// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2018 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "igc.h" #include "igc_hw.h" #include "igc_tsn.h" #include "igc_xdp.h" #define DRV_SUMMARY "Intel(R) 2.5G Ethernet Linux Driver" #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK) #define IGC_XDP_PASS 0 #define IGC_XDP_CONSUMED BIT(0) #define IGC_XDP_TX BIT(1) #define IGC_XDP_REDIRECT BIT(2) static int debug = -1; MODULE_AUTHOR("Intel Corporation, "); MODULE_DESCRIPTION(DRV_SUMMARY); MODULE_LICENSE("GPL v2"); module_param(debug, int, 0); MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); char igc_driver_name[] = "igc"; static const char igc_driver_string[] = DRV_SUMMARY; static const char igc_copyright[] = "Copyright(c) 2018 Intel Corporation."; static const struct igc_info *igc_info_tbl[] = { [board_base] = &igc_base_info, }; static const struct pci_device_id igc_pci_tbl[] = { { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base }, { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base }, { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base }, { PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base }, { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base }, { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base }, { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_K), board_base }, { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base }, { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LMVP), board_base }, { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base }, { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base }, { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base }, { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base }, { PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base }, { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base }, { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base }, /* required last entry */ {0, } }; MODULE_DEVICE_TABLE(pci, igc_pci_tbl); enum latency_range { lowest_latency = 0, low_latency = 1, bulk_latency = 2, latency_invalid = 255 }; void igc_reset(struct igc_adapter *adapter) { struct net_device *dev = adapter->netdev; struct igc_hw *hw = &adapter->hw; struct igc_fc_info *fc = &hw->fc; u32 pba, hwm; /* Repartition PBA for greater than 9k MTU if required */ pba = IGC_PBA_34K; /* flow control settings * The high water mark must be low enough to fit one full frame * after transmitting the pause frame. As such we must have enough * space to allow for us to complete our current transmit and then * receive the frame that is in progress from the link partner. * Set it to: * - the full Rx FIFO size minus one full Tx plus one full Rx frame */ hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE); fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */ fc->low_water = fc->high_water - 16; fc->pause_time = 0xFFFF; fc->send_xon = 1; fc->current_mode = fc->requested_mode; hw->mac.ops.reset_hw(hw); if (hw->mac.ops.init_hw(hw)) netdev_err(dev, "Error on hardware initialization\n"); /* Re-establish EEE setting */ igc_set_eee_i225(hw, true, true, true); if (!netif_running(adapter->netdev)) igc_power_down_phy_copper_base(&adapter->hw); /* Enable HW to recognize an 802.1Q VLAN Ethernet packet */ wr32(IGC_VET, ETH_P_8021Q); /* Re-enable PTP, where applicable. */ igc_ptp_reset(adapter); /* Re-enable TSN offloading, where applicable. */ igc_tsn_reset(adapter); igc_get_phy_info(hw); } /** * igc_power_up_link - Power up the phy link * @adapter: address of board private structure */ static void igc_power_up_link(struct igc_adapter *adapter) { igc_reset_phy(&adapter->hw); igc_power_up_phy_copper(&adapter->hw); igc_setup_link(&adapter->hw); } /** * igc_release_hw_control - release control of the h/w to f/w * @adapter: address of board private structure * * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit. * For ASF and Pass Through versions of f/w this means that the * driver is no longer loaded. */ static void igc_release_hw_control(struct igc_adapter *adapter) { struct igc_hw *hw = &adapter->hw; u32 ctrl_ext; if (!pci_device_is_present(adapter->pdev)) return; /* Let firmware take over control of h/w */ ctrl_ext = rd32(IGC_CTRL_EXT); wr32(IGC_CTRL_EXT, ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD); } /** * igc_get_hw_control - get control of the h/w from f/w * @adapter: address of board private structure * * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit. * For ASF and Pass Through versions of f/w this means that * the driver is loaded. */ static void igc_get_hw_control(struct igc_adapter *adapter) { struct igc_hw *hw = &adapter->hw; u32 ctrl_ext; /* Let firmware know the driver has taken over */ ctrl_ext = rd32(IGC_CTRL_EXT); wr32(IGC_CTRL_EXT, ctrl_ext | IGC_CTRL_EXT_DRV_LOAD); } static void igc_unmap_tx_buffer(struct device *dev, struct igc_tx_buffer *buf) { dma_unmap_single(dev, dma_unmap_addr(buf, dma), dma_unmap_len(buf, len), DMA_TO_DEVICE); dma_unmap_len_set(buf, len, 0); } /** * igc_clean_tx_ring - Free Tx Buffers * @tx_ring: ring to be cleaned */ static void igc_clean_tx_ring(struct igc_ring *tx_ring) { u16 i = tx_ring->next_to_clean; struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i]; u32 xsk_frames = 0; while (i != tx_ring->next_to_use) { union igc_adv_tx_desc *eop_desc, *tx_desc; switch (tx_buffer->type) { case IGC_TX_BUFFER_TYPE_XSK: xsk_frames++; break; case IGC_TX_BUFFER_TYPE_XDP: xdp_return_frame(tx_buffer->xdpf); igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); break; case IGC_TX_BUFFER_TYPE_SKB: dev_kfree_skb_any(tx_buffer->skb); igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); break; default: netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n"); break; } /* check for eop_desc to determine the end of the packet */ eop_desc = tx_buffer->next_to_watch; tx_desc = IGC_TX_DESC(tx_ring, i); /* unmap remaining buffers */ while (tx_desc != eop_desc) { tx_buffer++; tx_desc++; i++; if (unlikely(i == tx_ring->count)) { i = 0; tx_buffer = tx_ring->tx_buffer_info; tx_desc = IGC_TX_DESC(tx_ring, 0); } /* unmap any remaining paged data */ if (dma_unmap_len(tx_buffer, len)) igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); } tx_buffer->next_to_watch = NULL; /* move us one more past the eop_desc for start of next pkt */ tx_buffer++; i++; if (unlikely(i == tx_ring->count)) { i = 0; tx_buffer = tx_ring->tx_buffer_info; } } if (tx_ring->xsk_pool && xsk_frames) xsk_tx_completed(tx_ring->xsk_pool, xsk_frames); /* reset BQL for queue */ netdev_tx_reset_queue(txring_txq(tx_ring)); /* reset next_to_use and next_to_clean */ tx_ring->next_to_use = 0; tx_ring->next_to_clean = 0; } /** * igc_free_tx_resources - Free Tx Resources per Queue * @tx_ring: Tx descriptor ring for a specific queue * * Free all transmit software resources */ void igc_free_tx_resources(struct igc_ring *tx_ring) { igc_clean_tx_ring(tx_ring); vfree(tx_ring->tx_buffer_info); tx_ring->tx_buffer_info = NULL; /* if not set, then don't free */ if (!tx_ring->desc) return; dma_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc, tx_ring->dma); tx_ring->desc = NULL; } /** * igc_free_all_tx_resources - Free Tx Resources for All Queues * @adapter: board private structure * * Free all transmit software resources */ static void igc_free_all_tx_resources(struct igc_adapter *adapter) { int i; for (i = 0; i < adapter->num_tx_queues; i++) igc_free_tx_resources(adapter->tx_ring[i]); } /** * igc_clean_all_tx_rings - Free Tx Buffers for all queues * @adapter: board private structure */ static void igc_clean_all_tx_rings(struct igc_adapter *adapter) { int i; for (i = 0; i < adapter->num_tx_queues; i++) if (adapter->tx_ring[i]) igc_clean_tx_ring(adapter->tx_ring[i]); } /** * igc_setup_tx_resources - allocate Tx resources (Descriptors) * @tx_ring: tx descriptor ring (for a specific queue) to setup * * Return 0 on success, negative on failure */ int igc_setup_tx_resources(struct igc_ring *tx_ring) { struct net_device *ndev = tx_ring->netdev; struct device *dev = tx_ring->dev; int size = 0; size = sizeof(struct igc_tx_buffer) * tx_ring->count; tx_ring->tx_buffer_info = vzalloc(size); if (!tx_ring->tx_buffer_info) goto err; /* round up to nearest 4K */ tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc); tx_ring->size = ALIGN(tx_ring->size, 4096); tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, &tx_ring->dma, GFP_KERNEL); if (!tx_ring->desc) goto err; tx_ring->next_to_use = 0; tx_ring->next_to_clean = 0; return 0; err: vfree(tx_ring->tx_buffer_info); netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n"); return -ENOMEM; } /** * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues * @adapter: board private structure * * Return 0 on success, negative on failure */ static int igc_setup_all_tx_resources(struct igc_adapter *adapter) { struct net_device *dev = adapter->netdev; int i, err = 0; for (i = 0; i < adapter->num_tx_queues; i++) { err = igc_setup_tx_resources(adapter->tx_ring[i]); if (err) { netdev_err(dev, "Error on Tx queue %u setup\n", i); for (i--; i >= 0; i--) igc_free_tx_resources(adapter->tx_ring[i]); break; } } return err; } static void igc_clean_rx_ring_page_shared(struct igc_ring *rx_ring) { u16 i = rx_ring->next_to_clean; dev_kfree_skb(rx_ring->skb); rx_ring->skb = NULL; /* Free all the Rx ring sk_buffs */ while (i != rx_ring->next_to_alloc) { struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i]; /* Invalidate cache lines that may have been written to by * device so that we avoid corrupting memory. */ dma_sync_single_range_for_cpu(rx_ring->dev, buffer_info->dma, buffer_info->page_offset, igc_rx_bufsz(rx_ring), DMA_FROM_DEVICE); /* free resources associated with mapping */ dma_unmap_page_attrs(rx_ring->dev, buffer_info->dma, igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE, IGC_RX_DMA_ATTR); __page_frag_cache_drain(buffer_info->page, buffer_info->pagecnt_bias); i++; if (i == rx_ring->count) i = 0; } } static void igc_clean_rx_ring_xsk_pool(struct igc_ring *ring) { struct igc_rx_buffer *bi; u16 i; for (i = 0; i < ring->count; i++) { bi = &ring->rx_buffer_info[i]; if (!bi->xdp) continue; xsk_buff_free(bi->xdp); bi->xdp = NULL; } } /** * igc_clean_rx_ring - Free Rx Buffers per Queue * @ring: ring to free buffers from */ static void igc_clean_rx_ring(struct igc_ring *ring) { if (ring->xsk_pool) igc_clean_rx_ring_xsk_pool(ring); else igc_clean_rx_ring_page_shared(ring); clear_ring_uses_large_buffer(ring); ring->next_to_alloc = 0; ring->next_to_clean = 0; ring->next_to_use = 0; } /** * igc_clean_all_rx_rings - Free Rx Buffers for all queues * @adapter: board private structure */ static void igc_clean_all_rx_rings(struct igc_adapter *adapter) { int i; for (i = 0; i < adapter->num_rx_queues; i++) if (adapter->rx_ring[i]) igc_clean_rx_ring(adapter->rx_ring[i]); } /** * igc_free_rx_resources - Free Rx Resources * @rx_ring: ring to clean the resources from * * Free all receive software resources */ void igc_free_rx_resources(struct igc_ring *rx_ring) { igc_clean_rx_ring(rx_ring); xdp_rxq_info_unreg(&rx_ring->xdp_rxq); vfree(rx_ring->rx_buffer_info); rx_ring->rx_buffer_info = NULL; /* if not set, then don't free */ if (!rx_ring->desc) return; dma_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc, rx_ring->dma); rx_ring->desc = NULL; } /** * igc_free_all_rx_resources - Free Rx Resources for All Queues * @adapter: board private structure * * Free all receive software resources */ static void igc_free_all_rx_resources(struct igc_adapter *adapter) { int i; for (i = 0; i < adapter->num_rx_queues; i++) igc_free_rx_resources(adapter->rx_ring[i]); } /** * igc_setup_rx_resources - allocate Rx resources (Descriptors) * @rx_ring: rx descriptor ring (for a specific queue) to setup * * Returns 0 on success, negative on failure */ int igc_setup_rx_resources(struct igc_ring *rx_ring) { struct net_device *ndev = rx_ring->netdev; struct device *dev = rx_ring->dev; u8 index = rx_ring->queue_index; int size, desc_len, res; /* XDP RX-queue info */ if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq)) xdp_rxq_info_unreg(&rx_ring->xdp_rxq); res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, ndev, index, rx_ring->q_vector->napi.napi_id); if (res < 0) { netdev_err(ndev, "Failed to register xdp_rxq index %u\n", index); return res; } size = sizeof(struct igc_rx_buffer) * rx_ring->count; rx_ring->rx_buffer_info = vzalloc(size); if (!rx_ring->rx_buffer_info) goto err; desc_len = sizeof(union igc_adv_rx_desc); /* Round up to nearest 4K */ rx_ring->size = rx_ring->count * desc_len; rx_ring->size = ALIGN(rx_ring->size, 4096); rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, &rx_ring->dma, GFP_KERNEL); if (!rx_ring->desc) goto err; rx_ring->next_to_alloc = 0; rx_ring->next_to_clean = 0; rx_ring->next_to_use = 0; return 0; err: xdp_rxq_info_unreg(&rx_ring->xdp_rxq); vfree(rx_ring->rx_buffer_info); rx_ring->rx_buffer_info = NULL; netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n"); return -ENOMEM; } /** * igc_setup_all_rx_resources - wrapper to allocate Rx resources * (Descriptors) for all queues * @adapter: board private structure * * Return 0 on success, negative on failure */ static int igc_setup_all_rx_resources(struct igc_adapter *adapter) { struct net_device *dev = adapter->netdev; int i, err = 0; for (i = 0; i < adapter->num_rx_queues; i++) { err = igc_setup_rx_resources(adapter->rx_ring[i]); if (err) { netdev_err(dev, "Error on Rx queue %u setup\n", i); for (i--; i >= 0; i--) igc_free_rx_resources(adapter->rx_ring[i]); break; } } return err; } static struct xsk_buff_pool *igc_get_xsk_pool(struct igc_adapter *adapter, struct igc_ring *ring) { if (!igc_xdp_is_enabled(adapter) || !test_bit(IGC_RING_FLAG_AF_XDP_ZC, &ring->flags)) return NULL; return xsk_get_pool_from_qid(ring->netdev, ring->queue_index); } /** * igc_configure_rx_ring - Configure a receive ring after Reset * @adapter: board private structure * @ring: receive ring to be configured * * Configure the Rx unit of the MAC after a reset. */ static void igc_configure_rx_ring(struct igc_adapter *adapter, struct igc_ring *ring) { struct igc_hw *hw = &adapter->hw; union igc_adv_rx_desc *rx_desc; int reg_idx = ring->reg_idx; u32 srrctl = 0, rxdctl = 0; u64 rdba = ring->dma; u32 buf_size; xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq); ring->xsk_pool = igc_get_xsk_pool(adapter, ring); if (ring->xsk_pool) { WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, MEM_TYPE_XSK_BUFF_POOL, NULL)); xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq); } else { WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, MEM_TYPE_PAGE_SHARED, NULL)); } if (igc_xdp_is_enabled(adapter)) set_ring_uses_large_buffer(ring); /* disable the queue */ wr32(IGC_RXDCTL(reg_idx), 0); /* Set DMA base address registers */ wr32(IGC_RDBAL(reg_idx), rdba & 0x00000000ffffffffULL); wr32(IGC_RDBAH(reg_idx), rdba >> 32); wr32(IGC_RDLEN(reg_idx), ring->count * sizeof(union igc_adv_rx_desc)); /* initialize head and tail */ ring->tail = adapter->io_addr + IGC_RDT(reg_idx); wr32(IGC_RDH(reg_idx), 0); writel(0, ring->tail); /* reset next-to- use/clean to place SW in sync with hardware */ ring->next_to_clean = 0; ring->next_to_use = 0; if (ring->xsk_pool) buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool); else if (ring_uses_large_buffer(ring)) buf_size = IGC_RXBUFFER_3072; else buf_size = IGC_RXBUFFER_2048; srrctl = IGC_RX_HDR_LEN << IGC_SRRCTL_BSIZEHDRSIZE_SHIFT; srrctl |= buf_size >> IGC_SRRCTL_BSIZEPKT_SHIFT; srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF; wr32(IGC_SRRCTL(reg_idx), srrctl); rxdctl |= IGC_RX_PTHRESH; rxdctl |= IGC_RX_HTHRESH << 8; rxdctl |= IGC_RX_WTHRESH << 16; /* initialize rx_buffer_info */ memset(ring->rx_buffer_info, 0, sizeof(struct igc_rx_buffer) * ring->count); /* initialize Rx descriptor 0 */ rx_desc = IGC_RX_DESC(ring, 0); rx_desc->wb.upper.length = 0; /* enable receive descriptor fetching */ rxdctl |= IGC_RXDCTL_QUEUE_ENABLE; wr32(IGC_RXDCTL(reg_idx), rxdctl); } /** * igc_configure_rx - Configure receive Unit after Reset * @adapter: board private structure * * Configure the Rx unit of the MAC after a reset. */ static void igc_configure_rx(struct igc_adapter *adapter) { int i; /* Setup the HW Rx Head and Tail Descriptor Pointers and * the Base and Length of the Rx Descriptor Ring */ for (i = 0; i < adapter->num_rx_queues; i++) igc_configure_rx_ring(adapter, adapter->rx_ring[i]); } /** * igc_configure_tx_ring - Configure transmit ring after Reset * @adapter: board private structure * @ring: tx ring to configure * * Configure a transmit ring after a reset. */ static void igc_configure_tx_ring(struct igc_adapter *adapter, struct igc_ring *ring) { struct igc_hw *hw = &adapter->hw; int reg_idx = ring->reg_idx; u64 tdba = ring->dma; u32 txdctl = 0; ring->xsk_pool = igc_get_xsk_pool(adapter, ring); /* disable the queue */ wr32(IGC_TXDCTL(reg_idx), 0); wrfl(); mdelay(10); wr32(IGC_TDLEN(reg_idx), ring->count * sizeof(union igc_adv_tx_desc)); wr32(IGC_TDBAL(reg_idx), tdba & 0x00000000ffffffffULL); wr32(IGC_TDBAH(reg_idx), tdba >> 32); ring->tail = adapter->io_addr + IGC_TDT(reg_idx); wr32(IGC_TDH(reg_idx), 0); writel(0, ring->tail); txdctl |= IGC_TX_PTHRESH; txdctl |= IGC_TX_HTHRESH << 8; txdctl |= IGC_TX_WTHRESH << 16; txdctl |= IGC_TXDCTL_QUEUE_ENABLE; wr32(IGC_TXDCTL(reg_idx), txdctl); } /** * igc_configure_tx - Configure transmit Unit after Reset * @adapter: board private structure * * Configure the Tx unit of the MAC after a reset. */ static void igc_configure_tx(struct igc_adapter *adapter) { int i; for (i = 0; i < adapter->num_tx_queues; i++) igc_configure_tx_ring(adapter, adapter->tx_ring[i]); } /** * igc_setup_mrqc - configure the multiple receive queue control registers * @adapter: Board private structure */ static void igc_setup_mrqc(struct igc_adapter *adapter) { struct igc_hw *hw = &adapter->hw; u32 j, num_rx_queues; u32 mrqc, rxcsum; u32 rss_key[10]; netdev_rss_key_fill(rss_key, sizeof(rss_key)); for (j = 0; j < 10; j++) wr32(IGC_RSSRK(j), rss_key[j]); num_rx_queues = adapter->rss_queues; if (adapter->rss_indir_tbl_init != num_rx_queues) { for (j = 0; j < IGC_RETA_SIZE; j++) adapter->rss_indir_tbl[j] = (j * num_rx_queues) / IGC_RETA_SIZE; adapter->rss_indir_tbl_init = num_rx_queues; } igc_write_rss_indir_tbl(adapter); /* Disable raw packet checksumming so that RSS hash is placed in * descriptor on writeback. No need to enable TCP/UDP/IP checksum * offloads as they are enabled by default */ rxcsum = rd32(IGC_RXCSUM); rxcsum |= IGC_RXCSUM_PCSD; /* Enable Receive Checksum Offload for SCTP */ rxcsum |= IGC_RXCSUM_CRCOFL; /* Don't need to set TUOFL or IPOFL, they default to 1 */ wr32(IGC_RXCSUM, rxcsum); /* Generate RSS hash based on packet types, TCP/UDP * port numbers and/or IPv4/v6 src and dst addresses */ mrqc = IGC_MRQC_RSS_FIELD_IPV4 | IGC_MRQC_RSS_FIELD_IPV4_TCP | IGC_MRQC_RSS_FIELD_IPV6 | IGC_MRQC_RSS_FIELD_IPV6_TCP | IGC_MRQC_RSS_FIELD_IPV6_TCP_EX; if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP) mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP; if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP) mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP; mrqc |= IGC_MRQC_ENABLE_RSS_MQ; wr32(IGC_MRQC, mrqc); } /** * igc_setup_rctl - configure the receive control registers * @adapter: Board private structure */ static void igc_setup_rctl(struct igc_adapter *adapter) { struct igc_hw *hw = &adapter->hw; u32 rctl; rctl = rd32(IGC_RCTL); rctl &= ~(3 << IGC_RCTL_MO_SHIFT); rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC); rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF | (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT); /* enable stripping of CRC. Newer features require * that the HW strips the CRC. */ rctl |= IGC_RCTL_SECRC; /* disable store bad packets and clear size bits. */ rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256); /* enable LPE to allow for reception of jumbo frames */ rctl |= IGC_RCTL_LPE; /* disable queue 0 to prevent tail write w/o re-config */ wr32(IGC_RXDCTL(0), 0); /* This is useful for sniffing bad packets. */ if (adapter->netdev->features & NETIF_F_RXALL) { /* UPE and MPE will be handled by normal PROMISC logic * in set_rx_mode */ rctl |= (IGC_RCTL_SBP | /* Receive bad packets */ IGC_RCTL_BAM | /* RX All Bcast Pkts */ IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */ IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */ } wr32(IGC_RCTL, rctl); } /** * igc_setup_tctl - configure the transmit control registers * @adapter: Board private structure */ static void igc_setup_tctl(struct igc_adapter *adapter) { struct igc_hw *hw = &adapter->hw; u32 tctl; /* disable queue 0 which icould be enabled by default */ wr32(IGC_TXDCTL(0), 0); /* Program the Transmit Control Register */ tctl = rd32(IGC_TCTL); tctl &= ~IGC_TCTL_CT; tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC | (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT); /* Enable transmits */ tctl |= IGC_TCTL_EN; wr32(IGC_TCTL, tctl); } /** * igc_set_mac_filter_hw() - Set MAC address filter in hardware * @adapter: Pointer to adapter where the filter should be set * @index: Filter index * @type: MAC address filter type (source or destination) * @addr: MAC address * @queue: If non-negative, queue assignment feature is enabled and frames * matching the filter are enqueued onto 'queue'. Otherwise, queue * assignment is disabled. */ static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index, enum igc_mac_filter_type type, const u8 *addr, int queue) { struct net_device *dev = adapter->netdev; struct igc_hw *hw = &adapter->hw; u32 ral, rah; if (WARN_ON(index >= hw->mac.rar_entry_count)) return; ral = le32_to_cpup((__le32 *)(addr)); rah = le16_to_cpup((__le16 *)(addr + 4)); if (type == IGC_MAC_FILTER_TYPE_SRC) { rah &= ~IGC_RAH_ASEL_MASK; rah |= IGC_RAH_ASEL_SRC_ADDR; } if (queue >= 0) { rah &= ~IGC_RAH_QSEL_MASK; rah |= (queue << IGC_RAH_QSEL_SHIFT); rah |= IGC_RAH_QSEL_ENABLE; } rah |= IGC_RAH_AV; wr32(IGC_RAL(index), ral); wr32(IGC_RAH(index), rah); netdev_dbg(dev, "MAC address filter set in HW: index %d", index); } /** * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware * @adapter: Pointer to adapter where the filter should be cleared * @index: Filter index */ static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index) { struct net_device *dev = adapter->netdev; struct igc_hw *hw = &adapter->hw; if (WARN_ON(index >= hw->mac.rar_entry_count)) return; wr32(IGC_RAL(index), 0); wr32(IGC_RAH(index), 0); netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index); } /* Set default MAC address for the PF in the first RAR entry */ static void igc_set_default_mac_filter(struct igc_adapter *adapter) { struct net_device *dev = adapter->netdev; u8 *addr = adapter->hw.mac.addr; netdev_dbg(dev, "Set default MAC address filter: address %pM", addr); igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1); } /** * igc_set_mac - Change the Ethernet Address of the NIC * @netdev: network interface device structure * @p: pointer to an address structure * * Returns 0 on success, negative on failure */ static int igc_set_mac(struct net_device *netdev, void *p) { struct igc_adapter *adapter = netdev_priv(netdev); struct igc_hw *hw = &adapter->hw; struct sockaddr *addr = p; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; eth_hw_addr_set(netdev, addr->sa_data); memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len); /* set the correct pool for the new PF MAC address in entry 0 */ igc_set_default_mac_filter(adapter); return 0; } /** * igc_write_mc_addr_list - write multicast addresses to MTA * @netdev: network interface device structure * * Writes multicast address list to the MTA hash table. * Returns: -ENOMEM on failure * 0 on no addresses written * X on writing X addresses to MTA **/ static int igc_write_mc_addr_list(struct net_device *netdev) { struct igc_adapter *adapter = netdev_priv(netdev); struct igc_hw *hw = &adapter->hw; struct netdev_hw_addr *ha; u8 *mta_list; int i; if (netdev_mc_empty(netdev)) { /* nothing to program, so clear mc list */ igc_update_mc_addr_list(hw, NULL, 0); return 0; } mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC); if (!mta_list) return -ENOMEM; /* The shared function expects a packed array of only addresses. */ i = 0; netdev_for_each_mc_addr(ha, netdev) memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); igc_update_mc_addr_list(hw, mta_list, i); kfree(mta_list); return netdev_mc_count(netdev); } static __le32 igc_tx_launchtime(struct igc_adapter *adapter, ktime_t txtime) { ktime_t cycle_time = adapter->cycle_time; ktime_t base_time = adapter->base_time; u32 launchtime; /* FIXME: when using ETF together with taprio, we may have a * case where 'delta' is larger than the cycle_time, this may * cause problems if we don't read the current value of * IGC_BASET, as the value writen into the launchtime * descriptor field may be misinterpreted. */ div_s64_rem(ktime_sub_ns(txtime, base_time), cycle_time, &launchtime); return cpu_to_le32(launchtime); } static void igc_tx_ctxtdesc(struct igc_ring *tx_ring, struct igc_tx_buffer *first, u32 vlan_macip_lens, u32 type_tucmd, u32 mss_l4len_idx) { struct igc_adv_tx_context_desc *context_desc; u16 i = tx_ring->next_to_use; context_desc = IGC_TX_CTXTDESC(tx_ring, i); i++; tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; /* set bits to identify this as an advanced context descriptor */ type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT; /* For i225, context index must be unique per ring. */ if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags)) mss_l4len_idx |= tx_ring->reg_idx << 4; context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); /* We assume there is always a valid Tx time available. Invalid times * should have been handled by the upper layers. */ if (tx_ring->launchtime_enable) { struct igc_adapter *adapter = netdev_priv(tx_ring->netdev); ktime_t txtime = first->skb->tstamp; skb_txtime_consumed(first->skb); context_desc->launch_time = igc_tx_launchtime(adapter, txtime); } else { context_desc->launch_time = 0; } } static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first) { struct sk_buff *skb = first->skb; u32 vlan_macip_lens = 0; u32 type_tucmd = 0; if (skb->ip_summed != CHECKSUM_PARTIAL) { csum_failed: if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) && !tx_ring->launchtime_enable) return; goto no_csum; } switch (skb->csum_offset) { case offsetof(struct tcphdr, check): type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP; fallthrough; case offsetof(struct udphdr, check): break; case offsetof(struct sctphdr, checksum): /* validate that this is actually an SCTP request */ if (skb_csum_is_sctp(skb)) { type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP; break; } fallthrough; default: skb_checksum_help(skb); goto csum_failed; } /* update TX checksum flag */ first->tx_flags |= IGC_TX_FLAGS_CSUM; vlan_macip_lens = skb_checksum_start_offset(skb) - skb_network_offset(skb); no_csum: vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT; vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK; igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0); } static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size) { struct net_device *netdev = tx_ring->netdev; netif_stop_subqueue(netdev, tx_ring->queue_index); /* memory barriier comment */ smp_mb(); /* We need to check again in a case another CPU has just * made room available. */ if (igc_desc_unused(tx_ring) < size) return -EBUSY; /* A reprieve! */ netif_wake_subqueue(netdev, tx_ring->queue_index); u64_stats_update_begin(&tx_ring->tx_syncp2); tx_ring->tx_stats.restart_queue2++; u64_stats_update_end(&tx_ring->tx_syncp2); return 0; } static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size) { if (igc_desc_unused(tx_ring) >= size) return 0; return __igc_maybe_stop_tx(tx_ring, size); } #define IGC_SET_FLAG(_input, _flag, _result) \ (((_flag) <= (_result)) ? \ ((u32)((_input) & (_flag)) * ((_result) / (_flag))) : \ ((u32)((_input) & (_flag)) / ((_flag) / (_result)))) static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags) { /* set type for advanced descriptor with frame checksum insertion */ u32 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT | IGC_ADVTXD_DCMD_IFCS; /* set HW vlan bit if vlan is present */ cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_VLAN, IGC_ADVTXD_DCMD_VLE); /* set segmentation bits for TSO */ cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO, (IGC_ADVTXD_DCMD_TSE)); /* set timestamp bit if present */ cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP, (IGC_ADVTXD_MAC_TSTAMP)); /* insert frame checksum */ cmd_type ^= IGC_SET_FLAG(skb->no_fcs, 1, IGC_ADVTXD_DCMD_IFCS); return cmd_type; } static void igc_tx_olinfo_status(struct igc_ring *tx_ring, union igc_adv_tx_desc *tx_desc, u32 tx_flags, unsigned int paylen) { u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT; /* insert L4 checksum */ olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) * ((IGC_TXD_POPTS_TXSM << 8) / IGC_TX_FLAGS_CSUM); /* insert IPv4 checksum */ olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) * (((IGC_TXD_POPTS_IXSM << 8)) / IGC_TX_FLAGS_IPV4); tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); } static int igc_tx_map(struct igc_ring *tx_ring, struct igc_tx_buffer *first, const u8 hdr_len) { struct sk_buff *skb = first->skb; struct igc_tx_buffer *tx_buffer; union igc_adv_tx_desc *tx_desc; u32 tx_flags = first->tx_flags; skb_frag_t *frag; u16 i = tx_ring->next_to_use; unsigned int data_len, size; dma_addr_t dma; u32 cmd_type; cmd_type = igc_tx_cmd_type(skb, tx_flags); tx_desc = IGC_TX_DESC(tx_ring, i); igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len); size = skb_headlen(skb); data_len = skb->data_len; dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); tx_buffer = first; for (frag = &skb_shinfo(skb)->frags[0];; frag++) { if (dma_mapping_error(tx_ring->dev, dma)) goto dma_error; /* record length, and DMA address */ dma_unmap_len_set(tx_buffer, len, size); dma_unmap_addr_set(tx_buffer, dma, dma); tx_desc->read.buffer_addr = cpu_to_le64(dma); while (unlikely(size > IGC_MAX_DATA_PER_TXD)) { tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD); i++; tx_desc++; if (i == tx_ring->count) { tx_desc = IGC_TX_DESC(tx_ring, 0); i = 0; } tx_desc->read.olinfo_status = 0; dma += IGC_MAX_DATA_PER_TXD; size -= IGC_MAX_DATA_PER_TXD; tx_desc->read.buffer_addr = cpu_to_le64(dma); } if (likely(!data_len)) break; tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size); i++; tx_desc++; if (i == tx_ring->count) { tx_desc = IGC_TX_DESC(tx_ring, 0); i = 0; } tx_desc->read.olinfo_status = 0; size = skb_frag_size(frag); data_len -= size; dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, DMA_TO_DEVICE); tx_buffer = &tx_ring->tx_buffer_info[i]; } /* write last descriptor with RS and EOP bits */ cmd_type |= size | IGC_TXD_DCMD; tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); /* set the timestamp */ first->time_stamp = jiffies; skb_tx_timestamp(skb); /* Force memory writes to complete before letting h/w know there * are new descriptors to fetch. (Only applicable for weak-ordered * memory model archs, such as IA-64). * * We also need this memory barrier to make certain all of the * status bits have been updated before next_to_watch is written. */ wmb(); /* set next_to_watch value indicating a packet is present */ first->next_to_watch = tx_desc; i++; if (i == tx_ring->count) i = 0; tx_ring->next_to_use = i; /* Make sure there is space in the ring for the next send. */ igc_maybe_stop_tx(tx_ring, DESC_NEEDED); if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) { writel(i, tx_ring->tail); } return 0; dma_error: netdev_err(tx_ring->netdev, "TX DMA map failed\n"); tx_buffer = &tx_ring->tx_buffer_info[i]; /* clear dma mappings for failed tx_buffer_info map */ while (tx_buffer != first) { if (dma_unmap_len(tx_buffer, len)) igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); if (i-- == 0) i += tx_ring->count; tx_buffer = &tx_ring->tx_buffer_info[i]; } if (dma_unmap_len(tx_buffer, len)) igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); dev_kfree_skb_any(tx_buffer->skb); tx_buffer->skb = NULL; tx_ring->next_to_use = i; return -1; } static int igc_tso(struct igc_ring *tx_ring, struct igc_tx_buffer *first, u8 *hdr_len) { u32 vlan_macip_lens, type_tucmd, mss_l4len_idx; struct sk_buff *skb = first->skb; union { struct iphdr *v4; struct ipv6hdr *v6; unsigned char *hdr; } ip; union { struct tcphdr *tcp; struct udphdr *udp; unsigned char *hdr; } l4; u32 paylen, l4_offset; int err; if (skb->ip_summed != CHECKSUM_PARTIAL) return 0; if (!skb_is_gso(skb)) return 0; err = skb_cow_head(skb, 0); if (err < 0) return err; ip.hdr = skb_network_header(skb); l4.hdr = skb_checksum_start(skb); /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP; /* initialize outer IP header fields */ if (ip.v4->version == 4) { unsigned char *csum_start = skb_checksum_start(skb); unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4); /* IP header will have to cancel out any data that * is not a part of the outer IP header */ ip.v4->check = csum_fold(csum_partial(trans_start, csum_start - trans_start, 0)); type_tucmd |= IGC_ADVTXD_TUCMD_IPV4; ip.v4->tot_len = 0; first->tx_flags |= IGC_TX_FLAGS_TSO | IGC_TX_FLAGS_CSUM | IGC_TX_FLAGS_IPV4; } else { ip.v6->payload_len = 0; first->tx_flags |= IGC_TX_FLAGS_TSO | IGC_TX_FLAGS_CSUM; } /* determine offset of inner transport header */ l4_offset = l4.hdr - skb->data; /* remove payload length from inner checksum */ paylen = skb->len - l4_offset; if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) { /* compute length of segmentation header */ *hdr_len = (l4.tcp->doff * 4) + l4_offset; csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen)); } else { /* compute length of segmentation header */ *hdr_len = sizeof(*l4.udp) + l4_offset; csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen)); } /* update gso size and bytecount with header size */ first->gso_segs = skb_shinfo(skb)->gso_segs; first->bytecount += (first->gso_segs - 1) * *hdr_len; /* MSS L4LEN IDX */ mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT; mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT; /* VLAN MACLEN IPLEN */ vlan_macip_lens = l4.hdr - ip.hdr; vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT; vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK; igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, mss_l4len_idx); return 1; } static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb, struct igc_ring *tx_ring) { u16 count = TXD_USE_COUNT(skb_headlen(skb)); __be16 protocol = vlan_get_protocol(skb); struct igc_tx_buffer *first; u32 tx_flags = 0; unsigned short f; u8 hdr_len = 0; int tso = 0; /* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD, * + 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD, * + 2 desc gap to keep tail from touching head, * + 1 desc for context descriptor, * otherwise try next time */ for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) count += TXD_USE_COUNT(skb_frag_size( &skb_shinfo(skb)->frags[f])); if (igc_maybe_stop_tx(tx_ring, count + 3)) { /* this is a hard error */ return NETDEV_TX_BUSY; } /* record the location of the first descriptor for this packet */ first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; first->type = IGC_TX_BUFFER_TYPE_SKB; first->skb = skb; first->bytecount = skb->len; first->gso_segs = 1; if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { struct igc_adapter *adapter = netdev_priv(tx_ring->netdev); /* FIXME: add support for retrieving timestamps from * the other timer registers before skipping the * timestamping request. */ if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON && !test_and_set_bit_lock(__IGC_PTP_TX_IN_PROGRESS, &adapter->state)) { skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; tx_flags |= IGC_TX_FLAGS_TSTAMP; adapter->ptp_tx_skb = skb_get(skb); adapter->ptp_tx_start = jiffies; } else { adapter->tx_hwtstamp_skipped++; } } if (skb_vlan_tag_present(skb)) { tx_flags |= IGC_TX_FLAGS_VLAN; tx_flags |= (skb_vlan_tag_get(skb) << IGC_TX_FLAGS_VLAN_SHIFT); } /* record initial flags and protocol */ first->tx_flags = tx_flags; first->protocol = protocol; tso = igc_tso(tx_ring, first, &hdr_len); if (tso < 0) goto out_drop; else if (!tso) igc_tx_csum(tx_ring, first); igc_tx_map(tx_ring, first, hdr_len); return NETDEV_TX_OK; out_drop: dev_kfree_skb_any(first->skb); first->skb = NULL; return NETDEV_TX_OK; } static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter, struct sk_buff *skb) { unsigned int r_idx = skb->queue_mapping; if (r_idx >= adapter->num_tx_queues) r_idx = r_idx % adapter->num_tx_queues; return adapter->tx_ring[r_idx]; } static netdev_tx_t igc_xmit_frame(struct sk_buff *skb, struct net_device *netdev) { struct igc_adapter *adapter = netdev_priv(netdev); /* The minimum packet size with TCTL.PSP set is 17 so pad the skb * in order to meet this minimum size requirement. */ if (skb->len < 17) { if (skb_padto(skb, 17)) return NETDEV_TX_OK; skb->len = 17; } return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb)); } static void igc_rx_checksum(struct igc_ring *ring, union igc_adv_rx_desc *rx_desc, struct sk_buff *skb) { skb_checksum_none_assert(skb); /* Ignore Checksum bit is set */ if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM)) return; /* Rx checksum disabled via ethtool */ if (!(ring->netdev->features & NETIF_F_RXCSUM)) return; /* TCP/UDP checksum error bit is set */ if (igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_L4E | IGC_RXDEXT_STATERR_IPE)) { /* work around errata with sctp packets where the TCPE aka * L4E bit is set incorrectly on 64 byte (60 byte w/o crc) * packets (aka let the stack check the crc32c) */ if (!(skb->len == 60 && test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) { u64_stats_update_begin(&ring->rx_syncp); ring->rx_stats.csum_err++; u64_stats_update_end(&ring->rx_syncp); } /* let the stack verify checksum errors */ return; } /* It must be a TCP or UDP packet with a valid checksum */ if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS | IGC_RXD_STAT_UDPCS)) skb->ip_summed = CHECKSUM_UNNECESSARY; netdev_dbg(ring->netdev, "cksum success: bits %08X\n", le32_to_cpu(rx_desc->wb.upper.status_error)); } static inline void igc_rx_hash(struct igc_ring *ring, union igc_adv_rx_desc *rx_desc, struct sk_buff *skb) { if (ring->netdev->features & NETIF_F_RXHASH) skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss), PKT_HASH_TYPE_L3); } static void igc_rx_vlan(struct igc_ring *rx_ring, union igc_adv_rx_desc *rx_desc, struct sk_buff *skb) { struct net_device *dev = rx_ring->netdev; u16 vid; if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) && igc_test_staterr(rx_desc, IGC_RXD_STAT_VP)) { if (igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_LB) && test_bit(IGC_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags)) vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan); else vid = le16_to_cpu(rx_desc->wb.upper.vlan); __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); } } /** * igc_process_skb_fields - Populate skb header fields from Rx descriptor * @rx_ring: rx descriptor ring packet is being transacted on * @rx_desc: pointer to the EOP Rx descriptor * @skb: pointer to current skb being populated * * This function checks the ring, descriptor, and packet information in order * to populate the hash, checksum, VLAN, protocol, and other fields within the * skb. */ static void igc_process_skb_fields(struct igc_ring *rx_ring, union igc_adv_rx_desc *rx_desc, struct sk_buff *skb) { igc_rx_hash(rx_ring, rx_desc, skb); igc_rx_checksum(rx_ring, rx_desc, skb); igc_rx_vlan(rx_ring, rx_desc, skb); skb_record_rx_queue(skb, rx_ring->queue_index); skb->protocol = eth_type_trans(skb, rx_ring->netdev); } static void igc_vlan_mode(struct net_device *netdev, netdev_features_t features) { bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX); struct igc_adapter *adapter = netdev_priv(netdev); struct igc_hw *hw = &adapter->hw; u32 ctrl; ctrl = rd32(IGC_CTRL); if (enable) { /* enable VLAN tag insert/strip */ ctrl |= IGC_CTRL_VME; } else { /* disable VLAN tag insert/strip */ ctrl &= ~IGC_CTRL_VME; } wr32(IGC_CTRL, ctrl); } static void igc_restore_vlan(struct igc_adapter *adapter) { igc_vlan_mode(adapter->netdev, adapter->netdev->features); } static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring, const unsigned int size, int *rx_buffer_pgcnt) { struct igc_rx_buffer *rx_buffer; rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; *rx_buffer_pgcnt = #if (PAGE_SIZE < 8192) page_count(rx_buffer->page); #else 0; #endif prefetchw(rx_buffer->page); /* we are reusing so sync this buffer for CPU use */ dma_sync_single_range_for_cpu(rx_ring->dev, rx_buffer->dma, rx_buffer->page_offset, size, DMA_FROM_DEVICE); rx_buffer->pagecnt_bias--; return rx_buffer; } static void igc_rx_buffer_flip(struct igc_rx_buffer *buffer, unsigned int truesize) { #if (PAGE_SIZE < 8192) buffer->page_offset ^= truesize; #else buffer->page_offset += truesize; #endif } static unsigned int igc_get_rx_frame_truesize(struct igc_ring *ring, unsigned int size) { unsigned int truesize; #if (PAGE_SIZE < 8192) truesize = igc_rx_pg_size(ring) / 2; #else truesize = ring_uses_build_skb(ring) ? SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + SKB_DATA_ALIGN(IGC_SKB_PAD + size) : SKB_DATA_ALIGN(size); #endif return truesize; } /** * igc_add_rx_frag - Add contents of Rx buffer to sk_buff * @rx_ring: rx descriptor ring to transact packets on * @rx_buffer: buffer containing page to add * @skb: sk_buff to place the data into * @size: size of buffer to be added * * This function will add the data contained in rx_buffer->page to the skb. */ static void igc_add_rx_frag(struct igc_ring *rx_ring, struct igc_rx_buffer *rx_buffer, struct sk_buff *skb, unsigned int size) { unsigned int truesize; #if (PAGE_SIZE < 8192) truesize = igc_rx_pg_size(rx_ring) / 2; #else truesize = ring_uses_build_skb(rx_ring) ? SKB_DATA_ALIGN(IGC_SKB_PAD + size) : SKB_DATA_ALIGN(size); #endif skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, rx_buffer->page_offset, size, truesize); igc_rx_buffer_flip(rx_buffer, truesize); } static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring, struct igc_rx_buffer *rx_buffer, struct xdp_buff *xdp) { unsigned int size = xdp->data_end - xdp->data; unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size); unsigned int metasize = xdp->data - xdp->data_meta; struct sk_buff *skb; /* prefetch first cache line of first page */ net_prefetch(xdp->data_meta); /* build an skb around the page buffer */ skb = napi_build_skb(xdp->data_hard_start, truesize); if (unlikely(!skb)) return NULL; /* update pointers within the skb to store the data */ skb_reserve(skb, xdp->data - xdp->data_hard_start); __skb_put(skb, size); if (metasize) skb_metadata_set(skb, metasize); igc_rx_buffer_flip(rx_buffer, truesize); return skb; } static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring, struct igc_rx_buffer *rx_buffer, struct xdp_buff *xdp, ktime_t timestamp) { unsigned int metasize = xdp->data - xdp->data_meta; unsigned int size = xdp->data_end - xdp->data; unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size); void *va = xdp->data; unsigned int headlen; struct sk_buff *skb; /* prefetch first cache line of first page */ net_prefetch(xdp->data_meta); /* allocate a skb to store the frags */ skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGC_RX_HDR_LEN + metasize); if (unlikely(!skb)) return NULL; if (timestamp) skb_hwtstamps(skb)->hwtstamp = timestamp; /* Determine available headroom for copy */ headlen = size; if (headlen > IGC_RX_HDR_LEN) headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN); /* align pull length to size of long to optimize memcpy performance */ memcpy(__skb_put(skb, headlen + metasize), xdp->data_meta, ALIGN(headlen + metasize, sizeof(long))); if (metasize) { skb_metadata_set(skb, metasize); __skb_pull(skb, metasize); } /* update all of the pointers */ size -= headlen; if (size) { skb_add_rx_frag(skb, 0, rx_buffer->page, (va + headlen) - page_address(rx_buffer->page), size, truesize); igc_rx_buffer_flip(rx_buffer, truesize); } else { rx_buffer->pagecnt_bias++; } return skb; } /** * igc_reuse_rx_page - page flip buffer and store it back on the ring * @rx_ring: rx descriptor ring to store buffers on * @old_buff: donor buffer to have page reused * * Synchronizes page for reuse by the adapter */ static void igc_reuse_rx_page(struct igc_ring *rx_ring, struct igc_rx_buffer *old_buff) { u16 nta = rx_ring->next_to_alloc; struct igc_rx_buffer *new_buff; new_buff = &rx_ring->rx_buffer_info[nta]; /* update, and store next to alloc */ nta++; rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; /* Transfer page from old buffer to new buffer. * Move each member individually to avoid possible store * forwarding stalls. */ new_buff->dma = old_buff->dma; new_buff->page = old_buff->page; new_buff->page_offset = old_buff->page_offset; new_buff->pagecnt_bias = old_buff->pagecnt_bias; } static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer, int rx_buffer_pgcnt) { unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; struct page *page = rx_buffer->page; /* avoid re-using remote and pfmemalloc pages */ if (!dev_page_is_reusable(page)) return false; #if (PAGE_SIZE < 8192) /* if we are only owner of page we can reuse it */ if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1)) return false; #else #define IGC_LAST_OFFSET \ (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048) if (rx_buffer->page_offset > IGC_LAST_OFFSET) return false; #endif /* If we have drained the page fragment pool we need to update * the pagecnt_bias and page count so that we fully restock the * number of references the driver holds. */ if (unlikely(pagecnt_bias == 1)) { page_ref_add(page, USHRT_MAX - 1); rx_buffer->pagecnt_bias = USHRT_MAX; } return true; } /** * igc_is_non_eop - process handling of non-EOP buffers * @rx_ring: Rx ring being processed * @rx_desc: Rx descriptor for current buffer * * This function updates next to clean. If the buffer is an EOP buffer * this function exits returning false, otherwise it will place the * sk_buff in the next buffer to be chained and return true indicating * that this is in fact a non-EOP buffer. */ static bool igc_is_non_eop(struct igc_ring *rx_ring, union igc_adv_rx_desc *rx_desc) { u32 ntc = rx_ring->next_to_clean + 1; /* fetch, update, and store next to clean */ ntc = (ntc < rx_ring->count) ? ntc : 0; rx_ring->next_to_clean = ntc; prefetch(IGC_RX_DESC(rx_ring, ntc)); if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP))) return false; return true; } /** * igc_cleanup_headers - Correct corrupted or empty headers * @rx_ring: rx descriptor ring packet is being transacted on * @rx_desc: pointer to the EOP Rx descriptor * @skb: pointer to current skb being fixed * * Address the case where we are pulling data in on pages only * and as such no data is present in the skb header. * * In addition if skb is not at least 60 bytes we need to pad it so that * it is large enough to qualify as a valid Ethernet frame. * * Returns true if an error was encountered and skb was freed. */ static bool igc_cleanup_headers(struct igc_ring *rx_ring, union igc_adv_rx_desc *rx_desc, struct sk_buff *skb) { /* XDP packets use error pointer so abort at this point */ if (IS_ERR(skb)) return true; if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) { struct net_device *netdev = rx_ring->netdev; if (!(netdev->features & NETIF_F_RXALL)) { dev_kfree_skb_any(skb); return true; } } /* if eth_skb_pad returns an error the skb was freed */ if (eth_skb_pad(skb)) return true; return false; } static void igc_put_rx_buffer(struct igc_ring *rx_ring, struct igc_rx_buffer *rx_buffer, int rx_buffer_pgcnt) { if (igc_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) { /* hand second half of page back to the ring */ igc_reuse_rx_page(rx_ring, rx_buffer); } else { /* We are not reusing the buffer so unmap it and free * any references we are holding to it */ dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE, IGC_RX_DMA_ATTR); __page_frag_cache_drain(rx_buffer->page, rx_buffer->pagecnt_bias); } /* clear contents of rx_buffer */ rx_buffer->page = NULL; } static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring) { struct igc_adapter *adapter = rx_ring->q_vector->adapter; if (ring_uses_build_skb(rx_ring)) return IGC_SKB_PAD; if (igc_xdp_is_enabled(adapter)) return XDP_PACKET_HEADROOM; return 0; } static bool igc_alloc_mapped_page(struct igc_ring *rx_ring, struct igc_rx_buffer *bi) { struct page *page = bi->page; dma_addr_t dma; /* since we are recycling buffers we should seldom need to alloc */ if (likely(page)) return true; /* alloc new page for storage */ page = dev_alloc_pages(igc_rx_pg_order(rx_ring)); if (unlikely(!page)) { rx_ring->rx_stats.alloc_failed++; return false; } /* map page for use */ dma = dma_map_page_attrs(rx_ring->dev, page, 0, igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE, IGC_RX_DMA_ATTR); /* if mapping failed free memory back to system since * there isn't much point in holding memory we can't use */ if (dma_mapping_error(rx_ring->dev, dma)) { __free_page(page); rx_ring->rx_stats.alloc_failed++; return false; } bi->dma = dma; bi->page = page; bi->page_offset = igc_rx_offset(rx_ring); page_ref_add(page, USHRT_MAX - 1); bi->pagecnt_bias = USHRT_MAX; return true; } /** * igc_alloc_rx_buffers - Replace used receive buffers; packet split * @rx_ring: rx descriptor ring * @cleaned_count: number of buffers to clean */ static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count) { union igc_adv_rx_desc *rx_desc; u16 i = rx_ring->next_to_use; struct igc_rx_buffer *bi; u16 bufsz; /* nothing to do */ if (!cleaned_count) return; rx_desc = IGC_RX_DESC(rx_ring, i); bi = &rx_ring->rx_buffer_info[i]; i -= rx_ring->count; bufsz = igc_rx_bufsz(rx_ring); do { if (!igc_alloc_mapped_page(rx_ring, bi)) break; /* sync the buffer for use by the device */ dma_sync_single_range_for_device(rx_ring->dev, bi->dma, bi->page_offset, bufsz, DMA_FROM_DEVICE); /* Refresh the desc even if buffer_addrs didn't change * because each write-back erases this info. */ rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); rx_desc++; bi++; i++; if (unlikely(!i)) { rx_desc = IGC_RX_DESC(rx_ring, 0); bi = rx_ring->rx_buffer_info; i -= rx_ring->count; } /* clear the length for the next_to_use descriptor */ rx_desc->wb.upper.length = 0; cleaned_count--; } while (cleaned_count); i += rx_ring->count; if (rx_ring->next_to_use != i) { /* record the next descriptor to use */ rx_ring->next_to_use = i; /* update next to alloc since we have filled the ring */ rx_ring->next_to_alloc = i; /* Force memory writes to complete before letting h/w * know there are new descriptors to fetch. (Only * applicable for weak-ordered memory model archs, * such as IA-64). */ wmb(); writel(i, rx_ring->tail); } } static bool igc_alloc_rx_buffers_zc(struct igc_ring *ring, u16 count) { union igc_adv_rx_desc *desc; u16 i = ring->next_to_use; struct igc_rx_buffer *bi; dma_addr_t dma; bool ok = true; if (!count) return ok; desc = IGC_RX_DESC(ring, i); bi = &ring->rx_buffer_info[i]; i -= ring->count; do { bi->xdp = xsk_buff_alloc(ring->xsk_pool); if (!bi->xdp) { ok = false; break; } dma = xsk_buff_xdp_get_dma(bi->xdp); desc->read.pkt_addr = cpu_to_le64(dma); desc++; bi++; i++; if (unlikely(!i)) { desc = IGC_RX_DESC(ring, 0); bi = ring->rx_buffer_info; i -= ring->count; } /* Clear the length for the next_to_use descriptor. */ desc->wb.upper.length = 0; count--; } while (count); i += ring->count; if (ring->next_to_use != i) { ring->next_to_use = i; /* Force memory writes to complete before letting h/w * know there are new descriptors to fetch. (Only * applicable for weak-ordered memory model archs, * such as IA-64). */ wmb(); writel(i, ring->tail); } return ok; } /* This function requires __netif_tx_lock is held by the caller. */ static int igc_xdp_init_tx_descriptor(struct igc_ring *ring, struct xdp_frame *xdpf) { struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf); u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0; u16 count, index = ring->next_to_use; struct igc_tx_buffer *head = &ring->tx_buffer_info[index]; struct igc_tx_buffer *buffer = head; union igc_adv_tx_desc *desc = IGC_TX_DESC(ring, index); u32 olinfo_status, len = xdpf->len, cmd_type; void *data = xdpf->data; u16 i; count = TXD_USE_COUNT(len); for (i = 0; i < nr_frags; i++) count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i])); if (igc_maybe_stop_tx(ring, count + 3)) { /* this is a hard error */ return -EBUSY; } i = 0; head->bytecount = xdp_get_frame_len(xdpf); head->type = IGC_TX_BUFFER_TYPE_XDP; head->gso_segs = 1; head->xdpf = xdpf; olinfo_status = head->bytecount << IGC_ADVTXD_PAYLEN_SHIFT; desc->read.olinfo_status = cpu_to_le32(olinfo_status); for (;;) { dma_addr_t dma; dma = dma_map_single(ring->dev, data, len, DMA_TO_DEVICE); if (dma_mapping_error(ring->dev, dma)) { netdev_err_once(ring->netdev, "Failed to map DMA for TX\n"); goto unmap; } dma_unmap_len_set(buffer, len, len); dma_unmap_addr_set(buffer, dma, dma); cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT | IGC_ADVTXD_DCMD_IFCS | len; desc->read.cmd_type_len = cpu_to_le32(cmd_type); desc->read.buffer_addr = cpu_to_le64(dma); buffer->protocol = 0; if (++index == ring->count) index = 0; if (i == nr_frags) break; buffer = &ring->tx_buffer_info[index]; desc = IGC_TX_DESC(ring, index); desc->read.olinfo_status = 0; data = skb_frag_address(&sinfo->frags[i]); len = skb_frag_size(&sinfo->frags[i]); i++; } desc->read.cmd_type_len |= cpu_to_le32(IGC_TXD_DCMD); netdev_tx_sent_queue(txring_txq(ring), head->bytecount); /* set the timestamp */ head->time_stamp = jiffies; /* set next_to_watch value indicating a packet is present */ head->next_to_watch = desc; ring->next_to_use = index; return 0; unmap: for (;;) { buffer = &ring->tx_buffer_info[index]; if (dma_unmap_len(buffer, len)) dma_unmap_page(ring->dev, dma_unmap_addr(buffer, dma), dma_unmap_len(buffer, len), DMA_TO_DEVICE); dma_unmap_len_set(buffer, len, 0); if (buffer == head) break; if (!index) index += ring->count; index--; } return -ENOMEM; } static struct igc_ring *igc_xdp_get_tx_ring(struct igc_adapter *adapter, int cpu) { int index = cpu; if (unlikely(index < 0)) index = 0; while (index >= adapter->num_tx_queues) index -= adapter->num_tx_queues; return adapter->tx_ring[index]; } static int igc_xdp_xmit_back(struct igc_adapter *adapter, struct xdp_buff *xdp) { struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp); int cpu = smp_processor_id(); struct netdev_queue *nq; struct igc_ring *ring; int res; if (unlikely(!xdpf)) return -EFAULT; ring = igc_xdp_get_tx_ring(adapter, cpu); nq = txring_txq(ring); __netif_tx_lock(nq, cpu); res = igc_xdp_init_tx_descriptor(ring, xdpf); __netif_tx_unlock(nq); return res; } /* This function assumes rcu_read_lock() is held by the caller. */ static int __igc_xdp_run_prog(struct igc_adapter *adapter, struct bpf_prog *prog, struct xdp_buff *xdp) { u32 act = bpf_prog_run_xdp(prog, xdp); switch (act) { case XDP_PASS: return IGC_XDP_PASS; case XDP_TX: if (igc_xdp_xmit_back(adapter, xdp) < 0) goto out_failure; return IGC_XDP_TX; case XDP_REDIRECT: if (xdp_do_redirect(adapter->netdev, xdp, prog) < 0) goto out_failure; return IGC_XDP_REDIRECT; break; default: bpf_warn_invalid_xdp_action(adapter->netdev, prog, act); fallthrough; case XDP_ABORTED: out_failure: trace_xdp_exception(adapter->netdev, prog, act); fallthrough; case XDP_DROP: return IGC_XDP_CONSUMED; } } static struct sk_buff *igc_xdp_run_prog(struct igc_adapter *adapter, struct xdp_buff *xdp) { struct bpf_prog *prog; int res; prog = READ_ONCE(adapter->xdp_prog); if (!prog) { res = IGC_XDP_PASS; goto out; } res = __igc_xdp_run_prog(adapter, prog, xdp); out: return ERR_PTR(-res); } /* This function assumes __netif_tx_lock is held by the caller. */ static void igc_flush_tx_descriptors(struct igc_ring *ring) { /* Once tail pointer is updated, hardware can fetch the descriptors * any time so we issue a write membar here to ensure all memory * writes are complete before the tail pointer is updated. */ wmb(); writel(ring->next_to_use, ring->tail); } static void igc_finalize_xdp(struct igc_adapter *adapter, int status) { int cpu = smp_processor_id(); struct netdev_queue *nq; struct igc_ring *ring; if (status & IGC_XDP_TX) { ring = igc_xdp_get_tx_ring(adapter, cpu); nq = txring_txq(ring); __netif_tx_lock(nq, cpu); igc_flush_tx_descriptors(ring); __netif_tx_unlock(nq); } if (status & IGC_XDP_REDIRECT) xdp_do_flush(); } static void igc_update_rx_stats(struct igc_q_vector *q_vector, unsigned int packets, unsigned int bytes) { struct igc_ring *ring = q_vector->rx.ring; u64_stats_update_begin(&ring->rx_syncp); ring->rx_stats.packets += packets; ring->rx_stats.bytes += bytes; u64_stats_update_end(&ring->rx_syncp); q_vector->rx.total_packets += packets; q_vector->rx.total_bytes += bytes; } static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget) { unsigned int total_bytes = 0, total_packets = 0; struct igc_adapter *adapter = q_vector->adapter; struct igc_ring *rx_ring = q_vector->rx.ring; struct sk_buff *skb = rx_ring->skb; u16 cleaned_count = igc_desc_unused(rx_ring); int xdp_status = 0, rx_buffer_pgcnt; while (likely(total_packets < budget)) { union igc_adv_rx_desc *rx_desc; struct igc_rx_buffer *rx_buffer; unsigned int size, truesize; ktime_t timestamp = 0; struct xdp_buff xdp; int pkt_offset = 0; void *pktbuf; /* return some buffers to hardware, one at a time is too slow */ if (cleaned_count >= IGC_RX_BUFFER_WRITE) { igc_alloc_rx_buffers(rx_ring, cleaned_count); cleaned_count = 0; } rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean); size = le16_to_cpu(rx_desc->wb.upper.length); if (!size) break; /* This memory barrier is needed to keep us from reading * any other fields out of the rx_desc until we know the * descriptor has been written back */ dma_rmb(); rx_buffer = igc_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt); truesize = igc_get_rx_frame_truesize(rx_ring, size); pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset; if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP)) { timestamp = igc_ptp_rx_pktstamp(q_vector->adapter, pktbuf); pkt_offset = IGC_TS_HDR_LEN; size -= IGC_TS_HDR_LEN; } if (!skb) { xdp_init_buff(&xdp, truesize, &rx_ring->xdp_rxq); xdp_prepare_buff(&xdp, pktbuf - igc_rx_offset(rx_ring), igc_rx_offset(rx_ring) + pkt_offset, size, true); xdp_buff_clear_frags_flag(&xdp); skb = igc_xdp_run_prog(adapter, &xdp); } if (IS_ERR(skb)) { unsigned int xdp_res = -PTR_ERR(skb); switch (xdp_res) { case IGC_XDP_CONSUMED: rx_buffer->pagecnt_bias++; break; case IGC_XDP_TX: case IGC_XDP_REDIRECT: igc_rx_buffer_flip(rx_buffer, truesize); xdp_status |= xdp_res; break; } total_packets++; total_bytes += size; } else if (skb) igc_add_rx_frag(rx_ring, rx_buffer, skb, size); else if (ring_uses_build_skb(rx_ring)) skb = igc_build_skb(rx_ring, rx_buffer, &xdp); else skb = igc_construct_skb(rx_ring, rx_buffer, &xdp, timestamp); /* exit if we failed to retrieve a buffer */ if (!skb) { rx_ring->rx_stats.alloc_failed++; rx_buffer->pagecnt_bias++; break; } igc_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt); cleaned_count++; /* fetch next buffer in frame if non-eop */ if (igc_is_non_eop(rx_ring, rx_desc)) continue; /* verify the packet layout is correct */ if (igc_cleanup_headers(rx_ring, rx_desc, skb)) { skb = NULL; continue; } /* probably a little skewed due to removing CRC */ total_bytes += skb->len; /* populate checksum, VLAN, and protocol */ igc_process_skb_fields(rx_ring, rx_desc, skb); napi_gro_receive(&q_vector->napi, skb); /* reset skb pointer */ skb = NULL; /* update budget accounting */ total_packets++; } if (xdp_status) igc_finalize_xdp(adapter, xdp_status); /* place incomplete frames back on ring for completion */ rx_ring->skb = skb; igc_update_rx_stats(q_vector, total_packets, total_bytes); if (cleaned_count) igc_alloc_rx_buffers(rx_ring, cleaned_count); return total_packets; } static struct sk_buff *igc_construct_skb_zc(struct igc_ring *ring, struct xdp_buff *xdp) { unsigned int totalsize = xdp->data_end - xdp->data_meta; unsigned int metasize = xdp->data - xdp->data_meta; struct sk_buff *skb; net_prefetch(xdp->data_meta); skb = __napi_alloc_skb(&ring->q_vector->napi, totalsize, GFP_ATOMIC | __GFP_NOWARN); if (unlikely(!skb)) return NULL; memcpy(__skb_put(skb, totalsize), xdp->data_meta, ALIGN(totalsize, sizeof(long))); if (metasize) { skb_metadata_set(skb, metasize); __skb_pull(skb, metasize); } return skb; } static void igc_dispatch_skb_zc(struct igc_q_vector *q_vector, union igc_adv_rx_desc *desc, struct xdp_buff *xdp, ktime_t timestamp) { struct igc_ring *ring = q_vector->rx.ring; struct sk_buff *skb; skb = igc_construct_skb_zc(ring, xdp); if (!skb) { ring->rx_stats.alloc_failed++; return; } if (timestamp) skb_hwtstamps(skb)->hwtstamp = timestamp; if (igc_cleanup_headers(ring, desc, skb)) return; igc_process_skb_fields(ring, desc, skb); napi_gro_receive(&q_vector->napi, skb); } static int igc_clean_rx_irq_zc(struct igc_q_vector *q_vector, const int budget) { struct igc_adapter *adapter = q_vector->adapter; struct igc_ring *ring = q_vector->rx.ring; u16 cleaned_count = igc_desc_unused(ring); int total_bytes = 0, total_packets = 0; u16 ntc = ring->next_to_clean; struct bpf_prog *prog; bool failure = false; int xdp_status = 0; rcu_read_lock(); prog = READ_ONCE(adapter->xdp_prog); while (likely(total_packets < budget)) { union igc_adv_rx_desc *desc; struct igc_rx_buffer *bi; ktime_t timestamp = 0; unsigned int size; int res; desc = IGC_RX_DESC(ring, ntc); size = le16_to_cpu(desc->wb.upper.length); if (!size) break; /* This memory barrier is needed to keep us from reading * any other fields out of the rx_desc until we know the * descriptor has been written back */ dma_rmb(); bi = &ring->rx_buffer_info[ntc]; if (igc_test_staterr(desc, IGC_RXDADV_STAT_TSIP)) { timestamp = igc_ptp_rx_pktstamp(q_vector->adapter, bi->xdp->data); bi->xdp->data += IGC_TS_HDR_LEN; /* HW timestamp has been copied into local variable. Metadata * length when XDP program is called should be 0. */ bi->xdp->data_meta += IGC_TS_HDR_LEN; size -= IGC_TS_HDR_LEN; } bi->xdp->data_end = bi->xdp->data + size; xsk_buff_dma_sync_for_cpu(bi->xdp, ring->xsk_pool); res = __igc_xdp_run_prog(adapter, prog, bi->xdp); switch (res) { case IGC_XDP_PASS: igc_dispatch_skb_zc(q_vector, desc, bi->xdp, timestamp); fallthrough; case IGC_XDP_CONSUMED: xsk_buff_free(bi->xdp); break; case IGC_XDP_TX: case IGC_XDP_REDIRECT: xdp_status |= res; break; } bi->xdp = NULL; total_bytes += size; total_packets++; cleaned_count++; ntc++; if (ntc == ring->count) ntc = 0; } ring->next_to_clean = ntc; rcu_read_unlock(); if (cleaned_count >= IGC_RX_BUFFER_WRITE) failure = !igc_alloc_rx_buffers_zc(ring, cleaned_count); if (xdp_status) igc_finalize_xdp(adapter, xdp_status); igc_update_rx_stats(q_vector, total_packets, total_bytes); if (xsk_uses_need_wakeup(ring->xsk_pool)) { if (failure || ring->next_to_clean == ring->next_to_use) xsk_set_rx_need_wakeup(ring->xsk_pool); else xsk_clear_rx_need_wakeup(ring->xsk_pool); return total_packets; } return failure ? budget : total_packets; } static void igc_update_tx_stats(struct igc_q_vector *q_vector, unsigned int packets, unsigned int bytes) { struct igc_ring *ring = q_vector->tx.ring; u64_stats_update_begin(&ring->tx_syncp); ring->tx_stats.bytes += bytes; ring->tx_stats.packets += packets; u64_stats_update_end(&ring->tx_syncp); q_vector->tx.total_bytes += bytes; q_vector->tx.total_packets += packets; } static void igc_xdp_xmit_zc(struct igc_ring *ring) { struct xsk_buff_pool *pool = ring->xsk_pool; struct netdev_queue *nq = txring_txq(ring); union igc_adv_tx_desc *tx_desc = NULL; int cpu = smp_processor_id(); u16 ntu = ring->next_to_use; struct xdp_desc xdp_desc; u16 budget; if (!netif_carrier_ok(ring->netdev)) return; __netif_tx_lock(nq, cpu); budget = igc_desc_unused(ring); while (xsk_tx_peek_desc(pool, &xdp_desc) && budget--) { u32 cmd_type, olinfo_status; struct igc_tx_buffer *bi; dma_addr_t dma; cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT | IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD | xdp_desc.len; olinfo_status = xdp_desc.len << IGC_ADVTXD_PAYLEN_SHIFT; dma = xsk_buff_raw_get_dma(pool, xdp_desc.addr); xsk_buff_raw_dma_sync_for_device(pool, dma, xdp_desc.len); tx_desc = IGC_TX_DESC(ring, ntu); tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); tx_desc->read.buffer_addr = cpu_to_le64(dma); bi = &ring->tx_buffer_info[ntu]; bi->type = IGC_TX_BUFFER_TYPE_XSK; bi->protocol = 0; bi->bytecount = xdp_desc.len; bi->gso_segs = 1; bi->time_stamp = jiffies; bi->next_to_watch = tx_desc; netdev_tx_sent_queue(txring_txq(ring), xdp_desc.len); ntu++; if (ntu == ring->count) ntu = 0; } ring->next_to_use = ntu; if (tx_desc) { igc_flush_tx_descriptors(ring); xsk_tx_release(pool); } __netif_tx_unlock(nq); } /** * igc_clean_tx_irq - Reclaim resources after transmit completes * @q_vector: pointer to q_vector containing needed info * @napi_budget: Used to determine if we are in netpoll * * returns true if ring is completely cleaned */ static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget) { struct igc_adapter *adapter = q_vector->adapter; unsigned int total_bytes = 0, total_packets = 0; unsigned int budget = q_vector->tx.work_limit; struct igc_ring *tx_ring = q_vector->tx.ring; unsigned int i = tx_ring->next_to_clean; struct igc_tx_buffer *tx_buffer; union igc_adv_tx_desc *tx_desc; u32 xsk_frames = 0; if (test_bit(__IGC_DOWN, &adapter->state)) return true; tx_buffer = &tx_ring->tx_buffer_info[i]; tx_desc = IGC_TX_DESC(tx_ring, i); i -= tx_ring->count; do { union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch; /* if next_to_watch is not set then there is no work pending */ if (!eop_desc) break; /* prevent any other reads prior to eop_desc */ smp_rmb(); /* if DD is not set pending work has not been completed */ if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD))) break; /* clear next_to_watch to prevent false hangs */ tx_buffer->next_to_watch = NULL; /* update the statistics for this packet */ total_bytes += tx_buffer->bytecount; total_packets += tx_buffer->gso_segs; switch (tx_buffer->type) { case IGC_TX_BUFFER_TYPE_XSK: xsk_frames++; break; case IGC_TX_BUFFER_TYPE_XDP: xdp_return_frame(tx_buffer->xdpf); igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); break; case IGC_TX_BUFFER_TYPE_SKB: napi_consume_skb(tx_buffer->skb, napi_budget); igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); break; default: netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n"); break; } /* clear last DMA location and unmap remaining buffers */ while (tx_desc != eop_desc) { tx_buffer++; tx_desc++; i++; if (unlikely(!i)) { i -= tx_ring->count; tx_buffer = tx_ring->tx_buffer_info; tx_desc = IGC_TX_DESC(tx_ring, 0); } /* unmap any remaining paged data */ if (dma_unmap_len(tx_buffer, len)) igc_unmap_tx_buffer(tx_ring->dev, tx_buffer); } /* move us one more past the eop_desc for start of next pkt */ tx_buffer++; tx_desc++; i++; if (unlikely(!i)) { i -= tx_ring->count; tx_buffer = tx_ring->tx_buffer_info; tx_desc = IGC_TX_DESC(tx_ring, 0); } /* issue prefetch for next Tx descriptor */ prefetch(tx_desc); /* update budget accounting */ budget--; } while (likely(budget)); netdev_tx_completed_queue(txring_txq(tx_ring), total_packets, total_bytes); i += tx_ring->count; tx_ring->next_to_clean = i; igc_update_tx_stats(q_vector, total_packets, total_bytes); if (tx_ring->xsk_pool) { if (xsk_frames) xsk_tx_completed(tx_ring->xsk_pool, xsk_frames); if (xsk_uses_need_wakeup(tx_ring->xsk_pool)) xsk_set_tx_need_wakeup(tx_ring->xsk_pool); igc_xdp_xmit_zc(tx_ring); } if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) { struct igc_hw *hw = &adapter->hw; /* Detect a transmit hang in hardware, this serializes the * check with the clearing of time_stamp and movement of i */ clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); if (tx_buffer->next_to_watch && time_after(jiffies, tx_buffer->time_stamp + (adapter->tx_timeout_factor * HZ)) && !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF)) { /* detected Tx unit hang */ netdev_err(tx_ring->netdev, "Detected Tx Unit Hang\n" " Tx Queue <%d>\n" " TDH <%x>\n" " TDT <%x>\n" " next_to_use <%x>\n" " next_to_clean <%x>\n" "buffer_info[next_to_clean]\n" " time_stamp <%lx>\n" " next_to_watch <%p>\n" " jiffies <%lx>\n" " desc.status <%x>\n", tx_ring->queue_index, rd32(IGC_TDH(tx_ring->reg_idx)), readl(tx_ring->tail), tx_ring->next_to_use, tx_ring->next_to_clean, tx_buffer->time_stamp, tx_buffer->next_to_watch, jiffies, tx_buffer->next_to_watch->wb.status); netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); /* we are about to reset, no point in enabling stuff */ return true; } } #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) { /* Make sure that anybody stopping the queue after this * sees the new next_to_clean. */ smp_mb(); if (__netif_subqueue_stopped(tx_ring->netdev, tx_ring->queue_index) && !(test_bit(__IGC_DOWN, &adapter->state))) { netif_wake_subqueue(tx_ring->netdev, tx_ring->queue_index); u64_stats_update_begin(&tx_ring->tx_syncp); tx_ring->tx_stats.restart_queue++; u64_stats_update_end(&tx_ring->tx_syncp); } } return !!budget; } static int igc_find_mac_filter(struct igc_adapter *adapter, enum igc_mac_filter_type type, const u8 *addr) { struct igc_hw *hw = &adapter->hw; int max_entries = hw->mac.rar_entry_count; u32 ral, rah; int i; for (i = 0; i < max_entries; i++) { ral = rd32(IGC_RAL(i)); rah = rd32(IGC_RAH(i)); if (!(rah & IGC_RAH_AV)) continue; if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type) continue; if ((rah & IGC_RAH_RAH_MASK) != le16_to_cpup((__le16 *)(addr + 4))) continue; if (ral != le32_to_cpup((__le32 *)(addr))) continue; return i; } return -1; } static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter) { struct igc_hw *hw = &adapter->hw; int max_entries = hw->mac.rar_entry_count; u32 rah; int i; for (i = 0; i < max_entries; i++) { rah = rd32(IGC_RAH(i)); if (!(rah & IGC_RAH_AV)) return i; } return -1; } /** * igc_add_mac_filter() - Add MAC address filter * @adapter: Pointer to adapter where the filter should be added * @type: MAC address filter type (source or destination) * @addr: MAC address * @queue: If non-negative, queue assignment feature is enabled and frames * matching the filter are enqueued onto 'queue'. Otherwise, queue * assignment is disabled. * * Return: 0 in case of success, negative errno code otherwise. */ static int igc_add_mac_filter(struct igc_adapter *adapter, enum igc_mac_filter_type type, const u8 *addr, int queue) { struct net_device *dev = adapter->netdev; int index; index = igc_find_mac_filter(adapter, type, addr); if (index >= 0) goto update_filter; index = igc_get_avail_mac_filter_slot(adapter); if (index < 0) return -ENOSPC; netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n", index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src", addr, queue); update_filter: igc_set_mac_filter_hw(adapter, index, type, addr, queue); return 0; } /** * igc_del_mac_filter() - Delete MAC address filter * @adapter: Pointer to adapter where the filter should be deleted from * @type: MAC address filter type (source or destination) * @addr: MAC address */ static void igc_del_mac_filter(struct igc_adapter *adapter, enum igc_mac_filter_type type, const u8 *addr) { struct net_device *dev = adapter->netdev; int index; index = igc_find_mac_filter(adapter, type, addr); if (index < 0) return; if (index == 0) { /* If this is the default filter, we don't actually delete it. * We just reset to its default value i.e. disable queue * assignment. */ netdev_dbg(dev, "Disable default MAC filter queue assignment"); igc_set_mac_filter_hw(adapter, 0, type, addr, -1); } else { netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n", index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src", addr); igc_clear_mac_filter_hw(adapter, index); } } /** * igc_add_vlan_prio_filter() - Add VLAN priority filter * @adapter: Pointer to adapter where the filter should be added * @prio: VLAN priority value * @queue: Queue number which matching frames are assigned to * * Return: 0 in case of success, negative errno code otherwise. */ static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio, int queue) { struct net_device *dev = adapter->netdev; struct igc_hw *hw = &adapter->hw; u32 vlanpqf; vlanpqf = rd32(IGC_VLANPQF); if (vlanpqf & IGC_VLANPQF_VALID(prio)) { netdev_dbg(dev, "VLAN priority filter already in use\n"); return -EEXIST; } vlanpqf |= IGC_VLANPQF_QSEL(prio, queue); vlanpqf |= IGC_VLANPQF_VALID(prio); wr32(IGC_VLANPQF, vlanpqf); netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n", prio, queue); return 0; } /** * igc_del_vlan_prio_filter() - Delete VLAN priority filter * @adapter: Pointer to adapter where the filter should be deleted from * @prio: VLAN priority value */ static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio) { struct igc_hw *hw = &adapter->hw; u32 vlanpqf; vlanpqf = rd32(IGC_VLANPQF); vlanpqf &= ~IGC_VLANPQF_VALID(prio); vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK); wr32(IGC_VLANPQF, vlanpqf); netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n", prio); } static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter) { struct igc_hw *hw = &adapter->hw; int i; for (i = 0; i < MAX_ETYPE_FILTER; i++) { u32 etqf = rd32(IGC_ETQF(i)); if (!(etqf & IGC_ETQF_FILTER_ENABLE)) return i; } return -1; } /** * igc_add_etype_filter() - Add ethertype filter * @adapter: Pointer to adapter where the filter should be added * @etype: Ethertype value * @queue: If non-negative, queue assignment feature is enabled and frames * matching the filter are enqueued onto 'queue'. Otherwise, queue * assignment is disabled. * * Return: 0 in case of success, negative errno code otherwise. */ static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype, int queue) { struct igc_hw *hw = &adapter->hw; int index; u32 etqf; index = igc_get_avail_etype_filter_slot(adapter); if (index < 0) return -ENOSPC; etqf = rd32(IGC_ETQF(index)); etqf &= ~IGC_ETQF_ETYPE_MASK; etqf |= etype; if (queue >= 0) { etqf &= ~IGC_ETQF_QUEUE_MASK; etqf |= (queue << IGC_ETQF_QUEUE_SHIFT); etqf |= IGC_ETQF_QUEUE_ENABLE; } etqf |= IGC_ETQF_FILTER_ENABLE; wr32(IGC_ETQF(index), etqf); netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n", etype, queue); return 0; } static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype) { struct igc_hw *hw = &adapter->hw; int i; for (i = 0; i < MAX_ETYPE_FILTER; i++) { u32 etqf = rd32(IGC_ETQF(i)); if ((etqf & IGC_ETQF_ETYPE_MASK) == etype) return i; } return -1; } /** * igc_del_etype_filter() - Delete ethertype filter * @adapter: Pointer to adapter where the filter should be deleted from * @etype: Ethertype value */ static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype) { struct igc_hw *hw = &adapter->hw; int index; index = igc_find_etype_filter(adapter, etype); if (index < 0) return; wr32(IGC_ETQF(index), 0); netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n", etype); } static int igc_flex_filter_select(struct igc_adapter *adapter, struct igc_flex_filter *input, u32 *fhft) { struct igc_hw *hw = &adapter->hw; u8 fhft_index; u32 fhftsl; if (input->index >= MAX_FLEX_FILTER) { dev_err(&adapter->pdev->dev, "Wrong Flex Filter index selected!\n"); return -EINVAL; } /* Indirect table select register */ fhftsl = rd32(IGC_FHFTSL); fhftsl &= ~IGC_FHFTSL_FTSL_MASK; switch (input->index) { case 0 ... 7: fhftsl |= 0x00; break; case 8 ... 15: fhftsl |= 0x01; break; case 16 ... 23: fhftsl |= 0x02; break; case 24 ... 31: fhftsl |= 0x03; break; } wr32(IGC_FHFTSL, fhftsl); /* Normalize index down to host table register */ fhft_index = input->index % 8; *fhft = (fhft_index < 4) ? IGC_FHFT(fhft_index) : IGC_FHFT_EXT(fhft_index - 4); return 0; } static int igc_write_flex_filter_ll(struct igc_adapter *adapter, struct igc_flex_filter *input) { struct device *dev = &adapter->pdev->dev; struct igc_hw *hw = &adapter->hw; u8 *data = input->data; u8 *mask = input->mask; u32 queuing; u32 fhft; u32 wufc; int ret; int i; /* Length has to be aligned to 8. Otherwise the filter will fail. Bail * out early to avoid surprises later. */ if (input->length % 8 != 0) { dev_err(dev, "The length of a flex filter has to be 8 byte aligned!\n"); return -EINVAL; } /* Select corresponding flex filter register and get base for host table. */ ret = igc_flex_filter_select(adapter, input, &fhft); if (ret) return ret; /* When adding a filter globally disable flex filter feature. That is * recommended within the datasheet. */ wufc = rd32(IGC_WUFC); wufc &= ~IGC_WUFC_FLEX_HQ; wr32(IGC_WUFC, wufc); /* Configure filter */ queuing = input->length & IGC_FHFT_LENGTH_MASK; queuing |= (input->rx_queue << IGC_FHFT_QUEUE_SHIFT) & IGC_FHFT_QUEUE_MASK; queuing |= (input->prio << IGC_FHFT_PRIO_SHIFT) & IGC_FHFT_PRIO_MASK; if (input->immediate_irq) queuing |= IGC_FHFT_IMM_INT; if (input->drop) queuing |= IGC_FHFT_DROP; wr32(fhft + 0xFC, queuing); /* Write data (128 byte) and mask (128 bit) */ for (i = 0; i < 16; ++i) { const size_t data_idx = i * 8; const size_t row_idx = i * 16; u32 dw0 = (data[data_idx + 0] << 0) | (data[data_idx + 1] << 8) | (data[data_idx + 2] << 16) | (data[data_idx + 3] << 24); u32 dw1 = (data[data_idx + 4] << 0) | (data[data_idx + 5] << 8) | (data[data_idx + 6] << 16) | (data[data_idx + 7] << 24); u32 tmp; /* Write row: dw0, dw1 and mask */ wr32(fhft + row_idx, dw0); wr32(fhft + row_idx + 4, dw1); /* mask is only valid for MASK(7, 0) */ tmp = rd32(fhft + row_idx + 8); tmp &= ~GENMASK(7, 0); tmp |= mask[i]; wr32(fhft + row_idx + 8, tmp); } /* Enable filter. */ wufc |= IGC_WUFC_FLEX_HQ; if (input->index > 8) { /* Filter 0-7 are enabled via WUFC. The other 24 filters are not. */ u32 wufc_ext = rd32(IGC_WUFC_EXT); wufc_ext |= (IGC_WUFC_EXT_FLX8 << (input->index - 8)); wr32(IGC_WUFC_EXT, wufc_ext); } else { wufc |= (IGC_WUFC_FLX0 << input->index); } wr32(IGC_WUFC, wufc); dev_dbg(&adapter->pdev->dev, "Added flex filter %u to HW.\n", input->index); return 0; } static void igc_flex_filter_add_field(struct igc_flex_filter *flex, const void *src, unsigned int offset, size_t len, const void *mask) { int i; /* data */ memcpy(&flex->data[offset], src, len); /* mask */ for (i = 0; i < len; ++i) { const unsigned int idx = i + offset; const u8 *ptr = mask; if (mask) { if (ptr[i] & 0xff) flex->mask[idx / 8] |= BIT(idx % 8); continue; } flex->mask[idx / 8] |= BIT(idx % 8); } } static int igc_find_avail_flex_filter_slot(struct igc_adapter *adapter) { struct igc_hw *hw = &adapter->hw; u32 wufc, wufc_ext; int i; wufc = rd32(IGC_WUFC); wufc_ext = rd32(IGC_WUFC_EXT); for (i = 0; i < MAX_FLEX_FILTER; i++) { if (i < 8) { if (!(wufc & (IGC_WUFC_FLX0 << i))) return i; } else { if (!(wufc_ext & (IGC_WUFC_EXT_FLX8 << (i - 8)))) return i; } } return -ENOSPC; } static bool igc_flex_filter_in_use(struct igc_adapter *adapter) { struct igc_hw *hw = &adapter->hw; u32 wufc, wufc_ext; wufc = rd32(IGC_WUFC); wufc_ext = rd32(IGC_WUFC_EXT); if (wufc & IGC_WUFC_FILTER_MASK) return true; if (wufc_ext & IGC_WUFC_EXT_FILTER_MASK) return true; return false; } static int igc_add_flex_filter(struct igc_adapter *adapter, struct igc_nfc_rule *rule) { struct igc_flex_filter flex = { }; struct igc_nfc_filter *filter = &rule->filter; unsigned int eth_offset, user_offset; int ret, index; bool vlan; index = igc_find_avail_flex_filter_slot(adapter); if (index < 0) return -ENOSPC; /* Construct the flex filter: * -> dest_mac [6] * -> src_mac [6] * -> tpid [2] * -> vlan tci [2] * -> ether type [2] * -> user data [8] * -> = 26 bytes => 32 length */ flex.index = index; flex.length = 32; flex.rx_queue = rule->action; vlan = rule->filter.vlan_tci || rule->filter.vlan_etype; eth_offset = vlan ? 16 : 12; user_offset = vlan ? 18 : 14; /* Add destination MAC */ if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) igc_flex_filter_add_field(&flex, &filter->dst_addr, 0, ETH_ALEN, NULL); /* Add source MAC */ if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) igc_flex_filter_add_field(&flex, &filter->src_addr, 6, ETH_ALEN, NULL); /* Add VLAN etype */ if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_ETYPE) igc_flex_filter_add_field(&flex, &filter->vlan_etype, 12, sizeof(filter->vlan_etype), NULL); /* Add VLAN TCI */ if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) igc_flex_filter_add_field(&flex, &filter->vlan_tci, 14, sizeof(filter->vlan_tci), NULL); /* Add Ether type */ if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) { __be16 etype = cpu_to_be16(filter->etype); igc_flex_filter_add_field(&flex, &etype, eth_offset, sizeof(etype), NULL); } /* Add user data */ if (rule->filter.match_flags & IGC_FILTER_FLAG_USER_DATA) igc_flex_filter_add_field(&flex, &filter->user_data, user_offset, sizeof(filter->user_data), filter->user_mask); /* Add it down to the hardware and enable it. */ ret = igc_write_flex_filter_ll(adapter, &flex); if (ret) return ret; filter->flex_index = index; return 0; } static void igc_del_flex_filter(struct igc_adapter *adapter, u16 reg_index) { struct igc_hw *hw = &adapter->hw; u32 wufc; /* Just disable the filter. The filter table itself is kept * intact. Another flex_filter_add() should override the "old" data * then. */ if (reg_index > 8) { u32 wufc_ext = rd32(IGC_WUFC_EXT); wufc_ext &= ~(IGC_WUFC_EXT_FLX8 << (reg_index - 8)); wr32(IGC_WUFC_EXT, wufc_ext); } else { wufc = rd32(IGC_WUFC); wufc &= ~(IGC_WUFC_FLX0 << reg_index); wr32(IGC_WUFC, wufc); } if (igc_flex_filter_in_use(adapter)) return; /* No filters are in use, we may disable flex filters */ wufc = rd32(IGC_WUFC); wufc &= ~IGC_WUFC_FLEX_HQ; wr32(IGC_WUFC, wufc); } static int igc_enable_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule) { int err; if (rule->flex) { return igc_add_flex_filter(adapter, rule); } if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) { err = igc_add_etype_filter(adapter, rule->filter.etype, rule->action); if (err) return err; } if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) { err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC, rule->filter.src_addr, rule->action); if (err) return err; } if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) { err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, rule->filter.dst_addr, rule->action); if (err) return err; } if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) { int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; err = igc_add_vlan_prio_filter(adapter, prio, rule->action); if (err) return err; } return 0; } static void igc_disable_nfc_rule(struct igc_adapter *adapter, const struct igc_nfc_rule *rule) { if (rule->flex) { igc_del_flex_filter(adapter, rule->filter.flex_index); return; } if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) igc_del_etype_filter(adapter, rule->filter.etype); if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) { int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; igc_del_vlan_prio_filter(adapter, prio); } if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC, rule->filter.src_addr); if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, rule->filter.dst_addr); } /** * igc_get_nfc_rule() - Get NFC rule * @adapter: Pointer to adapter * @location: Rule location * * Context: Expects adapter->nfc_rule_lock to be held by caller. * * Return: Pointer to NFC rule at @location. If not found, NULL. */ struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter, u32 location) { struct igc_nfc_rule *rule; list_for_each_entry(rule, &adapter->nfc_rule_list, list) { if (rule->location == location) return rule; if (rule->location > location) break; } return NULL; } /** * igc_del_nfc_rule() - Delete NFC rule * @adapter: Pointer to adapter * @rule: Pointer to rule to be deleted * * Disable NFC rule in hardware and delete it from adapter. * * Context: Expects adapter->nfc_rule_lock to be held by caller. */ void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule) { igc_disable_nfc_rule(adapter, rule); list_del(&rule->list); adapter->nfc_rule_count--; kfree(rule); } static void igc_flush_nfc_rules(struct igc_adapter *adapter) { struct igc_nfc_rule *rule, *tmp; mutex_lock(&adapter->nfc_rule_lock); list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list) igc_del_nfc_rule(adapter, rule); mutex_unlock(&adapter->nfc_rule_lock); } /** * igc_add_nfc_rule() - Add NFC rule * @adapter: Pointer to adapter * @rule: Pointer to rule to be added * * Enable NFC rule in hardware and add it to adapter. * * Context: Expects adapter->nfc_rule_lock to be held by caller. * * Return: 0 on success, negative errno on failure. */ int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule) { struct igc_nfc_rule *pred, *cur; int err; err = igc_enable_nfc_rule(adapter, rule); if (err) return err; pred = NULL; list_for_each_entry(cur, &adapter->nfc_rule_list, list) { if (cur->location >= rule->location) break; pred = cur; } list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list); adapter->nfc_rule_count++; return 0; } static void igc_restore_nfc_rules(struct igc_adapter *adapter) { struct igc_nfc_rule *rule; mutex_lock(&adapter->nfc_rule_lock); list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list) igc_enable_nfc_rule(adapter, rule); mutex_unlock(&adapter->nfc_rule_lock); } static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr) { struct igc_adapter *adapter = netdev_priv(netdev); return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1); } static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr) { struct igc_adapter *adapter = netdev_priv(netdev); igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr); return 0; } /** * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set * @netdev: network interface device structure * * The set_rx_mode entry point is called whenever the unicast or multicast * address lists or the network interface flags are updated. This routine is * responsible for configuring the hardware for proper unicast, multicast, * promiscuous mode, and all-multi behavior. */ static void igc_set_rx_mode(struct net_device *netdev) { struct igc_adapter *adapter = netdev_priv(netdev); struct igc_hw *hw = &adapter->hw; u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE; int count; /* Check for Promiscuous and All Multicast modes */ if (netdev->flags & IFF_PROMISC) { rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE; } else { if (netdev->flags & IFF_ALLMULTI) { rctl |= IGC_RCTL_MPE; } else { /* Write addresses to the MTA, if the attempt fails * then we should just turn on promiscuous mode so * that we can at least receive multicast traffic */ count = igc_write_mc_addr_list(netdev); if (count < 0) rctl |= IGC_RCTL_MPE; } } /* Write addresses to available RAR registers, if there is not * sufficient space to store all the addresses then enable * unicast promiscuous mode */ if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync)) rctl |= IGC_RCTL_UPE; /* update state of unicast and multicast */ rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE); wr32(IGC_RCTL, rctl); #if (PAGE_SIZE < 8192) if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB) rlpml = IGC_MAX_FRAME_BUILD_SKB; #endif wr32(IGC_RLPML, rlpml); } /** * igc_configure - configure the hardware for RX and TX * @adapter: private board structure */ static void igc_configure(struct igc_adapter *adapter) { struct net_device *netdev = adapter->netdev; int i = 0; igc_get_hw_control(adapter); igc_set_rx_mode(netdev); igc_restore_vlan(adapter); igc_setup_tctl(adapter); igc_setup_mrqc(adapter); igc_setup_rctl(adapter); igc_set_default_mac_filter(adapter); igc_restore_nfc_rules(adapter); igc_configure_tx(adapter); igc_configure_rx(adapter); igc_rx_fifo_flush_base(&adapter->hw); /* call igc_desc_unused which always leaves * at least 1 descriptor unused to make sure * next_to_use != next_to_clean */ for (i = 0; i < adapter->num_rx_queues; i++) { struct igc_ring *ring = adapter->rx_ring[i]; if (ring->xsk_pool) igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring)); else igc_alloc_rx_buffers(ring, igc_desc_unused(ring)); } } /** * igc_write_ivar - configure ivar for given MSI-X vector * @hw: pointer to the HW structure * @msix_vector: vector number we are allocating to a given ring * @index: row index of IVAR register to write within IVAR table * @offset: column offset of in IVAR, should be multiple of 8 * * The IVAR table consists of 2 columns, * each containing an cause allocation for an Rx and Tx ring, and a * variable number of rows depending on the number of queues supported. */ static void igc_write_ivar(struct igc_hw *hw, int msix_vector, int index, int offset) { u32 ivar = array_rd32(IGC_IVAR0, index); /* clear any bits that are currently set */ ivar &= ~((u32)0xFF << offset); /* write vector and valid bit */ ivar |= (msix_vector | IGC_IVAR_VALID) << offset; array_wr32(IGC_IVAR0, index, ivar); } static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector) { struct igc_adapter *adapter = q_vector->adapter; struct igc_hw *hw = &adapter->hw; int rx_queue = IGC_N0_QUEUE; int tx_queue = IGC_N0_QUEUE; if (q_vector->rx.ring) rx_queue = q_vector->rx.ring->reg_idx; if (q_vector->tx.ring) tx_queue = q_vector->tx.ring->reg_idx; switch (hw->mac.type) { case igc_i225: if (rx_queue > IGC_N0_QUEUE) igc_write_ivar(hw, msix_vector, rx_queue >> 1, (rx_queue & 0x1) << 4); if (tx_queue > IGC_N0_QUEUE) igc_write_ivar(hw, msix_vector, tx_queue >> 1, ((tx_queue & 0x1) << 4) + 8); q_vector->eims_value = BIT(msix_vector); break; default: WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n"); break; } /* add q_vector eims value to global eims_enable_mask */ adapter->eims_enable_mask |= q_vector->eims_value; /* configure q_vector to set itr on first interrupt */ q_vector->set_itr = 1; } /** * igc_configure_msix - Configure MSI-X hardware * @adapter: Pointer to adapter structure * * igc_configure_msix sets up the hardware to properly * generate MSI-X interrupts. */ static void igc_configure_msix(struct igc_adapter *adapter) { struct igc_hw *hw = &adapter->hw; int i, vector = 0; u32 tmp; adapter->eims_enable_mask = 0; /* set vector for other causes, i.e. link changes */ switch (hw->mac.type) { case igc_i225: /* Turn on MSI-X capability first, or our settings * won't stick. And it will take days to debug. */ wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE | IGC_GPIE_PBA | IGC_GPIE_EIAME | IGC_GPIE_NSICR); /* enable msix_other interrupt */ adapter->eims_other = BIT(vector); tmp = (vector++ | IGC_IVAR_VALID) << 8; wr32(IGC_IVAR_MISC, tmp); break; default: /* do nothing, since nothing else supports MSI-X */ break; } /* switch (hw->mac.type) */ adapter->eims_enable_mask |= adapter->eims_other; for (i = 0; i < adapter->num_q_vectors; i++) igc_assign_vector(adapter->q_vector[i], vector++); wrfl(); } /** * igc_irq_enable - Enable default interrupt generation settings * @adapter: board private structure */ static void igc_irq_enable(struct igc_adapter *adapter) { struct igc_hw *hw = &adapter->hw; if (adapter->msix_entries) { u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA; u32 regval = rd32(IGC_EIAC); wr32(IGC_EIAC, regval | adapter->eims_enable_mask); regval = rd32(IGC_EIAM); wr32(IGC_EIAM, regval | adapter->eims_enable_mask); wr32(IGC_EIMS, adapter->eims_enable_mask); wr32(IGC_IMS, ims); } else { wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA); wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA); } } /** * igc_irq_disable - Mask off interrupt generation on the NIC * @adapter: board private structure */ static void igc_irq_disable(struct igc_adapter *adapter) { struct igc_hw *hw = &adapter->hw; if (adapter->msix_entries) { u32 regval = rd32(IGC_EIAM); wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask); wr32(IGC_EIMC, adapter->eims_enable_mask); regval = rd32(IGC_EIAC); wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask); } wr32(IGC_IAM, 0); wr32(IGC_IMC, ~0); wrfl(); if (adapter->msix_entries) { int vector = 0, i; synchronize_irq(adapter->msix_entries[vector++].vector); for (i = 0; i < adapter->num_q_vectors; i++) synchronize_irq(adapter->msix_entries[vector++].vector); } else { synchronize_irq(adapter->pdev->irq); } } void igc_set_flag_queue_pairs(struct igc_adapter *adapter, const u32 max_rss_queues) { /* Determine if we need to pair queues. */ /* If rss_queues > half of max_rss_queues, pair the queues in * order to conserve interrupts due to limited supply. */ if (adapter->rss_queues > (max_rss_queues / 2)) adapter->flags |= IGC_FLAG_QUEUE_PAIRS; else adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS; } unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter) { return IGC_MAX_RX_QUEUES; } static void igc_init_queue_configuration(struct igc_adapter *adapter) { u32 max_rss_queues; max_rss_queues = igc_get_max_rss_queues(adapter); adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus()); igc_set_flag_queue_pairs(adapter, max_rss_queues); } /** * igc_reset_q_vector - Reset config for interrupt vector * @adapter: board private structure to initialize * @v_idx: Index of vector to be reset * * If NAPI is enabled it will delete any references to the * NAPI struct. This is preparation for igc_free_q_vector. */ static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx) { struct igc_q_vector *q_vector = adapter->q_vector[v_idx]; /* if we're coming from igc_set_interrupt_capability, the vectors are * not yet allocated */ if (!q_vector) return; if (q_vector->tx.ring) adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL; if (q_vector->rx.ring) adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL; netif_napi_del(&q_vector->napi); } /** * igc_free_q_vector - Free memory allocated for specific interrupt vector * @adapter: board private structure to initialize * @v_idx: Index of vector to be freed * * This function frees the memory allocated to the q_vector. */ static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx) { struct igc_q_vector *q_vector = adapter->q_vector[v_idx]; adapter->q_vector[v_idx] = NULL; /* igc_get_stats64() might access the rings on this vector, * we must wait a grace period before freeing it. */ if (q_vector) kfree_rcu(q_vector, rcu); } /** * igc_free_q_vectors - Free memory allocated for interrupt vectors * @adapter: board private structure to initialize * * This function frees the memory allocated to the q_vectors. In addition if * NAPI is enabled it will delete any references to the NAPI struct prior * to freeing the q_vector. */ static void igc_free_q_vectors(struct igc_adapter *adapter) { int v_idx = adapter->num_q_vectors; adapter->num_tx_queues = 0; adapter->num_rx_queues = 0; adapter->num_q_vectors = 0; while (v_idx--) { igc_reset_q_vector(adapter, v_idx); igc_free_q_vector(adapter, v_idx); } } /** * igc_update_itr - update the dynamic ITR value based on statistics * @q_vector: pointer to q_vector * @ring_container: ring info to update the itr for * * Stores a new ITR value based on packets and byte * counts during the last interrupt. The advantage of per interrupt * computation is faster updates and more accurate ITR for the current * traffic pattern. Constants in this function were computed * based on theoretical maximum wire speed and thresholds were set based * on testing data as well as attempting to minimize response time * while increasing bulk throughput. * NOTE: These calculations are only valid when operating in a single- * queue environment. */ static void igc_update_itr(struct igc_q_vector *q_vector, struct igc_ring_container *ring_container) { unsigned int packets = ring_container->total_packets; unsigned int bytes = ring_container->total_bytes; u8 itrval = ring_container->itr; /* no packets, exit with status unchanged */ if (packets == 0) return; switch (itrval) { case lowest_latency: /* handle TSO and jumbo frames */ if (bytes / packets > 8000) itrval = bulk_latency; else if ((packets < 5) && (bytes > 512)) itrval = low_latency; break; case low_latency: /* 50 usec aka 20000 ints/s */ if (bytes > 10000) { /* this if handles the TSO accounting */ if (bytes / packets > 8000) itrval = bulk_latency; else if ((packets < 10) || ((bytes / packets) > 1200)) itrval = bulk_latency; else if ((packets > 35)) itrval = lowest_latency; } else if (bytes / packets > 2000) { itrval = bulk_latency; } else if (packets <= 2 && bytes < 512) { itrval = lowest_latency; } break; case bulk_latency: /* 250 usec aka 4000 ints/s */ if (bytes > 25000) { if (packets > 35) itrval = low_latency; } else if (bytes < 1500) { itrval = low_latency; } break; } /* clear work counters since we have the values we need */ ring_container->total_bytes = 0; ring_container->total_packets = 0; /* write updated itr to ring container */ ring_container->itr = itrval; } static void igc_set_itr(struct igc_q_vector *q_vector) { struct igc_adapter *adapter = q_vector->adapter; u32 new_itr = q_vector->itr_val; u8 current_itr = 0; /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ switch (adapter->link_speed) { case SPEED_10: case SPEED_100: current_itr = 0; new_itr = IGC_4K_ITR; goto set_itr_now; default: break; } igc_update_itr(q_vector, &q_vector->tx); igc_update_itr(q_vector, &q_vector->rx); current_itr = max(q_vector->rx.itr, q_vector->tx.itr); /* conservative mode (itr 3) eliminates the lowest_latency setting */ if (current_itr == lowest_latency && ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) current_itr = low_latency; switch (current_itr) { /* counts and packets in update_itr are dependent on these numbers */ case lowest_latency: new_itr = IGC_70K_ITR; /* 70,000 ints/sec */ break; case low_latency: new_itr = IGC_20K_ITR; /* 20,000 ints/sec */ break; case bulk_latency: new_itr = IGC_4K_ITR; /* 4,000 ints/sec */ break; default: break; } set_itr_now: if (new_itr != q_vector->itr_val) { /* this attempts to bias the interrupt rate towards Bulk * by adding intermediate steps when interrupt rate is * increasing */ new_itr = new_itr > q_vector->itr_val ? max((new_itr * q_vector->itr_val) / (new_itr + (q_vector->itr_val >> 2)), new_itr) : new_itr; /* Don't write the value here; it resets the adapter's * internal timer, and causes us to delay far longer than * we should between interrupts. Instead, we write the ITR * value at the beginning of the next interrupt so the timing * ends up being correct. */ q_vector->itr_val = new_itr; q_vector->set_itr = 1; } } static void igc_reset_interrupt_capability(struct igc_adapter *adapter) { int v_idx = adapter->num_q_vectors; if (adapter->msix_entries) { pci_disable_msix(adapter->pdev); kfree(adapter->msix_entries); adapter->msix_entries = NULL; } else if (adapter->flags & IGC_FLAG_HAS_MSI) { pci_disable_msi(adapter->pdev); } while (v_idx--) igc_reset_q_vector(adapter, v_idx); } /** * igc_set_interrupt_capability - set MSI or MSI-X if supported * @adapter: Pointer to adapter structure * @msix: boolean value for MSI-X capability * * Attempt to configure interrupts using the best available * capabilities of the hardware and kernel. */ static void igc_set_interrupt_capability(struct igc_adapter *adapter, bool msix) { int numvecs, i; int err; if (!msix) goto msi_only; adapter->flags |= IGC_FLAG_HAS_MSIX; /* Number of supported queues. */ adapter->num_rx_queues = adapter->rss_queues; adapter->num_tx_queues = adapter->rss_queues; /* start with one vector for every Rx queue */ numvecs = adapter->num_rx_queues; /* if Tx handler is separate add 1 for every Tx queue */ if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS)) numvecs += adapter->num_tx_queues; /* store the number of vectors reserved for queues */ adapter->num_q_vectors = numvecs; /* add 1 vector for link status interrupts */ numvecs++; adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry), GFP_KERNEL); if (!adapter->msix_entries) return; /* populate entry values */ for (i = 0; i < numvecs; i++) adapter->msix_entries[i].entry = i; err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, numvecs, numvecs); if (err > 0) return; kfree(adapter->msix_entries); adapter->msix_entries = NULL; igc_reset_interrupt_capability(adapter); msi_only: adapter->flags &= ~IGC_FLAG_HAS_MSIX; adapter->rss_queues = 1; adapter->flags |= IGC_FLAG_QUEUE_PAIRS; adapter->num_rx_queues = 1; adapter->num_tx_queues = 1; adapter->num_q_vectors = 1; if (!pci_enable_msi(adapter->pdev)) adapter->flags |= IGC_FLAG_HAS_MSI; } /** * igc_update_ring_itr - update the dynamic ITR value based on packet size * @q_vector: pointer to q_vector * * Stores a new ITR value based on strictly on packet size. This * algorithm is less sophisticated than that used in igc_update_itr, * due to the difficulty of synchronizing statistics across multiple * receive rings. The divisors and thresholds used by this function * were determined based on theoretical maximum wire speed and testing * data, in order to minimize response time while increasing bulk * throughput. * NOTE: This function is called only when operating in a multiqueue * receive environment. */ static void igc_update_ring_itr(struct igc_q_vector *q_vector) { struct igc_adapter *adapter = q_vector->adapter; int new_val = q_vector->itr_val; int avg_wire_size = 0; unsigned int packets; /* For non-gigabit speeds, just fix the interrupt rate at 4000 * ints/sec - ITR timer value of 120 ticks. */ switch (adapter->link_speed) { case SPEED_10: case SPEED_100: new_val = IGC_4K_ITR; goto set_itr_val; default: break; } packets = q_vector->rx.total_packets; if (packets) avg_wire_size = q_vector->rx.total_bytes / packets; packets = q_vector->tx.total_packets; if (packets) avg_wire_size = max_t(u32, avg_wire_size, q_vector->tx.total_bytes / packets); /* if avg_wire_size isn't set no work was done */ if (!avg_wire_size) goto clear_counts; /* Add 24 bytes to size to account for CRC, preamble, and gap */ avg_wire_size += 24; /* Don't starve jumbo frames */ avg_wire_size = min(avg_wire_size, 3000); /* Give a little boost to mid-size frames */ if (avg_wire_size > 300 && avg_wire_size < 1200) new_val = avg_wire_size / 3; else new_val = avg_wire_size / 2; /* conservative mode (itr 3) eliminates the lowest_latency setting */ if (new_val < IGC_20K_ITR && ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) new_val = IGC_20K_ITR; set_itr_val: if (new_val != q_vector->itr_val) { q_vector->itr_val = new_val; q_vector->set_itr = 1; } clear_counts: q_vector->rx.total_bytes = 0; q_vector->rx.total_packets = 0; q_vector->tx.total_bytes = 0; q_vector->tx.total_packets = 0; } static void igc_ring_irq_enable(struct igc_q_vector *q_vector) { struct igc_adapter *adapter = q_vector->adapter; struct igc_hw *hw = &adapter->hw; if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) || (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) { if (adapter->num_q_vectors == 1) igc_set_itr(q_vector); else igc_update_ring_itr(q_vector); } if (!test_bit(__IGC_DOWN, &adapter->state)) { if (adapter->msix_entries) wr32(IGC_EIMS, q_vector->eims_value); else igc_irq_enable(adapter); } } static void igc_add_ring(struct igc_ring *ring, struct igc_ring_container *head) { head->ring = ring; head->count++; } /** * igc_cache_ring_register - Descriptor ring to register mapping * @adapter: board private structure to initialize * * Once we know the feature-set enabled for the device, we'll cache * the register offset the descriptor ring is assigned to. */ static void igc_cache_ring_register(struct igc_adapter *adapter) { int i = 0, j = 0; switch (adapter->hw.mac.type) { case igc_i225: default: for (; i < adapter->num_rx_queues; i++) adapter->rx_ring[i]->reg_idx = i; for (; j < adapter->num_tx_queues; j++) adapter->tx_ring[j]->reg_idx = j; break; } } /** * igc_poll - NAPI Rx polling callback * @napi: napi polling structure * @budget: count of how many packets we should handle */ static int igc_poll(struct napi_struct *napi, int budget) { struct igc_q_vector *q_vector = container_of(napi, struct igc_q_vector, napi); struct igc_ring *rx_ring = q_vector->rx.ring; bool clean_complete = true; int work_done = 0; if (q_vector->tx.ring) clean_complete = igc_clean_tx_irq(q_vector, budget); if (rx_ring) { int cleaned = rx_ring->xsk_pool ? igc_clean_rx_irq_zc(q_vector, budget) : igc_clean_rx_irq(q_vector, budget); work_done += cleaned; if (cleaned >= budget) clean_complete = false; } /* If all work not completed, return budget and keep polling */ if (!clean_complete) return budget; /* Exit the polling mode, but don't re-enable interrupts if stack might * poll us due to busy-polling */ if (likely(napi_complete_done(napi, work_done))) igc_ring_irq_enable(q_vector); return min(work_done, budget - 1); } /** * igc_alloc_q_vector - Allocate memory for a single interrupt vector * @adapter: board private structure to initialize * @v_count: q_vectors allocated on adapter, used for ring interleaving * @v_idx: index of vector in adapter struct * @txr_count: total number of Tx rings to allocate * @txr_idx: index of first Tx ring to allocate * @rxr_count: total number of Rx rings to allocate * @rxr_idx: index of first Rx ring to allocate * * We allocate one q_vector. If allocation fails we return -ENOMEM. */ static int igc_alloc_q_vector(struct igc_adapter *adapter, unsigned int v_count, unsigned int v_idx, unsigned int txr_count, unsigned int txr_idx, unsigned int rxr_count, unsigned int rxr_idx) { struct igc_q_vector *q_vector; struct igc_ring *ring; int ring_count; /* igc only supports 1 Tx and/or 1 Rx queue per vector */ if (txr_count > 1 || rxr_count > 1) return -ENOMEM; ring_count = txr_count + rxr_count; /* allocate q_vector and rings */ q_vector = adapter->q_vector[v_idx]; if (!q_vector) q_vector = kzalloc(struct_size(q_vector, ring, ring_count), GFP_KERNEL); else memset(q_vector, 0, struct_size(q_vector, ring, ring_count)); if (!q_vector) return -ENOMEM; /* initialize NAPI */ netif_napi_add(adapter->netdev, &q_vector->napi, igc_poll); /* tie q_vector and adapter together */ adapter->q_vector[v_idx] = q_vector; q_vector->adapter = adapter; /* initialize work limits */ q_vector->tx.work_limit = adapter->tx_work_limit; /* initialize ITR configuration */ q_vector->itr_register = adapter->io_addr + IGC_EITR(0); q_vector->itr_val = IGC_START_ITR; /* initialize pointer to rings */ ring = q_vector->ring; /* initialize ITR */ if (rxr_count) { /* rx or rx/tx vector */ if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3) q_vector->itr_val = adapter->rx_itr_setting; } else { /* tx only vector */ if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3) q_vector->itr_val = adapter->tx_itr_setting; } if (txr_count) { /* assign generic ring traits */ ring->dev = &adapter->pdev->dev; ring->netdev = adapter->netdev; /* configure backlink on ring */ ring->q_vector = q_vector; /* update q_vector Tx values */ igc_add_ring(ring, &q_vector->tx); /* apply Tx specific ring traits */ ring->count = adapter->tx_ring_count; ring->queue_index = txr_idx; /* assign ring to adapter */ adapter->tx_ring[txr_idx] = ring; /* push pointer to next ring */ ring++; } if (rxr_count) { /* assign generic ring traits */ ring->dev = &adapter->pdev->dev; ring->netdev = adapter->netdev; /* configure backlink on ring */ ring->q_vector = q_vector; /* update q_vector Rx values */ igc_add_ring(ring, &q_vector->rx); /* apply Rx specific ring traits */ ring->count = adapter->rx_ring_count; ring->queue_index = rxr_idx; /* assign ring to adapter */ adapter->rx_ring[rxr_idx] = ring; } return 0; } /** * igc_alloc_q_vectors - Allocate memory for interrupt vectors * @adapter: board private structure to initialize * * We allocate one q_vector per queue interrupt. If allocation fails we * return -ENOMEM. */ static int igc_alloc_q_vectors(struct igc_adapter *adapter) { int rxr_remaining = adapter->num_rx_queues; int txr_remaining = adapter->num_tx_queues; int rxr_idx = 0, txr_idx = 0, v_idx = 0; int q_vectors = adapter->num_q_vectors; int err; if (q_vectors >= (rxr_remaining + txr_remaining)) { for (; rxr_remaining; v_idx++) { err = igc_alloc_q_vector(adapter, q_vectors, v_idx, 0, 0, 1, rxr_idx); if (err) goto err_out; /* update counts and index */ rxr_remaining--; rxr_idx++; } } for (; v_idx < q_vectors; v_idx++) { int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx); int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx); err = igc_alloc_q_vector(adapter, q_vectors, v_idx, tqpv, txr_idx, rqpv, rxr_idx); if (err) goto err_out; /* update counts and index */ rxr_remaining -= rqpv; txr_remaining -= tqpv; rxr_idx++; txr_idx++; } return 0; err_out: adapter->num_tx_queues = 0; adapter->num_rx_queues = 0; adapter->num_q_vectors = 0; while (v_idx--) igc_free_q_vector(adapter, v_idx); return -ENOMEM; } /** * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors * @adapter: Pointer to adapter structure * @msix: boolean for MSI-X capability * * This function initializes the interrupts and allocates all of the queues. */ static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix) { struct net_device *dev = adapter->netdev; int err = 0; igc_set_interrupt_capability(adapter, msix); err = igc_alloc_q_vectors(adapter); if (err) { netdev_err(dev, "Unable to allocate memory for vectors\n"); goto err_alloc_q_vectors; } igc_cache_ring_register(adapter); return 0; err_alloc_q_vectors: igc_reset_interrupt_capability(adapter); return err; } /** * igc_sw_init - Initialize general software structures (struct igc_adapter) * @adapter: board private structure to initialize * * igc_sw_init initializes the Adapter private data structure. * Fields are initialized based on PCI device information and * OS network device settings (MTU size). */ static int igc_sw_init(struct igc_adapter *adapter) { struct net_device *netdev = adapter->netdev; struct pci_dev *pdev = adapter->pdev; struct igc_hw *hw = &adapter->hw; pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word); /* set default ring sizes */ adapter->tx_ring_count = IGC_DEFAULT_TXD; adapter->rx_ring_count = IGC_DEFAULT_RXD; /* set default ITR values */ adapter->rx_itr_setting = IGC_DEFAULT_ITR; adapter->tx_itr_setting = IGC_DEFAULT_ITR; /* set default work limits */ adapter->tx_work_limit = IGC_DEFAULT_TX_WORK; /* adjust max frame to be at least the size of a standard frame */ adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; mutex_init(&adapter->nfc_rule_lock); INIT_LIST_HEAD(&adapter->nfc_rule_list); adapter->nfc_rule_count = 0; spin_lock_init(&adapter->stats64_lock); /* Assume MSI-X interrupts, will be checked during IRQ allocation */ adapter->flags |= IGC_FLAG_HAS_MSIX; igc_init_queue_configuration(adapter); /* This call may decrease the number of queues */ if (igc_init_interrupt_scheme(adapter, true)) { netdev_err(netdev, "Unable to allocate memory for queues\n"); return -ENOMEM; } /* Explicitly disable IRQ since the NIC can be in any state. */ igc_irq_disable(adapter); set_bit(__IGC_DOWN, &adapter->state); return 0; } /** * igc_up - Open the interface and prepare it to handle traffic * @adapter: board private structure */ void igc_up(struct igc_adapter *adapter) { struct igc_hw *hw = &adapter->hw; int i = 0; /* hardware has been reset, we need to reload some things */ igc_configure(adapter); clear_bit(__IGC_DOWN, &adapter->state); for (i = 0; i < adapter->num_q_vectors; i++) napi_enable(&adapter->q_vector[i]->napi); if (adapter->msix_entries) igc_configure_msix(adapter); else igc_assign_vector(adapter->q_vector[0], 0); /* Clear any pending interrupts. */ rd32(IGC_ICR); igc_irq_enable(adapter); netif_tx_start_all_queues(adapter->netdev); /* start the watchdog. */ hw->mac.get_link_status = true; schedule_work(&adapter->watchdog_task); } /** * igc_update_stats - Update the board statistics counters * @adapter: board private structure */ void igc_update_stats(struct igc_adapter *adapter) { struct rtnl_link_stats64 *net_stats = &adapter->stats64; struct pci_dev *pdev = adapter->pdev; struct igc_hw *hw = &adapter->hw; u64 _bytes, _packets; u64 bytes, packets; unsigned int start; u32 mpc; int i; /* Prevent stats update while adapter is being reset, or if the pci * connection is down. */ if (adapter->link_speed == 0) return; if (pci_channel_offline(pdev)) return; packets = 0; bytes = 0; rcu_read_lock(); for (i = 0; i < adapter->num_rx_queues; i++) { struct igc_ring *ring = adapter->rx_ring[i]; u32 rqdpc = rd32(IGC_RQDPC(i)); if (hw->mac.type >= igc_i225) wr32(IGC_RQDPC(i), 0); if (rqdpc) { ring->rx_stats.drops += rqdpc; net_stats->rx_fifo_errors += rqdpc; } do { start = u64_stats_fetch_begin(&ring->rx_syncp); _bytes = ring->rx_stats.bytes; _packets = ring->rx_stats.packets; } while (u64_stats_fetch_retry(&ring->rx_syncp, start)); bytes += _bytes; packets += _packets; } net_stats->rx_bytes = bytes; net_stats->rx_packets = packets; packets = 0; bytes = 0; for (i = 0; i < adapter->num_tx_queues; i++) { struct igc_ring *ring = adapter->tx_ring[i]; do { start = u64_stats_fetch_begin(&ring->tx_syncp); _bytes = ring->tx_stats.bytes; _packets = ring->tx_stats.packets; } while (u64_stats_fetch_retry(&ring->tx_syncp, start)); bytes += _bytes; packets += _packets; } net_stats->tx_bytes = bytes; net_stats->tx_packets = packets; rcu_read_unlock(); /* read stats registers */ adapter->stats.crcerrs += rd32(IGC_CRCERRS); adapter->stats.gprc += rd32(IGC_GPRC); adapter->stats.gorc += rd32(IGC_GORCL); rd32(IGC_GORCH); /* clear GORCL */ adapter->stats.bprc += rd32(IGC_BPRC); adapter->stats.mprc += rd32(IGC_MPRC); adapter->stats.roc += rd32(IGC_ROC); adapter->stats.prc64 += rd32(IGC_PRC64); adapter->stats.prc127 += rd32(IGC_PRC127); adapter->stats.prc255 += rd32(IGC_PRC255); adapter->stats.prc511 += rd32(IGC_PRC511); adapter->stats.prc1023 += rd32(IGC_PRC1023); adapter->stats.prc1522 += rd32(IGC_PRC1522); adapter->stats.tlpic += rd32(IGC_TLPIC); adapter->stats.rlpic += rd32(IGC_RLPIC); adapter->stats.hgptc += rd32(IGC_HGPTC); mpc = rd32(IGC_MPC); adapter->stats.mpc += mpc; net_stats->rx_fifo_errors += mpc; adapter->stats.scc += rd32(IGC_SCC); adapter->stats.ecol += rd32(IGC_ECOL); adapter->stats.mcc += rd32(IGC_MCC); adapter->stats.latecol += rd32(IGC_LATECOL); adapter->stats.dc += rd32(IGC_DC); adapter->stats.rlec += rd32(IGC_RLEC); adapter->stats.xonrxc += rd32(IGC_XONRXC); adapter->stats.xontxc += rd32(IGC_XONTXC); adapter->stats.xoffrxc += rd32(IGC_XOFFRXC); adapter->stats.xofftxc += rd32(IGC_XOFFTXC); adapter->stats.fcruc += rd32(IGC_FCRUC); adapter->stats.gptc += rd32(IGC_GPTC); adapter->stats.gotc += rd32(IGC_GOTCL); rd32(IGC_GOTCH); /* clear GOTCL */ adapter->stats.rnbc += rd32(IGC_RNBC); adapter->stats.ruc += rd32(IGC_RUC); adapter->stats.rfc += rd32(IGC_RFC); adapter->stats.rjc += rd32(IGC_RJC); adapter->stats.tor += rd32(IGC_TORH); adapter->stats.tot += rd32(IGC_TOTH); adapter->stats.tpr += rd32(IGC_TPR); adapter->stats.ptc64 += rd32(IGC_PTC64); adapter->stats.ptc127 += rd32(IGC_PTC127); adapter->stats.ptc255 += rd32(IGC_PTC255); adapter->stats.ptc511 += rd32(IGC_PTC511); adapter->stats.ptc1023 += rd32(IGC_PTC1023); adapter->stats.ptc1522 += rd32(IGC_PTC1522); adapter->stats.mptc += rd32(IGC_MPTC); adapter->stats.bptc += rd32(IGC_BPTC); adapter->stats.tpt += rd32(IGC_TPT); adapter->stats.colc += rd32(IGC_COLC); adapter->stats.colc += rd32(IGC_RERC); adapter->stats.algnerrc += rd32(IGC_ALGNERRC); adapter->stats.tsctc += rd32(IGC_TSCTC); adapter->stats.iac += rd32(IGC_IAC); /* Fill out the OS statistics structure */ net_stats->multicast = adapter->stats.mprc; net_stats->collisions = adapter->stats.colc; /* Rx Errors */ /* RLEC on some newer hardware can be incorrect so build * our own version based on RUC and ROC */ net_stats->rx_errors = adapter->stats.rxerrc + adapter->stats.crcerrs + adapter->stats.algnerrc + adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr; net_stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc; net_stats->rx_crc_errors = adapter->stats.crcerrs; net_stats->rx_frame_errors = adapter->stats.algnerrc; net_stats->rx_missed_errors = adapter->stats.mpc; /* Tx Errors */ net_stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol; net_stats->tx_aborted_errors = adapter->stats.ecol; net_stats->tx_window_errors = adapter->stats.latecol; net_stats->tx_carrier_errors = adapter->stats.tncrs; /* Tx Dropped needs to be maintained elsewhere */ /* Management Stats */ adapter->stats.mgptc += rd32(IGC_MGTPTC); adapter->stats.mgprc += rd32(IGC_MGTPRC); adapter->stats.mgpdc += rd32(IGC_MGTPDC); } /** * igc_down - Close the interface * @adapter: board private structure */ void igc_down(struct igc_adapter *adapter) { struct net_device *netdev = adapter->netdev; struct igc_hw *hw = &adapter->hw; u32 tctl, rctl; int i = 0; set_bit(__IGC_DOWN, &adapter->state); igc_ptp_suspend(adapter); if (pci_device_is_present(adapter->pdev)) { /* disable receives in the hardware */ rctl = rd32(IGC_RCTL); wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN); /* flush and sleep below */ } /* set trans_start so we don't get spurious watchdogs during reset */ netif_trans_update(netdev); netif_carrier_off(netdev); netif_tx_stop_all_queues(netdev); if (pci_device_is_present(adapter->pdev)) { /* disable transmits in the hardware */ tctl = rd32(IGC_TCTL); tctl &= ~IGC_TCTL_EN; wr32(IGC_TCTL, tctl); /* flush both disables and wait for them to finish */ wrfl(); usleep_range(10000, 20000); igc_irq_disable(adapter); } adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE; for (i = 0; i < adapter->num_q_vectors; i++) { if (adapter->q_vector[i]) { napi_synchronize(&adapter->q_vector[i]->napi); napi_disable(&adapter->q_vector[i]->napi); } } del_timer_sync(&adapter->watchdog_timer); del_timer_sync(&adapter->phy_info_timer); /* record the stats before reset*/ spin_lock(&adapter->stats64_lock); igc_update_stats(adapter); spin_unlock(&adapter->stats64_lock); adapter->link_speed = 0; adapter->link_duplex = 0; if (!pci_channel_offline(adapter->pdev)) igc_reset(adapter); /* clear VLAN promisc flag so VFTA will be updated if necessary */ adapter->flags &= ~IGC_FLAG_VLAN_PROMISC; igc_clean_all_tx_rings(adapter); igc_clean_all_rx_rings(adapter); } void igc_reinit_locked(struct igc_adapter *adapter) { while (test_and_set_bit(__IGC_RESETTING, &adapter->state)) usleep_range(1000, 2000); igc_down(adapter); igc_up(adapter); clear_bit(__IGC_RESETTING, &adapter->state); } static void igc_reset_task(struct work_struct *work) { struct igc_adapter *adapter; adapter = container_of(work, struct igc_adapter, reset_task); rtnl_lock(); /* If we're already down or resetting, just bail */ if (test_bit(__IGC_DOWN, &adapter->state) || test_bit(__IGC_RESETTING, &adapter->state)) { rtnl_unlock(); return; } igc_rings_dump(adapter); igc_regs_dump(adapter); netdev_err(adapter->netdev, "Reset adapter\n"); igc_reinit_locked(adapter); rtnl_unlock(); } /** * igc_change_mtu - Change the Maximum Transfer Unit * @netdev: network interface device structure * @new_mtu: new value for maximum frame size * * Returns 0 on success, negative on failure */ static int igc_change_mtu(struct net_device *netdev, int new_mtu) { int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; struct igc_adapter *adapter = netdev_priv(netdev); if (igc_xdp_is_enabled(adapter) && new_mtu > ETH_DATA_LEN) { netdev_dbg(netdev, "Jumbo frames not supported with XDP"); return -EINVAL; } /* adjust max frame to be at least the size of a standard frame */ if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN)) max_frame = ETH_FRAME_LEN + ETH_FCS_LEN; while (test_and_set_bit(__IGC_RESETTING, &adapter->state)) usleep_range(1000, 2000); /* igc_down has a dependency on max_frame_size */ adapter->max_frame_size = max_frame; if (netif_running(netdev)) igc_down(adapter); netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu); netdev->mtu = new_mtu; if (netif_running(netdev)) igc_up(adapter); else igc_reset(adapter); clear_bit(__IGC_RESETTING, &adapter->state); return 0; } /** * igc_get_stats64 - Get System Network Statistics * @netdev: network interface device structure * @stats: rtnl_link_stats64 pointer * * Returns the address of the device statistics structure. * The statistics are updated here and also from the timer callback. */ static void igc_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) { struct igc_adapter *adapter = netdev_priv(netdev); spin_lock(&adapter->stats64_lock); if (!test_bit(__IGC_RESETTING, &adapter->state)) igc_update_stats(adapter); memcpy(stats, &adapter->stats64, sizeof(*stats)); spin_unlock(&adapter->stats64_lock); } static netdev_features_t igc_fix_features(struct net_device *netdev, netdev_features_t features) { /* Since there is no support for separate Rx/Tx vlan accel * enable/disable make sure Tx flag is always in same state as Rx. */ if (features & NETIF_F_HW_VLAN_CTAG_RX) features |= NETIF_F_HW_VLAN_CTAG_TX; else features &= ~NETIF_F_HW_VLAN_CTAG_TX; return features; } static int igc_set_features(struct net_device *netdev, netdev_features_t features) { netdev_features_t changed = netdev->features ^ features; struct igc_adapter *adapter = netdev_priv(netdev); if (changed & NETIF_F_HW_VLAN_CTAG_RX) igc_vlan_mode(netdev, features); /* Add VLAN support */ if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE))) return 0; if (!(features & NETIF_F_NTUPLE)) igc_flush_nfc_rules(adapter); netdev->features = features; if (netif_running(netdev)) igc_reinit_locked(adapter); else igc_reset(adapter); return 1; } static netdev_features_t igc_features_check(struct sk_buff *skb, struct net_device *dev, netdev_features_t features) { unsigned int network_hdr_len, mac_hdr_len; /* Make certain the headers can be described by a context descriptor */ mac_hdr_len = skb_network_header(skb) - skb->data; if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN)) return features & ~(NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC | NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_TSO | NETIF_F_TSO6); network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb); if (unlikely(network_hdr_len > IGC_MAX_NETWORK_HDR_LEN)) return features & ~(NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC | NETIF_F_TSO | NETIF_F_TSO6); /* We can only support IPv4 TSO in tunnels if we can mangle the * inner IP ID field, so strip TSO if MANGLEID is not supported. */ if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID)) features &= ~NETIF_F_TSO; return features; } static void igc_tsync_interrupt(struct igc_adapter *adapter) { u32 ack, tsauxc, sec, nsec, tsicr; struct igc_hw *hw = &adapter->hw; struct ptp_clock_event event; struct timespec64 ts; tsicr = rd32(IGC_TSICR); ack = 0; if (tsicr & IGC_TSICR_SYS_WRAP) { event.type = PTP_CLOCK_PPS; if (adapter->ptp_caps.pps) ptp_clock_event(adapter->ptp_clock, &event); ack |= IGC_TSICR_SYS_WRAP; } if (tsicr & IGC_TSICR_TXTS) { /* retrieve hardware timestamp */ schedule_work(&adapter->ptp_tx_work); ack |= IGC_TSICR_TXTS; } if (tsicr & IGC_TSICR_TT0) { spin_lock(&adapter->tmreg_lock); ts = timespec64_add(adapter->perout[0].start, adapter->perout[0].period); wr32(IGC_TRGTTIML0, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0); wr32(IGC_TRGTTIMH0, (u32)ts.tv_sec); tsauxc = rd32(IGC_TSAUXC); tsauxc |= IGC_TSAUXC_EN_TT0; wr32(IGC_TSAUXC, tsauxc); adapter->perout[0].start = ts; spin_unlock(&adapter->tmreg_lock); ack |= IGC_TSICR_TT0; } if (tsicr & IGC_TSICR_TT1) { spin_lock(&adapter->tmreg_lock); ts = timespec64_add(adapter->perout[1].start, adapter->perout[1].period); wr32(IGC_TRGTTIML1, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0); wr32(IGC_TRGTTIMH1, (u32)ts.tv_sec); tsauxc = rd32(IGC_TSAUXC); tsauxc |= IGC_TSAUXC_EN_TT1; wr32(IGC_TSAUXC, tsauxc); adapter->perout[1].start = ts; spin_unlock(&adapter->tmreg_lock); ack |= IGC_TSICR_TT1; } if (tsicr & IGC_TSICR_AUTT0) { nsec = rd32(IGC_AUXSTMPL0); sec = rd32(IGC_AUXSTMPH0); event.type = PTP_CLOCK_EXTTS; event.index = 0; event.timestamp = sec * NSEC_PER_SEC + nsec; ptp_clock_event(adapter->ptp_clock, &event); ack |= IGC_TSICR_AUTT0; } if (tsicr & IGC_TSICR_AUTT1) { nsec = rd32(IGC_AUXSTMPL1); sec = rd32(IGC_AUXSTMPH1); event.type = PTP_CLOCK_EXTTS; event.index = 1; event.timestamp = sec * NSEC_PER_SEC + nsec; ptp_clock_event(adapter->ptp_clock, &event); ack |= IGC_TSICR_AUTT1; } /* acknowledge the interrupts */ wr32(IGC_TSICR, ack); } /** * igc_msix_other - msix other interrupt handler * @irq: interrupt number * @data: pointer to a q_vector */ static irqreturn_t igc_msix_other(int irq, void *data) { struct igc_adapter *adapter = data; struct igc_hw *hw = &adapter->hw; u32 icr = rd32(IGC_ICR); /* reading ICR causes bit 31 of EICR to be cleared */ if (icr & IGC_ICR_DRSTA) schedule_work(&adapter->reset_task); if (icr & IGC_ICR_DOUTSYNC) { /* HW is reporting DMA is out of sync */ adapter->stats.doosync++; } if (icr & IGC_ICR_LSC) { hw->mac.get_link_status = true; /* guard against interrupt when we're going down */ if (!test_bit(__IGC_DOWN, &adapter->state)) mod_timer(&adapter->watchdog_timer, jiffies + 1); } if (icr & IGC_ICR_TS) igc_tsync_interrupt(adapter); wr32(IGC_EIMS, adapter->eims_other); return IRQ_HANDLED; } static void igc_write_itr(struct igc_q_vector *q_vector) { u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK; if (!q_vector->set_itr) return; if (!itr_val) itr_val = IGC_ITR_VAL_MASK; itr_val |= IGC_EITR_CNT_IGNR; writel(itr_val, q_vector->itr_register); q_vector->set_itr = 0; } static irqreturn_t igc_msix_ring(int irq, void *data) { struct igc_q_vector *q_vector = data; /* Write the ITR value calculated from the previous interrupt. */ igc_write_itr(q_vector); napi_schedule(&q_vector->napi); return IRQ_HANDLED; } /** * igc_request_msix - Initialize MSI-X interrupts * @adapter: Pointer to adapter structure * * igc_request_msix allocates MSI-X vectors and requests interrupts from the * kernel. */ static int igc_request_msix(struct igc_adapter *adapter) { unsigned int num_q_vectors = adapter->num_q_vectors; int i = 0, err = 0, vector = 0, free_vector = 0; struct net_device *netdev = adapter->netdev; err = request_irq(adapter->msix_entries[vector].vector, &igc_msix_other, 0, netdev->name, adapter); if (err) goto err_out; if (num_q_vectors > MAX_Q_VECTORS) { num_q_vectors = MAX_Q_VECTORS; dev_warn(&adapter->pdev->dev, "The number of queue vectors (%d) is higher than max allowed (%d)\n", adapter->num_q_vectors, MAX_Q_VECTORS); } for (i = 0; i < num_q_vectors; i++) { struct igc_q_vector *q_vector = adapter->q_vector[i]; vector++; q_vector->itr_register = adapter->io_addr + IGC_EITR(vector); if (q_vector->rx.ring && q_vector->tx.ring) sprintf(q_vector->name, "%s-TxRx-%u", netdev->name, q_vector->rx.ring->queue_index); else if (q_vector->tx.ring) sprintf(q_vector->name, "%s-tx-%u", netdev->name, q_vector->tx.ring->queue_index); else if (q_vector->rx.ring) sprintf(q_vector->name, "%s-rx-%u", netdev->name, q_vector->rx.ring->queue_index); else sprintf(q_vector->name, "%s-unused", netdev->name); err = request_irq(adapter->msix_entries[vector].vector, igc_msix_ring, 0, q_vector->name, q_vector); if (err) goto err_free; } igc_configure_msix(adapter); return 0; err_free: /* free already assigned IRQs */ free_irq(adapter->msix_entries[free_vector++].vector, adapter); vector--; for (i = 0; i < vector; i++) { free_irq(adapter->msix_entries[free_vector++].vector, adapter->q_vector[i]); } err_out: return err; } /** * igc_clear_interrupt_scheme - reset the device to a state of no interrupts * @adapter: Pointer to adapter structure * * This function resets the device so that it has 0 rx queues, tx queues, and * MSI-X interrupts allocated. */ static void igc_clear_interrupt_scheme(struct igc_adapter *adapter) { igc_free_q_vectors(adapter); igc_reset_interrupt_capability(adapter); } /* Need to wait a few seconds after link up to get diagnostic information from * the phy */ static void igc_update_phy_info(struct timer_list *t) { struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer); igc_get_phy_info(&adapter->hw); } /** * igc_has_link - check shared code for link and determine up/down * @adapter: pointer to driver private info */ bool igc_has_link(struct igc_adapter *adapter) { struct igc_hw *hw = &adapter->hw; bool link_active = false; /* get_link_status is set on LSC (link status) interrupt or * rx sequence error interrupt. get_link_status will stay * false until the igc_check_for_link establishes link * for copper adapters ONLY */ if (!hw->mac.get_link_status) return true; hw->mac.ops.check_for_link(hw); link_active = !hw->mac.get_link_status; if (hw->mac.type == igc_i225) { if (!netif_carrier_ok(adapter->netdev)) { adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE; } else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) { adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE; adapter->link_check_timeout = jiffies; } } return link_active; } /** * igc_watchdog - Timer Call-back * @t: timer for the watchdog */ static void igc_watchdog(struct timer_list *t) { struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer); /* Do the rest outside of interrupt context */ schedule_work(&adapter->watchdog_task); } static void igc_watchdog_task(struct work_struct *work) { struct igc_adapter *adapter = container_of(work, struct igc_adapter, watchdog_task); struct net_device *netdev = adapter->netdev; struct igc_hw *hw = &adapter->hw; struct igc_phy_info *phy = &hw->phy; u16 phy_data, retry_count = 20; u32 link; int i; link = igc_has_link(adapter); if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) { if (time_after(jiffies, (adapter->link_check_timeout + HZ))) adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE; else link = false; } if (link) { /* Cancel scheduled suspend requests. */ pm_runtime_resume(netdev->dev.parent); if (!netif_carrier_ok(netdev)) { u32 ctrl; hw->mac.ops.get_speed_and_duplex(hw, &adapter->link_speed, &adapter->link_duplex); ctrl = rd32(IGC_CTRL); /* Link status message must follow this format */ netdev_info(netdev, "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n", adapter->link_speed, adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half", (ctrl & IGC_CTRL_TFCE) && (ctrl & IGC_CTRL_RFCE) ? "RX/TX" : (ctrl & IGC_CTRL_RFCE) ? "RX" : (ctrl & IGC_CTRL_TFCE) ? "TX" : "None"); /* disable EEE if enabled */ if ((adapter->flags & IGC_FLAG_EEE) && adapter->link_duplex == HALF_DUPLEX) { netdev_info(netdev, "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n"); adapter->hw.dev_spec._base.eee_enable = false; adapter->flags &= ~IGC_FLAG_EEE; } /* check if SmartSpeed worked */ igc_check_downshift(hw); if (phy->speed_downgraded) netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n"); /* adjust timeout factor according to speed/duplex */ adapter->tx_timeout_factor = 1; switch (adapter->link_speed) { case SPEED_10: adapter->tx_timeout_factor = 14; break; case SPEED_100: case SPEED_1000: case SPEED_2500: adapter->tx_timeout_factor = 7; break; } /* Once the launch time has been set on the wire, there * is a delay before the link speed can be determined * based on link-up activity. Write into the register * as soon as we know the correct link speed. */ igc_tsn_adjust_txtime_offset(adapter); if (adapter->link_speed != SPEED_1000) goto no_wait; /* wait for Remote receiver status OK */ retry_read_status: if (!igc_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data)) { if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) && retry_count) { msleep(100); retry_count--; goto retry_read_status; } else if (!retry_count) { netdev_err(netdev, "exceed max 2 second\n"); } } else { netdev_err(netdev, "read 1000Base-T Status Reg\n"); } no_wait: netif_carrier_on(netdev); /* link state has changed, schedule phy info update */ if (!test_bit(__IGC_DOWN, &adapter->state)) mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ)); } } else { if (netif_carrier_ok(netdev)) { adapter->link_speed = 0; adapter->link_duplex = 0; /* Links status message must follow this format */ netdev_info(netdev, "NIC Link is Down\n"); netif_carrier_off(netdev); /* link state has changed, schedule phy info update */ if (!test_bit(__IGC_DOWN, &adapter->state)) mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ)); /* link is down, time to check for alternate media */ if (adapter->flags & IGC_FLAG_MAS_ENABLE) { if (adapter->flags & IGC_FLAG_MEDIA_RESET) { schedule_work(&adapter->reset_task); /* return immediately */ return; } } pm_schedule_suspend(netdev->dev.parent, MSEC_PER_SEC * 5); /* also check for alternate media here */ } else if (!netif_carrier_ok(netdev) && (adapter->flags & IGC_FLAG_MAS_ENABLE)) { if (adapter->flags & IGC_FLAG_MEDIA_RESET) { schedule_work(&adapter->reset_task); /* return immediately */ return; } } } spin_lock(&adapter->stats64_lock); igc_update_stats(adapter); spin_unlock(&adapter->stats64_lock); for (i = 0; i < adapter->num_tx_queues; i++) { struct igc_ring *tx_ring = adapter->tx_ring[i]; if (!netif_carrier_ok(netdev)) { /* We've lost link, so the controller stops DMA, * but we've got queued Tx work that's never going * to get done, so reset controller to flush Tx. * (Do the reset outside of interrupt context). */ if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) { adapter->tx_timeout_count++; schedule_work(&adapter->reset_task); /* return immediately since reset is imminent */ return; } } /* Force detection of hung controller every watchdog period */ set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); } /* Cause software interrupt to ensure Rx ring is cleaned */ if (adapter->flags & IGC_FLAG_HAS_MSIX) { u32 eics = 0; for (i = 0; i < adapter->num_q_vectors; i++) eics |= adapter->q_vector[i]->eims_value; wr32(IGC_EICS, eics); } else { wr32(IGC_ICS, IGC_ICS_RXDMT0); } igc_ptp_tx_hang(adapter); /* Reset the timer */ if (!test_bit(__IGC_DOWN, &adapter->state)) { if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + HZ)); else mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 2 * HZ)); } } /** * igc_intr_msi - Interrupt Handler * @irq: interrupt number * @data: pointer to a network interface device structure */ static irqreturn_t igc_intr_msi(int irq, void *data) { struct igc_adapter *adapter = data; struct igc_q_vector *q_vector = adapter->q_vector[0]; struct igc_hw *hw = &adapter->hw; /* read ICR disables interrupts using IAM */ u32 icr = rd32(IGC_ICR); igc_write_itr(q_vector); if (icr & IGC_ICR_DRSTA) schedule_work(&adapter->reset_task); if (icr & IGC_ICR_DOUTSYNC) { /* HW is reporting DMA is out of sync */ adapter->stats.doosync++; } if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) { hw->mac.get_link_status = true; if (!test_bit(__IGC_DOWN, &adapter->state)) mod_timer(&adapter->watchdog_timer, jiffies + 1); } if (icr & IGC_ICR_TS) igc_tsync_interrupt(adapter); napi_schedule(&q_vector->napi); return IRQ_HANDLED; } /** * igc_intr - Legacy Interrupt Handler * @irq: interrupt number * @data: pointer to a network interface device structure */ static irqreturn_t igc_intr(int irq, void *data) { struct igc_adapter *adapter = data; struct igc_q_vector *q_vector = adapter->q_vector[0]; struct igc_hw *hw = &adapter->hw; /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No * need for the IMC write */ u32 icr = rd32(IGC_ICR); /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is * not set, then the adapter didn't send an interrupt */ if (!(icr & IGC_ICR_INT_ASSERTED)) return IRQ_NONE; igc_write_itr(q_vector); if (icr & IGC_ICR_DRSTA) schedule_work(&adapter->reset_task); if (icr & IGC_ICR_DOUTSYNC) { /* HW is reporting DMA is out of sync */ adapter->stats.doosync++; } if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) { hw->mac.get_link_status = true; /* guard against interrupt when we're going down */ if (!test_bit(__IGC_DOWN, &adapter->state)) mod_timer(&adapter->watchdog_timer, jiffies + 1); } if (icr & IGC_ICR_TS) igc_tsync_interrupt(adapter); napi_schedule(&q_vector->napi); return IRQ_HANDLED; } static void igc_free_irq(struct igc_adapter *adapter) { if (adapter->msix_entries) { int vector = 0, i; free_irq(adapter->msix_entries[vector++].vector, adapter); for (i = 0; i < adapter->num_q_vectors; i++) free_irq(adapter->msix_entries[vector++].vector, adapter->q_vector[i]); } else { free_irq(adapter->pdev->irq, adapter); } } /** * igc_request_irq - initialize interrupts * @adapter: Pointer to adapter structure * * Attempts to configure interrupts using the best available * capabilities of the hardware and kernel. */ static int igc_request_irq(struct igc_adapter *adapter) { struct net_device *netdev = adapter->netdev; struct pci_dev *pdev = adapter->pdev; int err = 0; if (adapter->flags & IGC_FLAG_HAS_MSIX) { err = igc_request_msix(adapter); if (!err) goto request_done; /* fall back to MSI */ igc_free_all_tx_resources(adapter); igc_free_all_rx_resources(adapter); igc_clear_interrupt_scheme(adapter); err = igc_init_interrupt_scheme(adapter, false); if (err) goto request_done; igc_setup_all_tx_resources(adapter); igc_setup_all_rx_resources(adapter); igc_configure(adapter); } igc_assign_vector(adapter->q_vector[0], 0); if (adapter->flags & IGC_FLAG_HAS_MSI) { err = request_irq(pdev->irq, &igc_intr_msi, 0, netdev->name, adapter); if (!err) goto request_done; /* fall back to legacy interrupts */ igc_reset_interrupt_capability(adapter); adapter->flags &= ~IGC_FLAG_HAS_MSI; } err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED, netdev->name, adapter); if (err) netdev_err(netdev, "Error %d getting interrupt\n", err); request_done: return err; } /** * __igc_open - Called when a network interface is made active * @netdev: network interface device structure * @resuming: boolean indicating if the device is resuming * * Returns 0 on success, negative value on failure * * The open entry point is called when a network interface is made * active by the system (IFF_UP). At this point all resources needed * for transmit and receive operations are allocated, the interrupt * handler is registered with the OS, the watchdog timer is started, * and the stack is notified that the interface is ready. */ static int __igc_open(struct net_device *netdev, bool resuming) { struct igc_adapter *adapter = netdev_priv(netdev); struct pci_dev *pdev = adapter->pdev; struct igc_hw *hw = &adapter->hw; int err = 0; int i = 0; /* disallow open during test */ if (test_bit(__IGC_TESTING, &adapter->state)) { WARN_ON(resuming); return -EBUSY; } if (!resuming) pm_runtime_get_sync(&pdev->dev); netif_carrier_off(netdev); /* allocate transmit descriptors */ err = igc_setup_all_tx_resources(adapter); if (err) goto err_setup_tx; /* allocate receive descriptors */ err = igc_setup_all_rx_resources(adapter); if (err) goto err_setup_rx; igc_power_up_link(adapter); igc_configure(adapter); err = igc_request_irq(adapter); if (err) goto err_req_irq; /* Notify the stack of the actual queue counts. */ err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues); if (err) goto err_set_queues; err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues); if (err) goto err_set_queues; clear_bit(__IGC_DOWN, &adapter->state); for (i = 0; i < adapter->num_q_vectors; i++) napi_enable(&adapter->q_vector[i]->napi); /* Clear any pending interrupts. */ rd32(IGC_ICR); igc_irq_enable(adapter); if (!resuming) pm_runtime_put(&pdev->dev); netif_tx_start_all_queues(netdev); /* start the watchdog. */ hw->mac.get_link_status = true; schedule_work(&adapter->watchdog_task); return IGC_SUCCESS; err_set_queues: igc_free_irq(adapter); err_req_irq: igc_release_hw_control(adapter); igc_power_down_phy_copper_base(&adapter->hw); igc_free_all_rx_resources(adapter); err_setup_rx: igc_free_all_tx_resources(adapter); err_setup_tx: igc_reset(adapter); if (!resuming) pm_runtime_put(&pdev->dev); return err; } int igc_open(struct net_device *netdev) { return __igc_open(netdev, false); } /** * __igc_close - Disables a network interface * @netdev: network interface device structure * @suspending: boolean indicating the device is suspending * * Returns 0, this is not allowed to fail * * The close entry point is called when an interface is de-activated * by the OS. The hardware is still under the driver's control, but * needs to be disabled. A global MAC reset is issued to stop the * hardware, and all transmit and receive resources are freed. */ static int __igc_close(struct net_device *netdev, bool suspending) { struct igc_adapter *adapter = netdev_priv(netdev); struct pci_dev *pdev = adapter->pdev; WARN_ON(test_bit(__IGC_RESETTING, &adapter->state)); if (!suspending) pm_runtime_get_sync(&pdev->dev); igc_down(adapter); igc_release_hw_control(adapter); igc_free_irq(adapter); igc_free_all_tx_resources(adapter); igc_free_all_rx_resources(adapter); if (!suspending) pm_runtime_put_sync(&pdev->dev); return 0; } int igc_close(struct net_device *netdev) { if (netif_device_present(netdev) || netdev->dismantle) return __igc_close(netdev, false); return 0; } /** * igc_ioctl - Access the hwtstamp interface * @netdev: network interface device structure * @ifr: interface request data * @cmd: ioctl command **/ static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) { switch (cmd) { case SIOCGHWTSTAMP: return igc_ptp_get_ts_config(netdev, ifr); case SIOCSHWTSTAMP: return igc_ptp_set_ts_config(netdev, ifr); default: return -EOPNOTSUPP; } } static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue, bool enable) { struct igc_ring *ring; if (queue < 0 || queue >= adapter->num_tx_queues) return -EINVAL; ring = adapter->tx_ring[queue]; ring->launchtime_enable = enable; return 0; } static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now) { struct timespec64 b; b = ktime_to_timespec64(base_time); return timespec64_compare(now, &b) > 0; } static bool validate_schedule(struct igc_adapter *adapter, const struct tc_taprio_qopt_offload *qopt) { int queue_uses[IGC_MAX_TX_QUEUES] = { }; struct timespec64 now; size_t n; if (qopt->cycle_time_extension) return false; igc_ptp_read(adapter, &now); /* If we program the controller's BASET registers with a time * in the future, it will hold all the packets until that * time, causing a lot of TX Hangs, so to avoid that, we * reject schedules that would start in the future. */ if (!is_base_time_past(qopt->base_time, &now)) return false; for (n = 0; n < qopt->num_entries; n++) { const struct tc_taprio_sched_entry *e, *prev; int i; prev = n ? &qopt->entries[n - 1] : NULL; e = &qopt->entries[n]; /* i225 only supports "global" frame preemption * settings. */ if (e->command != TC_TAPRIO_CMD_SET_GATES) return false; for (i = 0; i < adapter->num_tx_queues; i++) { if (e->gate_mask & BIT(i)) queue_uses[i]++; /* There are limitations: A single queue cannot be * opened and closed multiple times per cycle unless the * gate stays open. Check for it. */ if (queue_uses[i] > 1 && !(prev->gate_mask & BIT(i))) return false; } } return true; } static int igc_tsn_enable_launchtime(struct igc_adapter *adapter, struct tc_etf_qopt_offload *qopt) { struct igc_hw *hw = &adapter->hw; int err; if (hw->mac.type != igc_i225) return -EOPNOTSUPP; err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable); if (err) return err; return igc_tsn_offload_apply(adapter); } static int igc_tsn_clear_schedule(struct igc_adapter *adapter) { int i; adapter->base_time = 0; adapter->cycle_time = NSEC_PER_SEC; for (i = 0; i < adapter->num_tx_queues; i++) { struct igc_ring *ring = adapter->tx_ring[i]; ring->start_time = 0; ring->end_time = NSEC_PER_SEC; } return 0; } static int igc_save_qbv_schedule(struct igc_adapter *adapter, struct tc_taprio_qopt_offload *qopt) { bool queue_configured[IGC_MAX_TX_QUEUES] = { }; u32 start_time = 0, end_time = 0; size_t n; if (!qopt->enable) return igc_tsn_clear_schedule(adapter); if (adapter->base_time) return -EALREADY; if (!validate_schedule(adapter, qopt)) return -EINVAL; adapter->cycle_time = qopt->cycle_time; adapter->base_time = qopt->base_time; for (n = 0; n < qopt->num_entries; n++) { struct tc_taprio_sched_entry *e = &qopt->entries[n]; int i; end_time += e->interval; for (i = 0; i < adapter->num_tx_queues; i++) { struct igc_ring *ring = adapter->tx_ring[i]; if (!(e->gate_mask & BIT(i))) continue; /* Check whether a queue stays open for more than one * entry. If so, keep the start and advance the end * time. */ if (!queue_configured[i]) ring->start_time = start_time; ring->end_time = end_time; queue_configured[i] = true; } start_time += e->interval; } return 0; } static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter, struct tc_taprio_qopt_offload *qopt) { struct igc_hw *hw = &adapter->hw; int err; if (hw->mac.type != igc_i225) return -EOPNOTSUPP; err = igc_save_qbv_schedule(adapter, qopt); if (err) return err; return igc_tsn_offload_apply(adapter); } static int igc_save_cbs_params(struct igc_adapter *adapter, int queue, bool enable, int idleslope, int sendslope, int hicredit, int locredit) { bool cbs_status[IGC_MAX_SR_QUEUES] = { false }; struct net_device *netdev = adapter->netdev; struct igc_ring *ring; int i; /* i225 has two sets of credit-based shaper logic. * Supporting it only on the top two priority queues */ if (queue < 0 || queue > 1) return -EINVAL; ring = adapter->tx_ring[queue]; for (i = 0; i < IGC_MAX_SR_QUEUES; i++) if (adapter->tx_ring[i]) cbs_status[i] = adapter->tx_ring[i]->cbs_enable; /* CBS should be enabled on the highest priority queue first in order * for the CBS algorithm to operate as intended. */ if (enable) { if (queue == 1 && !cbs_status[0]) { netdev_err(netdev, "Enabling CBS on queue1 before queue0\n"); return -EINVAL; } } else { if (queue == 0 && cbs_status[1]) { netdev_err(netdev, "Disabling CBS on queue0 before queue1\n"); return -EINVAL; } } ring->cbs_enable = enable; ring->idleslope = idleslope; ring->sendslope = sendslope; ring->hicredit = hicredit; ring->locredit = locredit; return 0; } static int igc_tsn_enable_cbs(struct igc_adapter *adapter, struct tc_cbs_qopt_offload *qopt) { struct igc_hw *hw = &adapter->hw; int err; if (hw->mac.type != igc_i225) return -EOPNOTSUPP; if (qopt->queue < 0 || qopt->queue > 1) return -EINVAL; err = igc_save_cbs_params(adapter, qopt->queue, qopt->enable, qopt->idleslope, qopt->sendslope, qopt->hicredit, qopt->locredit); if (err) return err; return igc_tsn_offload_apply(adapter); } static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type, void *type_data) { struct igc_adapter *adapter = netdev_priv(dev); switch (type) { case TC_SETUP_QDISC_TAPRIO: return igc_tsn_enable_qbv_scheduling(adapter, type_data); case TC_SETUP_QDISC_ETF: return igc_tsn_enable_launchtime(adapter, type_data); case TC_SETUP_QDISC_CBS: return igc_tsn_enable_cbs(adapter, type_data); default: return -EOPNOTSUPP; } } static int igc_bpf(struct net_device *dev, struct netdev_bpf *bpf) { struct igc_adapter *adapter = netdev_priv(dev); switch (bpf->command) { case XDP_SETUP_PROG: return igc_xdp_set_prog(adapter, bpf->prog, bpf->extack); case XDP_SETUP_XSK_POOL: return igc_xdp_setup_pool(adapter, bpf->xsk.pool, bpf->xsk.queue_id); default: return -EOPNOTSUPP; } } static int igc_xdp_xmit(struct net_device *dev, int num_frames, struct xdp_frame **frames, u32 flags) { struct igc_adapter *adapter = netdev_priv(dev); int cpu = smp_processor_id(); struct netdev_queue *nq; struct igc_ring *ring; int i, drops; if (unlikely(test_bit(__IGC_DOWN, &adapter->state))) return -ENETDOWN; if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) return -EINVAL; ring = igc_xdp_get_tx_ring(adapter, cpu); nq = txring_txq(ring); __netif_tx_lock(nq, cpu); drops = 0; for (i = 0; i < num_frames; i++) { int err; struct xdp_frame *xdpf = frames[i]; err = igc_xdp_init_tx_descriptor(ring, xdpf); if (err) { xdp_return_frame_rx_napi(xdpf); drops++; } } if (flags & XDP_XMIT_FLUSH) igc_flush_tx_descriptors(ring); __netif_tx_unlock(nq); return num_frames - drops; } static void igc_trigger_rxtxq_interrupt(struct igc_adapter *adapter, struct igc_q_vector *q_vector) { struct igc_hw *hw = &adapter->hw; u32 eics = 0; eics |= q_vector->eims_value; wr32(IGC_EICS, eics); } int igc_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags) { struct igc_adapter *adapter = netdev_priv(dev); struct igc_q_vector *q_vector; struct igc_ring *ring; if (test_bit(__IGC_DOWN, &adapter->state)) return -ENETDOWN; if (!igc_xdp_is_enabled(adapter)) return -ENXIO; if (queue_id >= adapter->num_rx_queues) return -EINVAL; ring = adapter->rx_ring[queue_id]; if (!ring->xsk_pool) return -ENXIO; q_vector = adapter->q_vector[queue_id]; if (!napi_if_scheduled_mark_missed(&q_vector->napi)) igc_trigger_rxtxq_interrupt(adapter, q_vector); return 0; } static const struct net_device_ops igc_netdev_ops = { .ndo_open = igc_open, .ndo_stop = igc_close, .ndo_start_xmit = igc_xmit_frame, .ndo_set_rx_mode = igc_set_rx_mode, .ndo_set_mac_address = igc_set_mac, .ndo_change_mtu = igc_change_mtu, .ndo_get_stats64 = igc_get_stats64, .ndo_fix_features = igc_fix_features, .ndo_set_features = igc_set_features, .ndo_features_check = igc_features_check, .ndo_eth_ioctl = igc_ioctl, .ndo_setup_tc = igc_setup_tc, .ndo_bpf = igc_bpf, .ndo_xdp_xmit = igc_xdp_xmit, .ndo_xsk_wakeup = igc_xsk_wakeup, }; /* PCIe configuration access */ void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value) { struct igc_adapter *adapter = hw->back; pci_read_config_word(adapter->pdev, reg, value); } void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value) { struct igc_adapter *adapter = hw->back; pci_write_config_word(adapter->pdev, reg, *value); } s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value) { struct igc_adapter *adapter = hw->back; if (!pci_is_pcie(adapter->pdev)) return -IGC_ERR_CONFIG; pcie_capability_read_word(adapter->pdev, reg, value); return IGC_SUCCESS; } s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value) { struct igc_adapter *adapter = hw->back; if (!pci_is_pcie(adapter->pdev)) return -IGC_ERR_CONFIG; pcie_capability_write_word(adapter->pdev, reg, *value); return IGC_SUCCESS; } u32 igc_rd32(struct igc_hw *hw, u32 reg) { struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw); u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr); u32 value = 0; if (IGC_REMOVED(hw_addr)) return ~value; value = readl(&hw_addr[reg]); /* reads should not return all F's */ if (!(~value) && (!reg || !(~readl(hw_addr)))) { struct net_device *netdev = igc->netdev; hw->hw_addr = NULL; netif_device_detach(netdev); netdev_err(netdev, "PCIe link lost, device now detached\n"); WARN(pci_device_is_present(igc->pdev), "igc: Failed to read reg 0x%x!\n", reg); } return value; } /** * igc_probe - Device Initialization Routine * @pdev: PCI device information struct * @ent: entry in igc_pci_tbl * * Returns 0 on success, negative on failure * * igc_probe initializes an adapter identified by a pci_dev structure. * The OS initialization, configuring the adapter private structure, * and a hardware reset occur. */ static int igc_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct igc_adapter *adapter; struct net_device *netdev; struct igc_hw *hw; const struct igc_info *ei = igc_info_tbl[ent->driver_data]; int err; err = pci_enable_device_mem(pdev); if (err) return err; err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); if (err) { dev_err(&pdev->dev, "No usable DMA configuration, aborting\n"); goto err_dma; } err = pci_request_mem_regions(pdev, igc_driver_name); if (err) goto err_pci_reg; pci_enable_pcie_error_reporting(pdev); err = pci_enable_ptm(pdev, NULL); if (err < 0) dev_info(&pdev->dev, "PCIe PTM not supported by PCIe bus/controller\n"); pci_set_master(pdev); err = -ENOMEM; netdev = alloc_etherdev_mq(sizeof(struct igc_adapter), IGC_MAX_TX_QUEUES); if (!netdev) goto err_alloc_etherdev; SET_NETDEV_DEV(netdev, &pdev->dev); pci_set_drvdata(pdev, netdev); adapter = netdev_priv(netdev); adapter->netdev = netdev; adapter->pdev = pdev; hw = &adapter->hw; hw->back = adapter; adapter->port_num = hw->bus.func; adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); err = pci_save_state(pdev); if (err) goto err_ioremap; err = -EIO; adapter->io_addr = ioremap(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0)); if (!adapter->io_addr) goto err_ioremap; /* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */ hw->hw_addr = adapter->io_addr; netdev->netdev_ops = &igc_netdev_ops; igc_ethtool_set_ops(netdev); netdev->watchdog_timeo = 5 * HZ; netdev->mem_start = pci_resource_start(pdev, 0); netdev->mem_end = pci_resource_end(pdev, 0); /* PCI config space info */ hw->vendor_id = pdev->vendor; hw->device_id = pdev->device; hw->revision_id = pdev->revision; hw->subsystem_vendor_id = pdev->subsystem_vendor; hw->subsystem_device_id = pdev->subsystem_device; /* Copy the default MAC and PHY function pointers */ memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); /* Initialize skew-specific constants */ err = ei->get_invariants(hw); if (err) goto err_sw_init; /* Add supported features to the features list*/ netdev->features |= NETIF_F_SG; netdev->features |= NETIF_F_TSO; netdev->features |= NETIF_F_TSO6; netdev->features |= NETIF_F_TSO_ECN; netdev->features |= NETIF_F_RXCSUM; netdev->features |= NETIF_F_HW_CSUM; netdev->features |= NETIF_F_SCTP_CRC; netdev->features |= NETIF_F_HW_TC; #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \ NETIF_F_GSO_GRE_CSUM | \ NETIF_F_GSO_IPXIP4 | \ NETIF_F_GSO_IPXIP6 | \ NETIF_F_GSO_UDP_TUNNEL | \ NETIF_F_GSO_UDP_TUNNEL_CSUM) netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES; netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES; /* setup the private structure */ err = igc_sw_init(adapter); if (err) goto err_sw_init; /* copy netdev features into list of user selectable features */ netdev->hw_features |= NETIF_F_NTUPLE; netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX; netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX; netdev->hw_features |= netdev->features; netdev->features |= NETIF_F_HIGHDMA; netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID; netdev->mpls_features |= NETIF_F_HW_CSUM; netdev->hw_enc_features |= netdev->vlan_features; /* MTU range: 68 - 9216 */ netdev->min_mtu = ETH_MIN_MTU; netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE; /* before reading the NVM, reset the controller to put the device in a * known good starting state */ hw->mac.ops.reset_hw(hw); if (igc_get_flash_presence_i225(hw)) { if (hw->nvm.ops.validate(hw) < 0) { dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n"); err = -EIO; goto err_eeprom; } } if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) { /* copy the MAC address out of the NVM */ if (hw->mac.ops.read_mac_addr(hw)) dev_err(&pdev->dev, "NVM Read Error\n"); } eth_hw_addr_set(netdev, hw->mac.addr); if (!is_valid_ether_addr(netdev->dev_addr)) { dev_err(&pdev->dev, "Invalid MAC Address\n"); err = -EIO; goto err_eeprom; } /* configure RXPBSIZE and TXPBSIZE */ wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT); wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT); timer_setup(&adapter->watchdog_timer, igc_watchdog, 0); timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0); INIT_WORK(&adapter->reset_task, igc_reset_task); INIT_WORK(&adapter->watchdog_task, igc_watchdog_task); /* Initialize link properties that are user-changeable */ adapter->fc_autoneg = true; hw->mac.autoneg = true; hw->phy.autoneg_advertised = 0xaf; hw->fc.requested_mode = igc_fc_default; hw->fc.current_mode = igc_fc_default; /* By default, support wake on port A */ adapter->flags |= IGC_FLAG_WOL_SUPPORTED; /* initialize the wol settings based on the eeprom settings */ if (adapter->flags & IGC_FLAG_WOL_SUPPORTED) adapter->wol |= IGC_WUFC_MAG; device_set_wakeup_enable(&adapter->pdev->dev, adapter->flags & IGC_FLAG_WOL_SUPPORTED); igc_ptp_init(adapter); igc_tsn_clear_schedule(adapter); /* reset the hardware with the new settings */ igc_reset(adapter); /* let the f/w know that the h/w is now under the control of the * driver. */ igc_get_hw_control(adapter); strncpy(netdev->name, "eth%d", IFNAMSIZ); err = register_netdev(netdev); if (err) goto err_register; /* carrier off reporting is important to ethtool even BEFORE open */ netif_carrier_off(netdev); /* Check if Media Autosense is enabled */ adapter->ei = *ei; /* print pcie link status and MAC address */ pcie_print_link_status(pdev); netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr); dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE); /* Disable EEE for internal PHY devices */ hw->dev_spec._base.eee_enable = false; adapter->flags &= ~IGC_FLAG_EEE; igc_set_eee_i225(hw, false, false, false); pm_runtime_put_noidle(&pdev->dev); return 0; err_register: igc_release_hw_control(adapter); err_eeprom: if (!igc_check_reset_block(hw)) igc_reset_phy(hw); err_sw_init: igc_clear_interrupt_scheme(adapter); iounmap(adapter->io_addr); err_ioremap: free_netdev(netdev); err_alloc_etherdev: pci_disable_pcie_error_reporting(pdev); pci_release_mem_regions(pdev); err_pci_reg: err_dma: pci_disable_device(pdev); return err; } /** * igc_remove - Device Removal Routine * @pdev: PCI device information struct * * igc_remove is called by the PCI subsystem to alert the driver * that it should release a PCI device. This could be caused by a * Hot-Plug event, or because the driver is going to be removed from * memory. */ static void igc_remove(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); struct igc_adapter *adapter = netdev_priv(netdev); pm_runtime_get_noresume(&pdev->dev); igc_flush_nfc_rules(adapter); igc_ptp_stop(adapter); set_bit(__IGC_DOWN, &adapter->state); del_timer_sync(&adapter->watchdog_timer); del_timer_sync(&adapter->phy_info_timer); cancel_work_sync(&adapter->reset_task); cancel_work_sync(&adapter->watchdog_task); /* Release control of h/w to f/w. If f/w is AMT enabled, this * would have already happened in close and is redundant. */ igc_release_hw_control(adapter); unregister_netdev(netdev); igc_clear_interrupt_scheme(adapter); pci_iounmap(pdev, adapter->io_addr); pci_release_mem_regions(pdev); free_netdev(netdev); pci_disable_pcie_error_reporting(pdev); pci_disable_device(pdev); } static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake, bool runtime) { struct net_device *netdev = pci_get_drvdata(pdev); struct igc_adapter *adapter = netdev_priv(netdev); u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol; struct igc_hw *hw = &adapter->hw; u32 ctrl, rctl, status; bool wake; rtnl_lock(); netif_device_detach(netdev); if (netif_running(netdev)) __igc_close(netdev, true); igc_ptp_suspend(adapter); igc_clear_interrupt_scheme(adapter); rtnl_unlock(); status = rd32(IGC_STATUS); if (status & IGC_STATUS_LU) wufc &= ~IGC_WUFC_LNKC; if (wufc) { igc_setup_rctl(adapter); igc_set_rx_mode(netdev); /* turn on all-multi mode if wake on multicast is enabled */ if (wufc & IGC_WUFC_MC) { rctl = rd32(IGC_RCTL); rctl |= IGC_RCTL_MPE; wr32(IGC_RCTL, rctl); } ctrl = rd32(IGC_CTRL); ctrl |= IGC_CTRL_ADVD3WUC; wr32(IGC_CTRL, ctrl); /* Allow time for pending master requests to run */ igc_disable_pcie_master(hw); wr32(IGC_WUC, IGC_WUC_PME_EN); wr32(IGC_WUFC, wufc); } else { wr32(IGC_WUC, 0); wr32(IGC_WUFC, 0); } wake = wufc || adapter->en_mng_pt; if (!wake) igc_power_down_phy_copper_base(&adapter->hw); else igc_power_up_link(adapter); if (enable_wake) *enable_wake = wake; /* Release control of h/w to f/w. If f/w is AMT enabled, this * would have already happened in close and is redundant. */ igc_release_hw_control(adapter); pci_disable_device(pdev); return 0; } #ifdef CONFIG_PM static int __maybe_unused igc_runtime_suspend(struct device *dev) { return __igc_shutdown(to_pci_dev(dev), NULL, 1); } static void igc_deliver_wake_packet(struct net_device *netdev) { struct igc_adapter *adapter = netdev_priv(netdev); struct igc_hw *hw = &adapter->hw; struct sk_buff *skb; u32 wupl; wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK; /* WUPM stores only the first 128 bytes of the wake packet. * Read the packet only if we have the whole thing. */ if (wupl == 0 || wupl > IGC_WUPM_BYTES) return; skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES); if (!skb) return; skb_put(skb, wupl); /* Ensure reads are 32-bit aligned */ wupl = roundup(wupl, 4); memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl); skb->protocol = eth_type_trans(skb, netdev); netif_rx(skb); } static int __maybe_unused igc_resume(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); struct net_device *netdev = pci_get_drvdata(pdev); struct igc_adapter *adapter = netdev_priv(netdev); struct igc_hw *hw = &adapter->hw; u32 err, val; pci_set_power_state(pdev, PCI_D0); pci_restore_state(pdev); pci_save_state(pdev); if (!pci_device_is_present(pdev)) return -ENODEV; err = pci_enable_device_mem(pdev); if (err) { netdev_err(netdev, "Cannot enable PCI device from suspend\n"); return err; } pci_set_master(pdev); pci_enable_wake(pdev, PCI_D3hot, 0); pci_enable_wake(pdev, PCI_D3cold, 0); if (igc_init_interrupt_scheme(adapter, true)) { netdev_err(netdev, "Unable to allocate memory for queues\n"); return -ENOMEM; } igc_reset(adapter); /* let the f/w know that the h/w is now under the control of the * driver. */ igc_get_hw_control(adapter); val = rd32(IGC_WUS); if (val & WAKE_PKT_WUS) igc_deliver_wake_packet(netdev); wr32(IGC_WUS, ~0); rtnl_lock(); if (!err && netif_running(netdev)) err = __igc_open(netdev, true); if (!err) netif_device_attach(netdev); rtnl_unlock(); return err; } static int __maybe_unused igc_runtime_resume(struct device *dev) { return igc_resume(dev); } static int __maybe_unused igc_suspend(struct device *dev) { return __igc_shutdown(to_pci_dev(dev), NULL, 0); } static int __maybe_unused igc_runtime_idle(struct device *dev) { struct net_device *netdev = dev_get_drvdata(dev); struct igc_adapter *adapter = netdev_priv(netdev); if (!igc_has_link(adapter)) pm_schedule_suspend(dev, MSEC_PER_SEC * 5); return -EBUSY; } #endif /* CONFIG_PM */ static void igc_shutdown(struct pci_dev *pdev) { bool wake; __igc_shutdown(pdev, &wake, 0); if (system_state == SYSTEM_POWER_OFF) { pci_wake_from_d3(pdev, wake); pci_set_power_state(pdev, PCI_D3hot); } } /** * igc_io_error_detected - called when PCI error is detected * @pdev: Pointer to PCI device * @state: The current PCI connection state * * This function is called after a PCI bus error affecting * this device has been detected. **/ static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state) { struct net_device *netdev = pci_get_drvdata(pdev); struct igc_adapter *adapter = netdev_priv(netdev); netif_device_detach(netdev); if (state == pci_channel_io_perm_failure) return PCI_ERS_RESULT_DISCONNECT; if (netif_running(netdev)) igc_down(adapter); pci_disable_device(pdev); /* Request a slot reset. */ return PCI_ERS_RESULT_NEED_RESET; } /** * igc_io_slot_reset - called after the PCI bus has been reset. * @pdev: Pointer to PCI device * * Restart the card from scratch, as if from a cold-boot. Implementation * resembles the first-half of the igc_resume routine. **/ static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); struct igc_adapter *adapter = netdev_priv(netdev); struct igc_hw *hw = &adapter->hw; pci_ers_result_t result; if (pci_enable_device_mem(pdev)) { netdev_err(netdev, "Could not re-enable PCI device after reset\n"); result = PCI_ERS_RESULT_DISCONNECT; } else { pci_set_master(pdev); pci_restore_state(pdev); pci_save_state(pdev); pci_enable_wake(pdev, PCI_D3hot, 0); pci_enable_wake(pdev, PCI_D3cold, 0); /* In case of PCI error, adapter loses its HW address * so we should re-assign it here. */ hw->hw_addr = adapter->io_addr; igc_reset(adapter); wr32(IGC_WUS, ~0); result = PCI_ERS_RESULT_RECOVERED; } return result; } /** * igc_io_resume - called when traffic can start to flow again. * @pdev: Pointer to PCI device * * This callback is called when the error recovery driver tells us that * its OK to resume normal operation. Implementation resembles the * second-half of the igc_resume routine. */ static void igc_io_resume(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); struct igc_adapter *adapter = netdev_priv(netdev); rtnl_lock(); if (netif_running(netdev)) { if (igc_open(netdev)) { netdev_err(netdev, "igc_open failed after reset\n"); return; } } netif_device_attach(netdev); /* let the f/w know that the h/w is now under the control of the * driver. */ igc_get_hw_control(adapter); rtnl_unlock(); } static const struct pci_error_handlers igc_err_handler = { .error_detected = igc_io_error_detected, .slot_reset = igc_io_slot_reset, .resume = igc_io_resume, }; #ifdef CONFIG_PM static const struct dev_pm_ops igc_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(igc_suspend, igc_resume) SET_RUNTIME_PM_OPS(igc_runtime_suspend, igc_runtime_resume, igc_runtime_idle) }; #endif static struct pci_driver igc_driver = { .name = igc_driver_name, .id_table = igc_pci_tbl, .probe = igc_probe, .remove = igc_remove, #ifdef CONFIG_PM .driver.pm = &igc_pm_ops, #endif .shutdown = igc_shutdown, .err_handler = &igc_err_handler, }; /** * igc_reinit_queues - return error * @adapter: pointer to adapter structure */ int igc_reinit_queues(struct igc_adapter *adapter) { struct net_device *netdev = adapter->netdev; int err = 0; if (netif_running(netdev)) igc_close(netdev); igc_reset_interrupt_capability(adapter); if (igc_init_interrupt_scheme(adapter, true)) { netdev_err(netdev, "Unable to allocate memory for queues\n"); return -ENOMEM; } if (netif_running(netdev)) err = igc_open(netdev); return err; } /** * igc_get_hw_dev - return device * @hw: pointer to hardware structure * * used by hardware layer to print debugging information */ struct net_device *igc_get_hw_dev(struct igc_hw *hw) { struct igc_adapter *adapter = hw->back; return adapter->netdev; } static void igc_disable_rx_ring_hw(struct igc_ring *ring) { struct igc_hw *hw = &ring->q_vector->adapter->hw; u8 idx = ring->reg_idx; u32 rxdctl; rxdctl = rd32(IGC_RXDCTL(idx)); rxdctl &= ~IGC_RXDCTL_QUEUE_ENABLE; rxdctl |= IGC_RXDCTL_SWFLUSH; wr32(IGC_RXDCTL(idx), rxdctl); } void igc_disable_rx_ring(struct igc_ring *ring) { igc_disable_rx_ring_hw(ring); igc_clean_rx_ring(ring); } void igc_enable_rx_ring(struct igc_ring *ring) { struct igc_adapter *adapter = ring->q_vector->adapter; igc_configure_rx_ring(adapter, ring); if (ring->xsk_pool) igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring)); else igc_alloc_rx_buffers(ring, igc_desc_unused(ring)); } static void igc_disable_tx_ring_hw(struct igc_ring *ring) { struct igc_hw *hw = &ring->q_vector->adapter->hw; u8 idx = ring->reg_idx; u32 txdctl; txdctl = rd32(IGC_TXDCTL(idx)); txdctl &= ~IGC_TXDCTL_QUEUE_ENABLE; txdctl |= IGC_TXDCTL_SWFLUSH; wr32(IGC_TXDCTL(idx), txdctl); } void igc_disable_tx_ring(struct igc_ring *ring) { igc_disable_tx_ring_hw(ring); igc_clean_tx_ring(ring); } void igc_enable_tx_ring(struct igc_ring *ring) { struct igc_adapter *adapter = ring->q_vector->adapter; igc_configure_tx_ring(adapter, ring); } /** * igc_init_module - Driver Registration Routine * * igc_init_module is the first routine called when the driver is * loaded. All it does is register with the PCI subsystem. */ static int __init igc_init_module(void) { int ret; pr_info("%s\n", igc_driver_string); pr_info("%s\n", igc_copyright); ret = pci_register_driver(&igc_driver); return ret; } module_init(igc_init_module); /** * igc_exit_module - Driver Exit Cleanup Routine * * igc_exit_module is called just before the driver is removed * from memory. */ static void __exit igc_exit_module(void) { pci_unregister_driver(&igc_driver); } module_exit(igc_exit_module); /* igc_main.c */