| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Resolve issues with !CONFIG_BPF_SYSCALL and !STREAM_PARSER
net/core/filter.c: In function ‘do_sk_redirect_map’:
net/core/filter.c:1881:3: error: implicit declaration of function ‘__sock_map_lookup_elem’ [-Werror=implicit-function-declaration]
sk = __sock_map_lookup_elem(ri->map, ri->ifindex);
^
net/core/filter.c:1881:6: warning: assignment makes pointer from integer without a cast [enabled by default]
sk = __sock_map_lookup_elem(ri->map, ri->ifindex);
Fixes: 174a79ff9515 ("bpf: sockmap with sk redirect support")
Reported-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Recently we added a new map type called dev map used to forward XDP
packets between ports (6093ec2dc313). This patches introduces a
similar notion for sockets.
A sockmap allows users to add participating sockets to a map. When
sockets are added to the map enough context is stored with the
map entry to use the entry with a new helper
bpf_sk_redirect_map(map, key, flags)
This helper (analogous to bpf_redirect_map in XDP) is given the map
and an entry in the map. When called from a sockmap program, discussed
below, the skb will be sent on the socket using skb_send_sock().
With the above we need a bpf program to call the helper from that will
then implement the send logic. The initial site implemented in this
series is the recv_sock hook. For this to work we implemented a map
attach command to add attributes to a map. In sockmap we add two
programs a parse program and a verdict program. The parse program
uses strparser to build messages and pass them to the verdict program.
The parse programs use the normal strparser semantics. The verdict
program is of type SK_SKB.
The verdict program returns a verdict SK_DROP, or SK_REDIRECT for
now. Additional actions may be added later. When SK_REDIRECT is
returned, expected when bpf program uses bpf_sk_redirect_map(), the
sockmap logic will consult per cpu variables set by the helper routine
and pull the sock entry out of the sock map. This pattern follows the
existing redirect logic in cls and xdp programs.
This gives the flow,
recv_sock -> str_parser (parse_prog) -> verdict_prog -> skb_send_sock
\
-> kfree_skb
As an example use case a message based load balancer may use specific
logic in the verdict program to select the sock to send on.
Sample programs are provided in future patches that hopefully illustrate
the user interfaces. Also selftests are in follow-on patches.
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Unifies adjusted and unadjusted register value types (e.g. FRAME_POINTER is
now just a PTR_TO_STACK with zero offset).
Tracks value alignment by means of tracking known & unknown bits. This
also replaces the 'reg->imm' (leading zero bits) calculations for (what
were) UNKNOWN_VALUEs.
If pointer leaks are allowed, and adjust_ptr_min_max_vals returns -EACCES,
treat the pointer as an unknown scalar and try again, because we might be
able to conclude something about the result (e.g. pointer & 0x40 is either
0 or 0x40).
Verifier hooks in the netronome/nfp driver were changed to match the new
data structures.
Signed-off-by: Edward Cree <ecree@solarflare.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Device map (devmap) is a BPF map, primarily useful for networking
applications, that uses a key to lookup a reference to a netdevice.
The map provides a clean way for BPF programs to build virtual port
to physical port maps. Additionally, it provides a scoping function
for the redirect action itself allowing multiple optimizations. Future
patches will leverage the map to provide batching at the XDP layer.
Another optimization/feature, that is not yet implemented, would be
to support multiple netdevices per key to support efficient multicast
and broadcast support.
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch adds a few helper funcs to enable map-in-map
support (i.e. outer_map->inner_map). The first outer_map type
BPF_MAP_TYPE_ARRAY_OF_MAPS is also added in this patch.
The next patch will introduce a hash of maps type.
Any bpf map type can be acted as an inner_map. The exception
is BPF_MAP_TYPE_PROG_ARRAY because the extra level of
indirection makes it harder to verify the owner_prog_type
and owner_jited.
Multi-level map-in-map is not supported (i.e. map->map is ok
but not map->map->map).
When adding an inner_map to an outer_map, it currently checks the
map_type, key_size, value_size, map_flags, max_entries and ops.
The verifier also uses those map's properties to do static analysis.
map_flags is needed because we need to ensure BPF_PROG_TYPE_PERF_EVENT
is using a preallocated hashtab for the inner_hash also. ops and
max_entries are needed to generate inlined map-lookup instructions.
For simplicity reason, a simple '==' test is used for both map_flags
and max_entries. The equality of ops is implied by the equality of
map_type.
During outer_map creation time, an inner_map_fd is needed to create an
outer_map. However, the inner_map_fd's life time does not depend on the
outer_map. The inner_map_fd is merely used to initialize
the inner_map_meta of the outer_map.
Also, for the outer_map:
* It allows element update and delete from syscall
* It allows element lookup from bpf_prog
The above is similar to the current fd_array pattern.
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This trie implements a longest prefix match algorithm that can be used
to match IP addresses to a stored set of ranges.
Internally, data is stored in an unbalanced trie of nodes that has a
maximum height of n, where n is the prefixlen the trie was created
with.
Tries may be created with prefix lengths that are multiples of 8, in
the range from 8 to 2048. The key used for lookup and update operations
is a struct bpf_lpm_trie_key, and the value is a uint64_t.
The code carries more information about the internal implementation.
Signed-off-by: Daniel Mack <daniel@zonque.org>
Reviewed-by: David Herrmann <dh.herrmann@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch adds two sets of eBPF program pointers to struct cgroup.
One for such that are directly pinned to a cgroup, and one for such
that are effective for it.
To illustrate the logic behind that, assume the following example
cgroup hierarchy.
A - B - C
\ D - E
If only B has a program attached, it will be effective for B, C, D
and E. If D then attaches a program itself, that will be effective for
both D and E, and the program in B will only affect B and C. Only one
program of a given type is effective for a cgroup.
Attaching and detaching programs will be done through the bpf(2)
syscall. For now, ingress and egress inet socket filtering are the
only supported use-cases.
Signed-off-by: Daniel Mack <daniel@zonque.org>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Introduce bpf_lru_list which will provide LRU capability to
the bpf_htab in the later patch.
* General Thoughts:
1. Target use case. Read is more often than update.
(i.e. bpf_lookup_elem() is more often than bpf_update_elem()).
If bpf_prog does a bpf_lookup_elem() first and then an in-place
update, it still counts as a read operation to the LRU list concern.
2. It may be useful to think of it as a LRU cache
3. Optimize the read case
3.1 No lock in read case
3.2 The LRU maintenance is only done during bpf_update_elem()
4. If there is a percpu LRU list, it will lose the system-wise LRU
property. A completely isolated percpu LRU list has the best
performance but the memory utilization is not ideal considering
the work load may be imbalance.
5. Hence, this patch starts the LRU implementation with a global LRU
list with batched operations before accessing the global LRU list.
As a LRU cache, #read >> #update/#insert operations, it will work well.
6. There is a local list (for each cpu) which is named
'struct bpf_lru_locallist'. This local list is not used to sort
the LRU property. Instead, the local list is to batch enough
operations before acquiring the lock of the global LRU list. More
details on this later.
7. In the later patch, it allows a percpu LRU list by specifying a
map-attribute for scalability reason and for use cases that need to
prepare for the worst (and pathological) case like DoS attack.
The percpu LRU list is completely isolated from each other and the
LRU nodes (including free nodes) cannot be moved across the list. The
following description is for the global LRU list but mostly applicable
to the percpu LRU list also.
* Global LRU List:
1. It has three sub-lists: active-list, inactive-list and free-list.
2. The two list idea, active and inactive, is borrowed from the
page cache.
3. All nodes are pre-allocated and all sit at the free-list (of the
global LRU list) at the beginning. The pre-allocation reasoning
is similar to the existing BPF_MAP_TYPE_HASH. However,
opting-out prealloc (BPF_F_NO_PREALLOC) is not supported in
the LRU map.
* Active/Inactive List (of the global LRU list):
1. The active list, as its name says it, maintains the active set of
the nodes. We can think of it as the working set or more frequently
accessed nodes. The access frequency is approximated by a ref-bit.
The ref-bit is set during the bpf_lookup_elem().
2. The inactive list, as its name also says it, maintains a less
active set of nodes. They are the candidates to be removed
from the bpf_htab when we are running out of free nodes.
3. The ordering of these two lists is acting as a rough clock.
The tail of the inactive list is the older nodes and
should be released first if the bpf_htab needs free element.
* Rotating the Active/Inactive List (of the global LRU list):
1. It is the basic operation to maintain the LRU property of
the global list.
2. The active list is only rotated when the inactive list is running
low. This idea is similar to the current page cache.
Inactive running low is currently defined as
"# of inactive < # of active".
3. The active list rotation always starts from the tail. It moves
node without ref-bit set to the head of the inactive list.
It moves node with ref-bit set back to the head of the active
list and then clears its ref-bit.
4. The inactive rotation is pretty simply.
It walks the inactive list and moves the nodes back to the head of
active list if its ref-bit is set. The ref-bit is cleared after moving
to the active list.
If the node does not have ref-bit set, it just leave it as it is
because it is already in the inactive list.
* Shrinking the Inactive List (of the global LRU list):
1. Shrinking is the operation to get free nodes when the bpf_htab is
full.
2. It usually only shrinks the inactive list to get free nodes.
3. During shrinking, it will walk the inactive list from the tail,
delete the nodes without ref-bit set from bpf_htab.
4. If no free node found after step (3), it will forcefully get
one node from the tail of inactive or active list. Forcefully is
in the sense that it ignores the ref-bit.
* Local List:
1. Each CPU has a 'struct bpf_lru_locallist'. The purpose is to
batch enough operations before acquiring the lock of the
global LRU.
2. A local list has two sub-lists, free-list and pending-list.
3. During bpf_update_elem(), it will try to get from the free-list
of (the current CPU local list).
4. If the local free-list is empty, it will acquire from the
global LRU list. The global LRU list can either satisfy it
by its global free-list or by shrinking the global inactive
list. Since we have acquired the global LRU list lock,
it will try to get at most LOCAL_FREE_TARGET elements
to the local free list.
5. When a new element is added to the bpf_htab, it will
first sit at the pending-list (of the local list) first.
The pending-list will be flushed to the global LRU list
when it needs to acquire free nodes from the global list
next time.
* Lock Consideration:
The LRU list has a lock (lru_lock). Each bucket of htab has a
lock (buck_lock). If both locks need to be acquired together,
the lock order is always lru_lock -> buck_lock and this only
happens in the bpf_lru_list.c logic.
In hashtab.c, both locks are not acquired together (i.e. one
lock is always released first before acquiring another lock).
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Introduce simple percpu_freelist to keep single list of elements
spread across per-cpu singly linked lists.
/* push element into the list */
void pcpu_freelist_push(struct pcpu_freelist *, struct pcpu_freelist_node *);
/* pop element from the list */
struct pcpu_freelist_node *pcpu_freelist_pop(struct pcpu_freelist *);
The object is pushed to the current cpu list.
Pop first trying to get the object from the current cpu list,
if it's empty goes to the neigbour cpu list.
For bpf program usage pattern the collision rate is very low,
since programs push and pop the objects typically on the same cpu.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
add new map type to store stack traces and corresponding helper
bpf_get_stackid(ctx, map, flags) - walk user or kernel stack and return id
@ctx: struct pt_regs*
@map: pointer to stack_trace map
@flags: bits 0-7 - numer of stack frames to skip
bit 8 - collect user stack instead of kernel
bit 9 - compare stacks by hash only
bit 10 - if two different stacks hash into the same stackid
discard old
other bits - reserved
Return: >= 0 stackid on success or negative error
stackid is a 32-bit integer handle that can be further combined with
other data (including other stackid) and used as a key into maps.
Userspace will access stackmap using standard lookup/delete syscall commands to
retrieve full stack trace for given stackid.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This work adds support for "persistent" eBPF maps/programs. The term
"persistent" is to be understood that maps/programs have a facility
that lets them survive process termination. This is desired by various
eBPF subsystem users.
Just to name one example: tc classifier/action. Whenever tc parses
the ELF object, extracts and loads maps/progs into the kernel, these
file descriptors will be out of reach after the tc instance exits.
So a subsequent tc invocation won't be able to access/relocate on this
resource, and therefore maps cannot easily be shared, f.e. between the
ingress and egress networking data path.
The current workaround is that Unix domain sockets (UDS) need to be
instrumented in order to pass the created eBPF map/program file
descriptors to a third party management daemon through UDS' socket
passing facility. This makes it a bit complicated to deploy shared
eBPF maps or programs (programs f.e. for tail calls) among various
processes.
We've been brainstorming on how we could tackle this issue and various
approches have been tried out so far, which can be read up further in
the below reference.
The architecture we eventually ended up with is a minimal file system
that can hold map/prog objects. The file system is a per mount namespace
singleton, and the default mount point is /sys/fs/bpf/. Any subsequent
mounts within a given namespace will point to the same instance. The
file system allows for creating a user-defined directory structure.
The objects for maps/progs are created/fetched through bpf(2) with
two new commands (BPF_OBJ_PIN/BPF_OBJ_GET). I.e. a bpf file descriptor
along with a pathname is being passed to bpf(2) that in turn creates
(we call it eBPF object pinning) the file system nodes. Only the pathname
is being passed to bpf(2) for getting a new BPF file descriptor to an
existing node. The user can use that to access maps and progs later on,
through bpf(2). Removal of file system nodes is being managed through
normal VFS functions such as unlink(2), etc. The file system code is
kept to a very minimum and can be further extended later on.
The next step I'm working on is to add dump eBPF map/prog commands
to bpf(2), so that a specification from a given file descriptor can
be retrieved. This can be used by things like CRIU but also applications
can inspect the meta data after calling BPF_OBJ_GET.
Big thanks also to Alexei and Hannes who significantly contributed
in the design discussion that eventually let us end up with this
architecture here.
Reference: https://lkml.org/lkml/2015/10/15/925
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Now that we have BPF_PROG_TYPE_SOCKET_FILTER up and running, we can
remove the test stubs which were added to get the verifier suite up.
We can just let the test cases probe under socket filter type instead.
In the fill/spill test case, we cannot (yet) access fields from the
context (skb), but we may adapt that test case in future.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
| |
expose bpf_map_lookup_elem(), bpf_map_update_elem(), bpf_map_delete_elem()
map accessors to eBPF programs
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
add new map type BPF_MAP_TYPE_ARRAY and its implementation
- optimized for fastest possible lookup()
. in the future verifier/JIT may recognize lookup() with constant key
and optimize it into constant pointer. Can optimize non-constant
key into direct pointer arithmetic as well, since pointers and
value_size are constant for the life of the eBPF program.
In other words array_map_lookup_elem() may be 'inlined' by verifier/JIT
while preserving concurrent access to this map from user space
- two main use cases for array type:
. 'global' eBPF variables: array of 1 element with key=0 and value is a
collection of 'global' variables which programs can use to keep the state
between events
. aggregation of tracing events into fixed set of buckets
- all array elements pre-allocated and zero initialized at init time
- key as an index in array and can only be 4 byte
- map_delete_elem() returns EINVAL, since elements cannot be deleted
- map_update_elem() replaces elements in an non-atomic way
(for atomic updates hashtable type should be used instead)
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
add new map type BPF_MAP_TYPE_HASH and its implementation
- maps are created/destroyed by userspace. Both userspace and eBPF programs
can lookup/update/delete elements from the map
- eBPF programs can be called in_irq(), so use spin_lock_irqsave() mechanism
for concurrent updates
- key/value are opaque range of bytes (aligned to 8 bytes)
- user space provides 3 configuration attributes via BPF syscall:
key_size, value_size, max_entries
- map takes care of allocating/freeing key/value pairs
- map_update_elem() must fail to insert new element when max_entries
limit is reached to make sure that eBPF programs cannot exhaust memory
- map_update_elem() replaces elements in an atomic way
- optimized for speed of lookup() which can be called multiple times from
eBPF program which itself is triggered by high volume of events
. in the future JIT compiler may recognize lookup() call and optimize it
further, since key_size is constant for life of eBPF program
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
introduce two configs:
- hidden CONFIG_BPF to select eBPF interpreter that classic socket filters
depend on
- visible CONFIG_BPF_SYSCALL (default off) that tracing and sockets can use
that solves several problems:
- tracing and others that wish to use eBPF don't need to depend on NET.
They can use BPF_SYSCALL to allow loading from userspace or select BPF
to use it directly from kernel in NET-less configs.
- in 3.18 programs cannot be attached to events yet, so don't force it on
- when the rest of eBPF infra is there in 3.19+, it's still useful to
switch it off to minimize kernel size
bloat-o-meter on x64 shows:
add/remove: 0/60 grow/shrink: 0/2 up/down: 0/-15601 (-15601)
tested with many different config combinations. Hopefully didn't miss anything.
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Acked-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
1.
the library includes a trivial set of BPF syscall wrappers:
int bpf_create_map(int key_size, int value_size, int max_entries);
int bpf_update_elem(int fd, void *key, void *value);
int bpf_lookup_elem(int fd, void *key, void *value);
int bpf_delete_elem(int fd, void *key);
int bpf_get_next_key(int fd, void *key, void *next_key);
int bpf_prog_load(enum bpf_prog_type prog_type,
const struct sock_filter_int *insns, int insn_len,
const char *license);
bpf_prog_load() stores verifier log into global bpf_log_buf[] array
and BPF_*() macros to build instructions
2.
test stubs configure eBPF infra with 'unspec' map and program types.
These are fake types used by user space testsuite only.
3.
verifier tests valid and invalid programs and expects predefined
error log messages from kernel.
40 tests so far.
$ sudo ./test_verifier
#0 add+sub+mul OK
#1 unreachable OK
#2 unreachable2 OK
#3 out of range jump OK
#4 out of range jump2 OK
#5 test1 ld_imm64 OK
...
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
this patch adds all of eBPF verfier documentation and empty bpf_check()
The end goal for the verifier is to statically check safety of the program.
Verifier will catch:
- loops
- out of range jumps
- unreachable instructions
- invalid instructions
- uninitialized register access
- uninitialized stack access
- misaligned stack access
- out of range stack access
- invalid calling convention
More details in Documentation/networking/filter.txt
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
BPF syscall is a multiplexor for a range of different operations on eBPF.
This patch introduces syscall with single command to create a map.
Next patch adds commands to access maps.
'maps' is a generic storage of different types for sharing data between kernel
and userspace.
Userspace example:
/* this syscall wrapper creates a map with given type and attributes
* and returns map_fd on success.
* use close(map_fd) to delete the map
*/
int bpf_create_map(enum bpf_map_type map_type, int key_size,
int value_size, int max_entries)
{
union bpf_attr attr = {
.map_type = map_type,
.key_size = key_size,
.value_size = value_size,
.max_entries = max_entries
};
return bpf(BPF_MAP_CREATE, &attr, sizeof(attr));
}
'union bpf_attr' is backwards compatible with future extensions.
More details in Documentation/networking/filter.txt and in manpage
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
BPF is used in several kernel components. This split creates logical boundary
between generic eBPF core and the rest
kernel/bpf/core.c: eBPF interpreter
net/core/filter.c: classic->eBPF converter, classic verifiers, socket filters
This patch only moves functions.
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|