// SPDX-License-Identifier: GPL-2.0 /* * fs/f2fs/xattr.c * * Copyright (c) 2012 Samsung Electronics Co., Ltd. * http://www.samsung.com/ * * Portions of this code from linux/fs/ext2/xattr.c * * Copyright (C) 2001-2003 Andreas Gruenbacher <agruen@suse.de> * * Fix by Harrison Xing <harrison@mountainviewdata.com>. * Extended attributes for symlinks and special files added per * suggestion of Luka Renko <luka.renko@hermes.si>. * xattr consolidation Copyright (c) 2004 James Morris <jmorris@redhat.com>, * Red Hat Inc. */ #include <linux/rwsem.h> #include <linux/f2fs_fs.h> #include <linux/security.h> #include <linux/posix_acl_xattr.h> #include "f2fs.h" #include "xattr.h" #include "segment.h" static void *xattr_alloc(struct f2fs_sb_info *sbi, int size, bool *is_inline) { if (likely(size == sbi->inline_xattr_slab_size)) { *is_inline = true; return f2fs_kmem_cache_alloc(sbi->inline_xattr_slab, GFP_F2FS_ZERO, false, sbi); } *is_inline = false; return f2fs_kzalloc(sbi, size, GFP_NOFS); } static void xattr_free(struct f2fs_sb_info *sbi, void *xattr_addr, bool is_inline) { if (is_inline) kmem_cache_free(sbi->inline_xattr_slab, xattr_addr); else kfree(xattr_addr); } static int f2fs_xattr_generic_get(const struct xattr_handler *handler, struct dentry *unused, struct inode *inode, const char *name, void *buffer, size_t size) { struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); switch (handler->flags) { case F2FS_XATTR_INDEX_USER: if (!test_opt(sbi, XATTR_USER)) return -EOPNOTSUPP; break; case F2FS_XATTR_INDEX_TRUSTED: case F2FS_XATTR_INDEX_SECURITY: break; default: return -EINVAL; } return f2fs_getxattr(inode, handler->flags, name, buffer, size, NULL); } static int f2fs_xattr_generic_set(const struct xattr_handler *handler, struct user_namespace *mnt_userns, struct dentry *unused, struct inode *inode, const char *name, const void *value, size_t size, int flags) { struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); switch (handler->flags) { case F2FS_XATTR_INDEX_USER: if (!test_opt(sbi, XATTR_USER)) return -EOPNOTSUPP; break; case F2FS_XATTR_INDEX_TRUSTED: case F2FS_XATTR_INDEX_SECURITY: break; default: return -EINVAL; } return f2fs_setxattr(inode, handler->flags, name, value, size, NULL, flags); } static bool f2fs_xattr_user_list(struct dentry *dentry) { struct f2fs_sb_info *sbi = F2FS_SB(dentry->d_sb); return test_opt(sbi, XATTR_USER); } static bool f2fs_xattr_trusted_list(struct dentry *dentry) { return capable(CAP_SYS_ADMIN); } static int f2fs_xattr_advise_get(const struct xattr_handler *handler, struct dentry *unused, struct inode *inode, const char *name, void *buffer, size_t size) { if (buffer) *((char *)buffer) = F2FS_I(inode)->i_advise; return sizeof(char); } static int f2fs_xattr_advise_set(const struct xattr_handler *handler, struct user_namespace *mnt_userns, struct dentry *unused, struct inode *inode, const char *name, const void *value, size_t size, int flags) { unsigned char old_advise = F2FS_I(inode)->i_advise; unsigned char new_advise; if (!inode_owner_or_capable(&init_user_ns, inode)) return -EPERM; if (value == NULL) return -EINVAL; new_advise = *(char *)value; if (new_advise & ~FADVISE_MODIFIABLE_BITS) return -EINVAL; new_advise = new_advise & FADVISE_MODIFIABLE_BITS; new_advise |= old_advise & ~FADVISE_MODIFIABLE_BITS; F2FS_I(inode)->i_advise = new_advise; f2fs_mark_inode_dirty_sync(inode, true); return 0; } #ifdef CONFIG_F2FS_FS_SECURITY static int f2fs_initxattrs(struct inode *inode, const struct xattr *xattr_array, void *page) { const struct xattr *xattr; int err = 0; for (xattr = xattr_array; xattr->name != NULL; xattr++) { err = f2fs_setxattr(inode, F2FS_XATTR_INDEX_SECURITY, xattr->name, xattr->value, xattr->value_len, (struct page *)page, 0); if (err < 0) break; } return err; } int f2fs_init_security(struct inode *inode, struct inode *dir, const struct qstr *qstr, struct page *ipage) { return security_inode_init_security(inode, dir, qstr, &f2fs_initxattrs, ipage); } #endif const struct xattr_handler f2fs_xattr_user_handler = { .prefix = XATTR_USER_PREFIX, .flags = F2FS_XATTR_INDEX_USER, .list = f2fs_xattr_user_list, .get = f2fs_xattr_generic_get, .set = f2fs_xattr_generic_set, }; const struct xattr_handler f2fs_xattr_trusted_handler = { .prefix = XATTR_TRUSTED_PREFIX, .flags = F2FS_XATTR_INDEX_TRUSTED, .list = f2fs_xattr_trusted_list, .get = f2fs_xattr_generic_get, .set = f2fs_xattr_generic_set, }; const struct xattr_handler f2fs_xattr_advise_handler = { .name = F2FS_SYSTEM_ADVISE_NAME, .flags = F2FS_XATTR_INDEX_ADVISE, .get = f2fs_xattr_advise_get, .set = f2fs_xattr_advise_set, }; const struct xattr_handler f2fs_xattr_security_handler = { .prefix = XATTR_SECURITY_PREFIX, .flags = F2FS_XATTR_INDEX_SECURITY, .get = f2fs_xattr_generic_get, .set = f2fs_xattr_generic_set, }; static const struct xattr_handler *f2fs_xattr_handler_map[] = { [F2FS_XATTR_INDEX_USER] = &f2fs_xattr_user_handler, #ifdef CONFIG_F2FS_FS_POSIX_ACL [F2FS_XATTR_INDEX_POSIX_ACL_ACCESS] = &posix_acl_access_xattr_handler, [F2FS_XATTR_INDEX_POSIX_ACL_DEFAULT] = &posix_acl_default_xattr_handler, #endif [F2FS_XATTR_INDEX_TRUSTED] = &f2fs_xattr_trusted_handler, #ifdef CONFIG_F2FS_FS_SECURITY [F2FS_XATTR_INDEX_SECURITY] = &f2fs_xattr_security_handler, #endif [F2FS_XATTR_INDEX_ADVISE] = &f2fs_xattr_advise_handler, }; const struct xattr_handler *f2fs_xattr_handlers[] = { &f2fs_xattr_user_handler, #ifdef CONFIG_F2FS_FS_POSIX_ACL &posix_acl_access_xattr_handler, &posix_acl_default_xattr_handler, #endif &f2fs_xattr_trusted_handler, #ifdef CONFIG_F2FS_FS_SECURITY &f2fs_xattr_security_handler, #endif &f2fs_xattr_advise_handler, NULL, }; static inline const struct xattr_handler *f2fs_xattr_handler(int index) { const struct xattr_handler *handler = NULL; if (index > 0 && index < ARRAY_SIZE(f2fs_xattr_handler_map)) handler = f2fs_xattr_handler_map[index]; return handler; } static struct f2fs_xattr_entry *__find_xattr(void *base_addr, void *last_base_addr, int index, size_t len, const char *name) { struct f2fs_xattr_entry *entry; list_for_each_xattr(entry, base_addr) { if ((void *)(entry) + sizeof(__u32) > last_base_addr || (void *)XATTR_NEXT_ENTRY(entry) > last_base_addr) return NULL; if (entry->e_name_index != index) continue; if (entry->e_name_len != len) continue; if (!memcmp(entry->e_name, name, len)) break; } return entry; } static struct f2fs_xattr_entry *__find_inline_xattr(struct inode *inode, void *base_addr, void **last_addr, int index, size_t len, const char *name) { struct f2fs_xattr_entry *entry; unsigned int inline_size = inline_xattr_size(inode); void *max_addr = base_addr + inline_size; list_for_each_xattr(entry, base_addr) { if ((void *)entry + sizeof(__u32) > max_addr || (void *)XATTR_NEXT_ENTRY(entry) > max_addr) { *last_addr = entry; return NULL; } if (entry->e_name_index != index) continue; if (entry->e_name_len != len) continue; if (!memcmp(entry->e_name, name, len)) break; } /* inline xattr header or entry across max inline xattr size */ if (IS_XATTR_LAST_ENTRY(entry) && (void *)entry + sizeof(__u32) > max_addr) { *last_addr = entry; return NULL; } return entry; } static int read_inline_xattr(struct inode *inode, struct page *ipage, void *txattr_addr) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); unsigned int inline_size = inline_xattr_size(inode); struct page *page = NULL; void *inline_addr; if (ipage) { inline_addr = inline_xattr_addr(inode, ipage); } else { page = f2fs_get_node_page(sbi, inode->i_ino); if (IS_ERR(page)) return PTR_ERR(page); inline_addr = inline_xattr_addr(inode, page); } memcpy(txattr_addr, inline_addr, inline_size); f2fs_put_page(page, 1); return 0; } static int read_xattr_block(struct inode *inode, void *txattr_addr) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); nid_t xnid = F2FS_I(inode)->i_xattr_nid; unsigned int inline_size = inline_xattr_size(inode); struct page *xpage; void *xattr_addr; /* The inode already has an extended attribute block. */ xpage = f2fs_get_node_page(sbi, xnid); if (IS_ERR(xpage)) return PTR_ERR(xpage); xattr_addr = page_address(xpage); memcpy(txattr_addr + inline_size, xattr_addr, VALID_XATTR_BLOCK_SIZE); f2fs_put_page(xpage, 1); return 0; } static int lookup_all_xattrs(struct inode *inode, struct page *ipage, unsigned int index, unsigned int len, const char *name, struct f2fs_xattr_entry **xe, void **base_addr, int *base_size, bool *is_inline) { void *cur_addr, *txattr_addr, *last_txattr_addr; void *last_addr = NULL; nid_t xnid = F2FS_I(inode)->i_xattr_nid; unsigned int inline_size = inline_xattr_size(inode); int err; if (!xnid && !inline_size) return -ENODATA; *base_size = XATTR_SIZE(inode) + XATTR_PADDING_SIZE; txattr_addr = xattr_alloc(F2FS_I_SB(inode), *base_size, is_inline); if (!txattr_addr) return -ENOMEM; last_txattr_addr = (void *)txattr_addr + XATTR_SIZE(inode); /* read from inline xattr */ if (inline_size) { err = read_inline_xattr(inode, ipage, txattr_addr); if (err) goto out; *xe = __find_inline_xattr(inode, txattr_addr, &last_addr, index, len, name); if (*xe) { *base_size = inline_size; goto check; } } /* read from xattr node block */ if (xnid) { err = read_xattr_block(inode, txattr_addr); if (err) goto out; } if (last_addr) cur_addr = XATTR_HDR(last_addr) - 1; else cur_addr = txattr_addr; *xe = __find_xattr(cur_addr, last_txattr_addr, index, len, name); if (!*xe) { f2fs_err(F2FS_I_SB(inode), "inode (%lu) has corrupted xattr", inode->i_ino); set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK); err = -EFSCORRUPTED; goto out; } check: if (IS_XATTR_LAST_ENTRY(*xe)) { err = -ENODATA; goto out; } *base_addr = txattr_addr; return 0; out: xattr_free(F2FS_I_SB(inode), txattr_addr, *is_inline); return err; } static int read_all_xattrs(struct inode *inode, struct page *ipage, void **base_addr) { struct f2fs_xattr_header *header; nid_t xnid = F2FS_I(inode)->i_xattr_nid; unsigned int size = VALID_XATTR_BLOCK_SIZE; unsigned int inline_size = inline_xattr_size(inode); void *txattr_addr; int err; txattr_addr = f2fs_kzalloc(F2FS_I_SB(inode), inline_size + size + XATTR_PADDING_SIZE, GFP_NOFS); if (!txattr_addr) return -ENOMEM; /* read from inline xattr */ if (inline_size) { err = read_inline_xattr(inode, ipage, txattr_addr); if (err) goto fail; } /* read from xattr node block */ if (xnid) { err = read_xattr_block(inode, txattr_addr); if (err) goto fail; } header = XATTR_HDR(txattr_addr); /* never been allocated xattrs */ if (le32_to_cpu(header->h_magic) != F2FS_XATTR_MAGIC) { header->h_magic = cpu_to_le32(F2FS_XATTR_MAGIC); header->h_refcount = cpu_to_le32(1); } *base_addr = txattr_addr; return 0; fail: kfree(txattr_addr); return err; } static inline int write_all_xattrs(struct inode *inode, __u32 hsize, void *txattr_addr, struct page *ipage) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); size_t inline_size = inline_xattr_size(inode); struct page *in_page = NULL; void *xattr_addr; void *inline_addr = NULL; struct page *xpage; nid_t new_nid = 0; int err = 0; if (hsize > inline_size && !F2FS_I(inode)->i_xattr_nid) if (!f2fs_alloc_nid(sbi, &new_nid)) return -ENOSPC; /* write to inline xattr */ if (inline_size) { if (ipage) { inline_addr = inline_xattr_addr(inode, ipage); } else { in_page = f2fs_get_node_page(sbi, inode->i_ino); if (IS_ERR(in_page)) { f2fs_alloc_nid_failed(sbi, new_nid); return PTR_ERR(in_page); } inline_addr = inline_xattr_addr(inode, in_page); } f2fs_wait_on_page_writeback(ipage ? ipage : in_page, NODE, true, true); /* no need to use xattr node block */ if (hsize <= inline_size) { err = f2fs_truncate_xattr_node(inode); f2fs_alloc_nid_failed(sbi, new_nid); if (err) { f2fs_put_page(in_page, 1); return err; } memcpy(inline_addr, txattr_addr, inline_size); set_page_dirty(ipage ? ipage : in_page); goto in_page_out; } } /* write to xattr node block */ if (F2FS_I(inode)->i_xattr_nid) { xpage = f2fs_get_node_page(sbi, F2FS_I(inode)->i_xattr_nid); if (IS_ERR(xpage)) { err = PTR_ERR(xpage); f2fs_alloc_nid_failed(sbi, new_nid); goto in_page_out; } f2fs_bug_on(sbi, new_nid); f2fs_wait_on_page_writeback(xpage, NODE, true, true); } else { struct dnode_of_data dn; set_new_dnode(&dn, inode, NULL, NULL, new_nid); xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET); if (IS_ERR(xpage)) { err = PTR_ERR(xpage); f2fs_alloc_nid_failed(sbi, new_nid); goto in_page_out; } f2fs_alloc_nid_done(sbi, new_nid); } xattr_addr = page_address(xpage); if (inline_size) memcpy(inline_addr, txattr_addr, inline_size); memcpy(xattr_addr, txattr_addr + inline_size, VALID_XATTR_BLOCK_SIZE); if (inline_size) set_page_dirty(ipage ? ipage : in_page); set_page_dirty(xpage); f2fs_put_page(xpage, 1); in_page_out: f2fs_put_page(in_page, 1); return err; } int f2fs_getxattr(struct inode *inode, int index, const char *name, void *buffer, size_t buffer_size, struct page *ipage) { struct f2fs_xattr_entry *entry = NULL; int error; unsigned int size, len; void *base_addr = NULL; int base_size; bool is_inline; if (name == NULL) return -EINVAL; len = strlen(name); if (len > F2FS_NAME_LEN) return -ERANGE; down_read(&F2FS_I(inode)->i_xattr_sem); error = lookup_all_xattrs(inode, ipage, index, len, name, &entry, &base_addr, &base_size, &is_inline); up_read(&F2FS_I(inode)->i_xattr_sem); if (error) return error; size = le16_to_cpu(entry->e_value_size); if (buffer && size > buffer_size) { error = -ERANGE; goto out; } if (buffer) { char *pval = entry->e_name + entry->e_name_len; if (base_size - (pval - (char *)base_addr) < size) { error = -ERANGE; goto out; } memcpy(buffer, pval, size); } error = size; out: xattr_free(F2FS_I_SB(inode), base_addr, is_inline); return error; } ssize_t f2fs_listxattr(struct dentry *dentry, char *buffer, size_t buffer_size) { struct inode *inode = d_inode(dentry); struct f2fs_xattr_entry *entry; void *base_addr, *last_base_addr; int error; size_t rest = buffer_size; down_read(&F2FS_I(inode)->i_xattr_sem); error = read_all_xattrs(inode, NULL, &base_addr); up_read(&F2FS_I(inode)->i_xattr_sem); if (error) return error; last_base_addr = (void *)base_addr + XATTR_SIZE(inode); list_for_each_xattr(entry, base_addr) { const struct xattr_handler *handler = f2fs_xattr_handler(entry->e_name_index); const char *prefix; size_t prefix_len; size_t size; if ((void *)(entry) + sizeof(__u32) > last_base_addr || (void *)XATTR_NEXT_ENTRY(entry) > last_base_addr) { f2fs_err(F2FS_I_SB(inode), "inode (%lu) has corrupted xattr", inode->i_ino); set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK); error = -EFSCORRUPTED; goto cleanup; } if (!handler || (handler->list && !handler->list(dentry))) continue; prefix = xattr_prefix(handler); prefix_len = strlen(prefix); size = prefix_len + entry->e_name_len + 1; if (buffer) { if (size > rest) { error = -ERANGE; goto cleanup; } memcpy(buffer, prefix, prefix_len); buffer += prefix_len; memcpy(buffer, entry->e_name, entry->e_name_len); buffer += entry->e_name_len; *buffer++ = 0; } rest -= size; } error = buffer_size - rest; cleanup: kfree(base_addr); return error; } static bool f2fs_xattr_value_same(struct f2fs_xattr_entry *entry, const void *value, size_t size) { void *pval = entry->e_name + entry->e_name_len; return (le16_to_cpu(entry->e_value_size) == size) && !memcmp(pval, value, size); } static int __f2fs_setxattr(struct inode *inode, int index, const char *name, const void *value, size_t size, struct page *ipage, int flags) { struct f2fs_xattr_entry *here, *last; void *base_addr, *last_base_addr; int found, newsize; size_t len; __u32 new_hsize; int error; if (name == NULL) return -EINVAL; if (value == NULL) size = 0; len = strlen(name); if (len > F2FS_NAME_LEN) return -ERANGE; if (size > MAX_VALUE_LEN(inode)) return -E2BIG; error = read_all_xattrs(inode, ipage, &base_addr); if (error) return error; last_base_addr = (void *)base_addr + XATTR_SIZE(inode); /* find entry with wanted name. */ here = __find_xattr(base_addr, last_base_addr, index, len, name); if (!here) { f2fs_err(F2FS_I_SB(inode), "inode (%lu) has corrupted xattr", inode->i_ino); set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK); error = -EFSCORRUPTED; goto exit; } found = IS_XATTR_LAST_ENTRY(here) ? 0 : 1; if (found) { if ((flags & XATTR_CREATE)) { error = -EEXIST; goto exit; } if (value && f2fs_xattr_value_same(here, value, size)) goto same; } else if ((flags & XATTR_REPLACE)) { error = -ENODATA; goto exit; } last = here; while (!IS_XATTR_LAST_ENTRY(last)) last = XATTR_NEXT_ENTRY(last); newsize = XATTR_ALIGN(sizeof(struct f2fs_xattr_entry) + len + size); /* 1. Check space */ if (value) { int free; /* * If value is NULL, it is remove operation. * In case of update operation, we calculate free. */ free = MIN_OFFSET(inode) - ((char *)last - (char *)base_addr); if (found) free = free + ENTRY_SIZE(here); if (unlikely(free < newsize)) { error = -E2BIG; goto exit; } } /* 2. Remove old entry */ if (found) { /* * If entry is found, remove old entry. * If not found, remove operation is not needed. */ struct f2fs_xattr_entry *next = XATTR_NEXT_ENTRY(here); int oldsize = ENTRY_SIZE(here); memmove(here, next, (char *)last - (char *)next); last = (struct f2fs_xattr_entry *)((char *)last - oldsize); memset(last, 0, oldsize); } new_hsize = (char *)last - (char *)base_addr; /* 3. Write new entry */ if (value) { char *pval; /* * Before we come here, old entry is removed. * We just write new entry. */ last->e_name_index = index; last->e_name_len = len; memcpy(last->e_name, name, len); pval = last->e_name + len; memcpy(pval, value, size); last->e_value_size = cpu_to_le16(size); new_hsize += newsize; } error = write_all_xattrs(inode, new_hsize, base_addr, ipage); if (error) goto exit; if (index == F2FS_XATTR_INDEX_ENCRYPTION && !strcmp(name, F2FS_XATTR_NAME_ENCRYPTION_CONTEXT)) f2fs_set_encrypted_inode(inode); f2fs_mark_inode_dirty_sync(inode, true); if (!error && S_ISDIR(inode->i_mode)) set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_CP); same: if (is_inode_flag_set(inode, FI_ACL_MODE)) { inode->i_mode = F2FS_I(inode)->i_acl_mode; inode->i_ctime = current_time(inode); clear_inode_flag(inode, FI_ACL_MODE); } exit: kfree(base_addr); return error; } int f2fs_setxattr(struct inode *inode, int index, const char *name, const void *value, size_t size, struct page *ipage, int flags) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); int err; if (unlikely(f2fs_cp_error(sbi))) return -EIO; if (!f2fs_is_checkpoint_ready(sbi)) return -ENOSPC; err = f2fs_dquot_initialize(inode); if (err) return err; /* this case is only from f2fs_init_inode_metadata */ if (ipage) return __f2fs_setxattr(inode, index, name, value, size, ipage, flags); f2fs_balance_fs(sbi, true); f2fs_lock_op(sbi); down_write(&F2FS_I(inode)->i_xattr_sem); err = __f2fs_setxattr(inode, index, name, value, size, ipage, flags); up_write(&F2FS_I(inode)->i_xattr_sem); f2fs_unlock_op(sbi); f2fs_update_time(sbi, REQ_TIME); return err; } int f2fs_init_xattr_caches(struct f2fs_sb_info *sbi) { dev_t dev = sbi->sb->s_bdev->bd_dev; char slab_name[32]; sprintf(slab_name, "f2fs_xattr_entry-%u:%u", MAJOR(dev), MINOR(dev)); sbi->inline_xattr_slab_size = F2FS_OPTION(sbi).inline_xattr_size * sizeof(__le32) + XATTR_PADDING_SIZE; sbi->inline_xattr_slab = f2fs_kmem_cache_create(slab_name, sbi->inline_xattr_slab_size); if (!sbi->inline_xattr_slab) return -ENOMEM; return 0; } void f2fs_destroy_xattr_caches(struct f2fs_sb_info *sbi) { kmem_cache_destroy(sbi->inline_xattr_slab); }