This file summarizes information on basic testing of USB functions provided by gadgets. 1. ACM function 2. ECM function 3. ECM subset function 4. EEM function 5. FFS function 6. HID function 7. LOOPBACK function 8. MASS STORAGE function 9. MIDI function 10. NCM function 11. OBEX function 12. PHONET function 13. RNDIS function 14. SERIAL function 15. SOURCESINK function 16. UAC1 function (legacy implementation) 17. UAC2 function 18. UVC function 19. PRINTER function 20. UAC1 function (new API) 1. ACM function =============== The function is provided by usb_f_acm.ko module. Function-specific configfs interface ------------------------------------ The function name to use when creating the function directory is "acm". The ACM function provides just one attribute in its function directory: port_num The attribute is read-only. There can be at most 4 ACM/generic serial/OBEX ports in the system. Testing the ACM function ------------------------ On the host: cat > /dev/ttyACM On the device : cat /dev/ttyGS then the other way round On the device: cat > /dev/ttyGS On the host: cat /dev/ttyACM 2. ECM function =============== The function is provided by usb_f_ecm.ko module. Function-specific configfs interface ------------------------------------ The function name to use when creating the function directory is "ecm". The ECM function provides these attributes in its function directory: ifname - network device interface name associated with this function instance qmult - queue length multiplier for high and super speed host_addr - MAC address of host's end of this Ethernet over USB link dev_addr - MAC address of device's end of this Ethernet over USB link and after creating the functions/ecm. they contain default values: qmult is 5, dev_addr and host_addr are randomly selected. Except for ifname they can be written to until the function is linked to a configuration. The ifname is read-only and contains the name of the interface which was assigned by the net core, e. g. usb0. Testing the ECM function ------------------------ Configure IP addresses of the device and the host. Then: On the device: ping On the host: ping 3. ECM subset function ====================== The function is provided by usb_f_ecm_subset.ko module. Function-specific configfs interface ------------------------------------ The function name to use when creating the function directory is "geth". The ECM subset function provides these attributes in its function directory: ifname - network device interface name associated with this function instance qmult - queue length multiplier for high and super speed host_addr - MAC address of host's end of this Ethernet over USB link dev_addr - MAC address of device's end of this Ethernet over USB link and after creating the functions/ecm. they contain default values: qmult is 5, dev_addr and host_addr are randomly selected. Except for ifname they can be written to until the function is linked to a configuration. The ifname is read-only and contains the name of the interface which was assigned by the net core, e. g. usb0. Testing the ECM subset function ------------------------------- Configure IP addresses of the device and the host. Then: On the device: ping On the host: ping 4. EEM function =============== The function is provided by usb_f_eem.ko module. Function-specific configfs interface ------------------------------------ The function name to use when creating the function directory is "eem". The EEM function provides these attributes in its function directory: ifname - network device interface name associated with this function instance qmult - queue length multiplier for high and super speed host_addr - MAC address of host's end of this Ethernet over USB link dev_addr - MAC address of device's end of this Ethernet over USB link and after creating the functions/eem. they contain default values: qmult is 5, dev_addr and host_addr are randomly selected. Except for ifname they can be written to until the function is linked to a configuration. The ifname is read-only and contains the name of the interface which was assigned by the net core, e. g. usb0. Testing the EEM function ------------------------ Configure IP addresses of the device and the host. Then: On the device: ping On the host: ping 5. FFS function =============== The function is provided by usb_f_fs.ko module. Function-specific configfs interface ------------------------------------ The function name to use when creating the function directory is "ffs". The function directory is intentionally empty and not modifiable. After creating the directory there is a new instance (a "device") of FunctionFS available in the system. Once a "device" is available, the user should follow the standard procedure for using FunctionFS (mount it, run the userspace process which implements the function proper). The gadget should be enabled by writing a suitable string to usb_gadget//UDC. Testing the FFS function ------------------------ On the device: start the function's userspace daemon, enable the gadget On the host: use the USB function provided by the device 6. HID function =============== The function is provided by usb_f_hid.ko module. Function-specific configfs interface ------------------------------------ The function name to use when creating the function directory is "hid". The HID function provides these attributes in its function directory: protocol - HID protocol to use report_desc - data to be used in HID reports, except data passed with /dev/hidg report_length - HID report length subclass - HID subclass to use For a keyboard the protocol and the subclass are 1, the report_length is 8, while the report_desc is: $ hd my_report_desc 00000000 05 01 09 06 a1 01 05 07 19 e0 29 e7 15 00 25 01 |..........)...%.| 00000010 75 01 95 08 81 02 95 01 75 08 81 03 95 05 75 01 |u.......u.....u.| 00000020 05 08 19 01 29 05 91 02 95 01 75 03 91 03 95 06 |....).....u.....| 00000030 75 08 15 00 25 65 05 07 19 00 29 65 81 00 c0 |u...%e....)e...| 0000003f Such a sequence of bytes can be stored to the attribute with echo: $ echo -ne \\x05\\x01\\x09\\x06\\xa1..... Testing the HID function ------------------------ Device: - create the gadget - connect the gadget to a host, preferably not the one used to control the gadget - run a program which writes to /dev/hidg, e.g. a userspace program found in Documentation/usb/gadget_hid.txt: $ ./hid_gadget_test /dev/hidg0 keyboard Host: - observe the keystrokes from the gadget 7. LOOPBACK function ==================== The function is provided by usb_f_ss_lb.ko module. Function-specific configfs interface ------------------------------------ The function name to use when creating the function directory is "Loopback". The LOOPBACK function provides these attributes in its function directory: qlen - depth of loopback queue bulk_buflen - buffer length Testing the LOOPBACK function ----------------------------- device: run the gadget host: test-usb (tools/usb/testusb.c) 8. MASS STORAGE function ======================== The function is provided by usb_f_mass_storage.ko module. Function-specific configfs interface ------------------------------------ The function name to use when creating the function directory is "mass_storage". The MASS STORAGE function provides these attributes in its directory: files: stall - Set to permit function to halt bulk endpoints. Disabled on some USB devices known not to work correctly. You should set it to true. num_buffers - Number of pipeline buffers. Valid numbers are 2..4. Available only if CONFIG_USB_GADGET_DEBUG_FILES is set. and a default lun.0 directory corresponding to SCSI LUN #0. A new lun can be added with mkdir: $ mkdir functions/mass_storage.0/partition.5 Lun numbering does not have to be continuous, except for lun #0 which is created by default. A maximum of 8 luns can be specified and they all must be named following the . scheme. The numbers can be 0..8. Probably a good convention is to name the luns "lun.", although it is not mandatory. In each lun directory there are the following attribute files: file - The path to the backing file for the LUN. Required if LUN is not marked as removable. ro - Flag specifying access to the LUN shall be read-only. This is implied if CD-ROM emulation is enabled as well as when it was impossible to open "filename" in R/W mode. removable - Flag specifying that LUN shall be indicated as being removable. cdrom - Flag specifying that LUN shall be reported as being a CD-ROM. nofua - Flag specifying that FUA flag in SCSI WRITE(10,12) Testing the MASS STORAGE function --------------------------------- device: connect the gadget, enable it host: dmesg, see the USB drives appear (if system configured to automatically mount) 9. MIDI function ================ The function is provided by usb_f_midi.ko module. Function-specific configfs interface ------------------------------------ The function name to use when creating the function directory is "midi". The MIDI function provides these attributes in its function directory: buflen - MIDI buffer length id - ID string for the USB MIDI adapter in_ports - number of MIDI input ports index - index value for the USB MIDI adapter out_ports - number of MIDI output ports qlen - USB read request queue length Testing the MIDI function ------------------------- There are two cases: playing a mid from the gadget to the host and playing a mid from the host to the gadget. 1) Playing a mid from the gadget to the host host) $ arecordmidi -l Port Client name Port name 14:0 Midi Through Midi Through Port-0 24:0 MIDI Gadget MIDI Gadget MIDI 1 $ arecordmidi -p 24:0 from_gadget.mid gadget) $ aplaymidi -l Port Client name Port name 20:0 f_midi f_midi $ aplaymidi -p 20:0 to_host.mid 2) Playing a mid from the host to the gadget gadget) $ arecordmidi -l Port Client name Port name 20:0 f_midi f_midi $ arecordmidi -p 20:0 from_host.mid host) $ aplaymidi -l Port Client name Port name 14:0 Midi Through Midi Through Port-0 24:0 MIDI Gadget MIDI Gadget MIDI 1 $ aplaymidi -p24:0 to_gadget.mid The from_gadget.mid should sound identical to the to_host.mid. The from_host.id should sound identical to the to_gadget.mid. MIDI files can be played to speakers/headphones with e.g. timidity installed $ aplaymidi -l Port Client name Port name 14:0 Midi Through Midi Through Port-0 24:0 MIDI Gadget MIDI Gadget MIDI 1 128:0 TiMidity TiMidity port 0 128:1 TiMidity TiMidity port 1 128:2 TiMidity TiMidity port 2 128:3 TiMidity TiMidity port 3 $ aplaymidi -p 128:0 file.mid MIDI ports can be logically connected using the aconnect utility, e.g.: $ aconnect 24:0 128:0 # try it on the host After the gadget's MIDI port is connected to timidity's MIDI port, whatever is played at the gadget side with aplaymidi -l is audible in host's speakers/headphones. 10. NCM function ================ The function is provided by usb_f_ncm.ko module. Function-specific configfs interface ------------------------------------ The function name to use when creating the function directory is "ncm". The NCM function provides these attributes in its function directory: ifname - network device interface name associated with this function instance qmult - queue length multiplier for high and super speed host_addr - MAC address of host's end of this Ethernet over USB link dev_addr - MAC address of device's end of this Ethernet over USB link and after creating the functions/ncm. they contain default values: qmult is 5, dev_addr and host_addr are randomly selected. Except for ifname they can be written to until the function is linked to a configuration. The ifname is read-only and contains the name of the interface which was assigned by the net core, e. g. usb0. Testing the NCM function ------------------------ Configure IP addresses of the device and the host. Then: On the device: ping On the host: ping 11. OBEX function ================= The function is provided by usb_f_obex.ko module. Function-specific configfs interface ------------------------------------ The function name to use when creating the function directory is "obex". The OBEX function provides just one attribute in its function directory: port_num The attribute is read-only. There can be at most 4 ACM/generic serial/OBEX ports in the system. Testing the OBEX function ------------------------- On device: seriald -f /dev/ttyGS -s 1024 On host: serialc -v -p -i -a1 -s1024 \ -t -r where seriald and serialc are Felipe's utilities found here: https://github.com/felipebalbi/usb-tools.git master 12. PHONET function =================== The function is provided by usb_f_phonet.ko module. Function-specific configfs interface ------------------------------------ The function name to use when creating the function directory is "phonet". The PHONET function provides just one attribute in its function directory: ifname - network device interface name associated with this function instance Testing the PHONET function --------------------------- It is not possible to test the SOCK_STREAM protocol without a specific piece of hardware, so only SOCK_DGRAM has been tested. For the latter to work, in the past I had to apply the patch mentioned here: http://www.spinics.net/lists/linux-usb/msg85689.html These tools are required: git://git.gitorious.org/meego-cellular/phonet-utils.git On the host: $ ./phonet -a 0x10 -i usbpn0 $ ./pnroute add 0x6c usbpn0 $./pnroute add 0x10 usbpn0 $ ifconfig usbpn0 up On the device: $ ./phonet -a 0x6c -i upnlink0 $ ./pnroute add 0x10 upnlink0 $ ifconfig upnlink0 up Then a test program can be used: http://www.spinics.net/lists/linux-usb/msg85690.html On the device: $ ./pnxmit -a 0x6c -r On the host: $ ./pnxmit -a 0x10 -s 0x6c As a result some data should be sent from host to device. Then the other way round: On the host: $ ./pnxmit -a 0x10 -r On the device: $ ./pnxmit -a 0x6c -s 0x10 13. RNDIS function ================== The function is provided by usb_f_rndis.ko module. Function-specific configfs interface ------------------------------------ The function name to use when creating the function directory is "rndis". The RNDIS function provides these attributes in its function directory: ifname - network device interface name associated with this function instance qmult - queue length multiplier for high and super speed host_addr - MAC address of host's end of this Ethernet over USB link dev_addr - MAC address of device's end of this Ethernet over USB link and after creating the functions/rndis. they contain default values: qmult is 5, dev_addr and host_addr are randomly selected. Except for ifname they can be written to until the function is linked to a configuration. The ifname is read-only and contains the name of the interface which was assigned by the net core, e. g. usb0. Testing the RNDIS function -------------------------- Configure IP addresses of the device and the host. Then: On the device: ping On the host: ping 14. SERIAL function =================== The function is provided by usb_f_gser.ko module. Function-specific configfs interface ------------------------------------ The function name to use when creating the function directory is "gser". The SERIAL function provides just one attribute in its function directory: port_num The attribute is read-only. There can be at most 4 ACM/generic serial/OBEX ports in the system. Testing the SERIAL function --------------------------- On host: insmod usbserial echo VID PID >/sys/bus/usb-serial/drivers/generic/new_id On host: cat > /dev/ttyUSB On target: cat /dev/ttyGS then the other way round On target: cat > /dev/ttyGS On host: cat /dev/ttyUSB 15. SOURCESINK function ======================= The function is provided by usb_f_ss_lb.ko module. Function-specific configfs interface ------------------------------------ The function name to use when creating the function directory is "SourceSink". The SOURCESINK function provides these attributes in its function directory: pattern - 0 (all zeros), 1 (mod63), 2 (none) isoc_interval - 1..16 isoc_maxpacket - 0 - 1023 (fs), 0 - 1024 (hs/ss) isoc_mult - 0..2 (hs/ss only) isoc_maxburst - 0..15 (ss only) bulk_buflen - buffer length bulk_qlen - depth of queue for bulk iso_qlen - depth of queue for iso Testing the SOURCESINK function ------------------------------- device: run the gadget host: test-usb (tools/usb/testusb.c) 16. UAC1 function (legacy implementation) ================= The function is provided by usb_f_uac1_legacy.ko module. Function-specific configfs interface ------------------------------------ The function name to use when creating the function directory is "uac1_legacy". The uac1 function provides these attributes in its function directory: audio_buf_size - audio buffer size fn_cap - capture pcm device file name fn_cntl - control device file name fn_play - playback pcm device file name req_buf_size - ISO OUT endpoint request buffer size req_count - ISO OUT endpoint request count The attributes have sane default values. Testing the UAC1 function ------------------------- device: run the gadget host: aplay -l # should list our USB Audio Gadget 17. UAC2 function ================= The function is provided by usb_f_uac2.ko module. Function-specific configfs interface ------------------------------------ The function name to use when creating the function directory is "uac2". The uac2 function provides these attributes in its function directory: c_chmask - capture channel mask c_srate - capture sampling rate c_ssize - capture sample size (bytes) p_chmask - playback channel mask p_srate - playback sampling rate p_ssize - playback sample size (bytes) req_number - the number of pre-allocated request for both capture and playback The attributes have sane default values. Testing the UAC2 function ------------------------- device: run the gadget host: aplay -l # should list our USB Audio Gadget This function does not require real hardware support, it just sends a stream of audio data to/from the host. In order to actually hear something at the device side, a command similar to this must be used at the device side: $ arecord -f dat -t wav -D hw:2,0 | aplay -D hw:0,0 & e.g.: $ arecord -f dat -t wav -D hw:CARD=UAC2Gadget,DEV=0 | \ aplay -D default:CARD=OdroidU3 18. UVC function ================ The function is provided by usb_f_uvc.ko module. Function-specific configfs interface ------------------------------------ The function name to use when creating the function directory is "uvc". The uvc function provides these attributes in its function directory: streaming_interval - interval for polling endpoint for data transfers streaming_maxburst - bMaxBurst for super speed companion descriptor streaming_maxpacket - maximum packet size this endpoint is capable of sending or receiving when this configuration is selected There are also "control" and "streaming" subdirectories, each of which contain a number of their subdirectories. There are some sane defaults provided, but the user must provide the following: control header - create in control/header, link from control/class/fs and/or control/class/ss streaming header - create in streaming/header, link from streaming/class/fs and/or streaming/class/hs and/or streaming/class/ss format description - create in streaming/mjpeg and/or streaming/uncompressed frame description - create in streaming/mjpeg/ and/or in streaming/uncompressed/ Each frame description contains frame interval specification, and each such specification consists of a number of lines with an inverval value in each line. The rules stated above are best illustrated with an example: # mkdir functions/uvc.usb0/control/header/h # cd functions/uvc.usb0/control/ # ln -s header/h class/fs # ln -s header/h class/ss # mkdir -p functions/uvc.usb0/streaming/uncompressed/u/360p # cat < functions/uvc.usb0/streaming/uncompressed/u/360p/dwFrameInterval 666666 1000000 5000000 EOF # cd $GADGET_CONFIGFS_ROOT # mkdir functions/uvc.usb0/streaming/header/h # cd functions/uvc.usb0/streaming/header/h # ln -s ../../uncompressed/u # cd ../../class/fs # ln -s ../../header/h # cd ../../class/hs # ln -s ../../header/h # cd ../../class/ss # ln -s ../../header/h Testing the UVC function ------------------------ device: run the gadget, modprobe vivid # uvc-gadget -u /dev/video -v /dev/video where uvc-gadget is this program: http://git.ideasonboard.org/uvc-gadget.git with these patches: http://www.spinics.net/lists/linux-usb/msg99220.html host: luvcview -f yuv 19. PRINTER function ==================== The function is provided by usb_f_printer.ko module. Function-specific configfs interface ------------------------------------ The function name to use when creating the function directory is "printer". The printer function provides these attributes in its function directory: pnp_string - Data to be passed to the host in pnp string q_len - Number of requests per endpoint Testing the PRINTER function ---------------------------- The most basic testing: device: run the gadget # ls -l /devices/virtual/usb_printer_gadget/ should show g_printer. If udev is active, then /dev/g_printer should appear automatically. host: If udev is active, then e.g. /dev/usb/lp0 should appear. host->device transmission: device: # cat /dev/g_printer host: # cat > /dev/usb/lp0 device->host transmission: # cat > /dev/g_printer host: # cat /dev/usb/lp0 More advanced testing can be done with the prn_example described in Documentation/usb/gadget_printer.txt. 20. UAC1 function (virtual ALSA card, using u_audio API) ================= The function is provided by usb_f_uac1.ko module. It will create a virtual ALSA card and the audio streams are simply sinked to and sourced from it. Function-specific configfs interface ------------------------------------ The function name to use when creating the function directory is "uac1". The uac1 function provides these attributes in its function directory: c_chmask - capture channel mask c_srate - capture sampling rate c_ssize - capture sample size (bytes) p_chmask - playback channel mask p_srate - playback sampling rate p_ssize - playback sample size (bytes) req_number - the number of pre-allocated request for both capture and playback The attributes have sane default values. Testing the UAC1 function ------------------------- device: run the gadget host: aplay -l # should list our USB Audio Gadget This function does not require real hardware support, it just sends a stream of audio data to/from the host. In order to actually hear something at the device side, a command similar to this must be used at the device side: $ arecord -f dat -t wav -D hw:2,0 | aplay -D hw:0,0 & e.g.: $ arecord -f dat -t wav -D hw:CARD=UAC1Gadget,DEV=0 | \ aplay -D default:CARD=OdroidU3