static void -probe_sched_wakeup(struct rq *__rq, struct task_struct *wakee, int success) +probe_sched_wakeup(struct task_struct *wakee, int success) { struct trace_array_cpu *data; unsigned long flags; diff --git a/kernel/trace/trace_sched_wakeup.c b/kernel/trace/trace_sched_wakeup.c index 0271742abb8d..8052446ceeaa 100644 --- a/kernel/trace/trace_sched_wakeup.c +++ b/kernel/trace/trace_sched_wakeup.c @@ -107,8 +107,7 @@ static void probe_wakeup_migrate_task(struct task_struct *task, int cpu) } static void notrace -probe_wakeup_sched_switch(struct rq *rq, struct task_struct *prev, - struct task_struct *next) +probe_wakeup_sched_switch(struct task_struct *prev, struct task_struct *next) { struct trace_array_cpu *data; cycle_t T0, T1, delta; @@ -200,7 +199,7 @@ static void wakeup_reset(struct trace_array *tr) } static void -probe_wakeup(struct rq *rq, struct task_struct *p, int success) +probe_wakeup(struct task_struct *p, int success) { struct trace_array_cpu *data; int cpu = smp_processor_id(); diff --git a/kernel/user.c b/kernel/user.c index 766467b3bcb7..7e72614b736d 100644 --- a/kernel/user.c +++ b/kernel/user.c @@ -16,7 +16,6 @@ #include <linux/interrupt.h> #include <linux/module.h> #include <linux/user_namespace.h> -#include "cred-internals.h" struct user_namespace init_user_ns = { .kref = { @@ -137,9 +136,6 @@ struct user_struct *alloc_uid(struct user_namespace *ns, uid_t uid) struct hlist_head *hashent = uidhashentry(ns, uid); struct user_struct *up, *new; - /* Make uid_hash_find() + uids_user_create() + uid_hash_insert() - * atomic. - */ spin_lock_irq(&uidhash_lock); up = uid_hash_find(uid, hashent); spin_unlock_irq(&uidhash_lock); @@ -161,11 +157,6 @@ struct user_struct *alloc_uid(struct user_namespace *ns, uid_t uid) spin_lock_irq(&uidhash_lock); up = uid_hash_find(uid, hashent); if (up) { - /* This case is not possible when CONFIG_USER_SCHED - * is defined, since we serialize alloc_uid() using - * uids_mutex. Hence no need to call - * sched_destroy_user() or remove_user_sysfs_dir(). - */ key_put(new->uid_keyring); key_put(new->session_keyring); kmem_cache_free(uid_cachep, new); @@ -178,8 +169,6 @@ struct user_struct *alloc_uid(struct user_namespace *ns, uid_t uid) return up; - put_user_ns(new->user_ns); - kmem_cache_free(uid_cachep, new); out_unlock: return NULL; } |