/* * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. * Copyright (c) 2004 Infinicon Corporation. All rights reserved. * Copyright (c) 2004 Intel Corporation. All rights reserved. * Copyright (c) 2004 Topspin Corporation. All rights reserved. * Copyright (c) 2004 Voltaire Corporation. All rights reserved. * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #if !defined(IB_VERBS_H) #define IB_VERBS_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN struct ib_umem_odp; extern struct workqueue_struct *ib_wq; extern struct workqueue_struct *ib_comp_wq; extern struct workqueue_struct *ib_comp_unbound_wq; __printf(3, 4) __cold void ibdev_printk(const char *level, const struct ib_device *ibdev, const char *format, ...); __printf(2, 3) __cold void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...); __printf(2, 3) __cold void ibdev_alert(const struct ib_device *ibdev, const char *format, ...); __printf(2, 3) __cold void ibdev_crit(const struct ib_device *ibdev, const char *format, ...); __printf(2, 3) __cold void ibdev_err(const struct ib_device *ibdev, const char *format, ...); __printf(2, 3) __cold void ibdev_warn(const struct ib_device *ibdev, const char *format, ...); __printf(2, 3) __cold void ibdev_notice(const struct ib_device *ibdev, const char *format, ...); __printf(2, 3) __cold void ibdev_info(const struct ib_device *ibdev, const char *format, ...); #if defined(CONFIG_DYNAMIC_DEBUG) #define ibdev_dbg(__dev, format, args...) \ dynamic_ibdev_dbg(__dev, format, ##args) #elif defined(DEBUG) #define ibdev_dbg(__dev, format, args...) \ ibdev_printk(KERN_DEBUG, __dev, format, ##args) #else __printf(2, 3) __cold static inline void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {} #endif union ib_gid { u8 raw[16]; struct { __be64 subnet_prefix; __be64 interface_id; } global; }; extern union ib_gid zgid; enum ib_gid_type { /* If link layer is Ethernet, this is RoCE V1 */ IB_GID_TYPE_IB = 0, IB_GID_TYPE_ROCE = 0, IB_GID_TYPE_ROCE_UDP_ENCAP = 1, IB_GID_TYPE_SIZE }; #define ROCE_V2_UDP_DPORT 4791 struct ib_gid_attr { struct net_device __rcu *ndev; struct ib_device *device; union ib_gid gid; enum ib_gid_type gid_type; u16 index; u8 port_num; }; enum rdma_node_type { /* IB values map to NodeInfo:NodeType. */ RDMA_NODE_IB_CA = 1, RDMA_NODE_IB_SWITCH, RDMA_NODE_IB_ROUTER, RDMA_NODE_RNIC, RDMA_NODE_USNIC, RDMA_NODE_USNIC_UDP, RDMA_NODE_UNSPECIFIED, }; enum { /* set the local administered indication */ IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2, }; enum rdma_transport_type { RDMA_TRANSPORT_IB, RDMA_TRANSPORT_IWARP, RDMA_TRANSPORT_USNIC, RDMA_TRANSPORT_USNIC_UDP, RDMA_TRANSPORT_UNSPECIFIED, }; enum rdma_protocol_type { RDMA_PROTOCOL_IB, RDMA_PROTOCOL_IBOE, RDMA_PROTOCOL_IWARP, RDMA_PROTOCOL_USNIC_UDP }; __attribute_const__ enum rdma_transport_type rdma_node_get_transport(enum rdma_node_type node_type); enum rdma_network_type { RDMA_NETWORK_IB, RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB, RDMA_NETWORK_IPV4, RDMA_NETWORK_IPV6 }; static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type) { if (network_type == RDMA_NETWORK_IPV4 || network_type == RDMA_NETWORK_IPV6) return IB_GID_TYPE_ROCE_UDP_ENCAP; /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */ return IB_GID_TYPE_IB; } static inline enum rdma_network_type rdma_gid_attr_network_type(const struct ib_gid_attr *attr) { if (attr->gid_type == IB_GID_TYPE_IB) return RDMA_NETWORK_IB; if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid)) return RDMA_NETWORK_IPV4; else return RDMA_NETWORK_IPV6; } enum rdma_link_layer { IB_LINK_LAYER_UNSPECIFIED, IB_LINK_LAYER_INFINIBAND, IB_LINK_LAYER_ETHERNET, }; enum ib_device_cap_flags { IB_DEVICE_RESIZE_MAX_WR = (1 << 0), IB_DEVICE_BAD_PKEY_CNTR = (1 << 1), IB_DEVICE_BAD_QKEY_CNTR = (1 << 2), IB_DEVICE_RAW_MULTI = (1 << 3), IB_DEVICE_AUTO_PATH_MIG = (1 << 4), IB_DEVICE_CHANGE_PHY_PORT = (1 << 5), IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6), IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7), IB_DEVICE_SHUTDOWN_PORT = (1 << 8), /* Not in use, former INIT_TYPE = (1 << 9),*/ IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10), IB_DEVICE_SYS_IMAGE_GUID = (1 << 11), IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12), IB_DEVICE_SRQ_RESIZE = (1 << 13), IB_DEVICE_N_NOTIFY_CQ = (1 << 14), /* * This device supports a per-device lkey or stag that can be * used without performing a memory registration for the local * memory. Note that ULPs should never check this flag, but * instead of use the local_dma_lkey flag in the ib_pd structure, * which will always contain a usable lkey. */ IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15), /* Reserved, old SEND_W_INV = (1 << 16),*/ IB_DEVICE_MEM_WINDOW = (1 << 17), /* * Devices should set IB_DEVICE_UD_IP_SUM if they support * insertion of UDP and TCP checksum on outgoing UD IPoIB * messages and can verify the validity of checksum for * incoming messages. Setting this flag implies that the * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode. */ IB_DEVICE_UD_IP_CSUM = (1 << 18), IB_DEVICE_UD_TSO = (1 << 19), IB_DEVICE_XRC = (1 << 20), /* * This device supports the IB "base memory management extension", * which includes support for fast registrations (IB_WR_REG_MR, * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should * also be set by any iWarp device which must support FRs to comply * to the iWarp verbs spec. iWarp devices also support the * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the * stag. */ IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21), IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22), IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23), IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24), IB_DEVICE_RC_IP_CSUM = (1 << 25), /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */ IB_DEVICE_RAW_IP_CSUM = (1 << 26), /* * Devices should set IB_DEVICE_CROSS_CHANNEL if they * support execution of WQEs that involve synchronization * of I/O operations with single completion queue managed * by hardware. */ IB_DEVICE_CROSS_CHANNEL = (1 << 27), IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29), IB_DEVICE_SIGNATURE_HANDOVER = (1 << 30), IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31), IB_DEVICE_SG_GAPS_REG = (1ULL << 32), IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33), /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */ IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34), IB_DEVICE_RDMA_NETDEV_OPA_VNIC = (1ULL << 35), /* The device supports padding incoming writes to cacheline. */ IB_DEVICE_PCI_WRITE_END_PADDING = (1ULL << 36), IB_DEVICE_ALLOW_USER_UNREG = (1ULL << 37), }; enum ib_signature_prot_cap { IB_PROT_T10DIF_TYPE_1 = 1, IB_PROT_T10DIF_TYPE_2 = 1 << 1, IB_PROT_T10DIF_TYPE_3 = 1 << 2, }; enum ib_signature_guard_cap { IB_GUARD_T10DIF_CRC = 1, IB_GUARD_T10DIF_CSUM = 1 << 1, }; enum ib_atomic_cap { IB_ATOMIC_NONE, IB_ATOMIC_HCA, IB_ATOMIC_GLOB }; enum ib_odp_general_cap_bits { IB_ODP_SUPPORT = 1 << 0, IB_ODP_SUPPORT_IMPLICIT = 1 << 1, }; enum ib_odp_transport_cap_bits { IB_ODP_SUPPORT_SEND = 1 << 0, IB_ODP_SUPPORT_RECV = 1 << 1, IB_ODP_SUPPORT_WRITE = 1 << 2, IB_ODP_SUPPORT_READ = 1 << 3, IB_ODP_SUPPORT_ATOMIC = 1 << 4, IB_ODP_SUPPORT_SRQ_RECV = 1 << 5, }; struct ib_odp_caps { uint64_t general_caps; struct { uint32_t rc_odp_caps; uint32_t uc_odp_caps; uint32_t ud_odp_caps; uint32_t xrc_odp_caps; } per_transport_caps; }; struct ib_rss_caps { /* Corresponding bit will be set if qp type from * 'enum ib_qp_type' is supported, e.g. * supported_qpts |= 1 << IB_QPT_UD */ u32 supported_qpts; u32 max_rwq_indirection_tables; u32 max_rwq_indirection_table_size; }; enum ib_tm_cap_flags { /* Support tag matching on RC transport */ IB_TM_CAP_RC = 1 << 0, }; struct ib_tm_caps { /* Max size of RNDV header */ u32 max_rndv_hdr_size; /* Max number of entries in tag matching list */ u32 max_num_tags; /* From enum ib_tm_cap_flags */ u32 flags; /* Max number of outstanding list operations */ u32 max_ops; /* Max number of SGE in tag matching entry */ u32 max_sge; }; struct ib_cq_init_attr { unsigned int cqe; int comp_vector; u32 flags; }; enum ib_cq_attr_mask { IB_CQ_MODERATE = 1 << 0, }; struct ib_cq_caps { u16 max_cq_moderation_count; u16 max_cq_moderation_period; }; struct ib_dm_mr_attr { u64 length; u64 offset; u32 access_flags; }; struct ib_dm_alloc_attr { u64 length; u32 alignment; u32 flags; }; struct ib_device_attr { u64 fw_ver; __be64 sys_image_guid; u64 max_mr_size; u64 page_size_cap; u32 vendor_id; u32 vendor_part_id; u32 hw_ver; int max_qp; int max_qp_wr; u64 device_cap_flags; int max_send_sge; int max_recv_sge; int max_sge_rd; int max_cq; int max_cqe; int max_mr; int max_pd; int max_qp_rd_atom; int max_ee_rd_atom; int max_res_rd_atom; int max_qp_init_rd_atom; int max_ee_init_rd_atom; enum ib_atomic_cap atomic_cap; enum ib_atomic_cap masked_atomic_cap; int max_ee; int max_rdd; int max_mw; int max_raw_ipv6_qp; int max_raw_ethy_qp; int max_mcast_grp; int max_mcast_qp_attach; int max_total_mcast_qp_attach; int max_ah; int max_fmr; int max_map_per_fmr; int max_srq; int max_srq_wr; int max_srq_sge; unsigned int max_fast_reg_page_list_len; u16 max_pkeys; u8 local_ca_ack_delay; int sig_prot_cap; int sig_guard_cap; struct ib_odp_caps odp_caps; uint64_t timestamp_mask; uint64_t hca_core_clock; /* in KHZ */ struct ib_rss_caps rss_caps; u32 max_wq_type_rq; u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */ struct ib_tm_caps tm_caps; struct ib_cq_caps cq_caps; u64 max_dm_size; }; enum ib_mtu { IB_MTU_256 = 1, IB_MTU_512 = 2, IB_MTU_1024 = 3, IB_MTU_2048 = 4, IB_MTU_4096 = 5 }; static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) { switch (mtu) { case IB_MTU_256: return 256; case IB_MTU_512: return 512; case IB_MTU_1024: return 1024; case IB_MTU_2048: return 2048; case IB_MTU_4096: return 4096; default: return -1; } } static inline enum ib_mtu ib_mtu_int_to_enum(int mtu) { if (mtu >= 4096) return IB_MTU_4096; else if (mtu >= 2048) return IB_MTU_2048; else if (mtu >= 1024) return IB_MTU_1024; else if (mtu >= 512) return IB_MTU_512; else return IB_MTU_256; } enum ib_port_state { IB_PORT_NOP = 0, IB_PORT_DOWN = 1, IB_PORT_INIT = 2, IB_PORT_ARMED = 3, IB_PORT_ACTIVE = 4, IB_PORT_ACTIVE_DEFER = 5 }; enum ib_port_width { IB_WIDTH_1X = 1, IB_WIDTH_2X = 16, IB_WIDTH_4X = 2, IB_WIDTH_8X = 4, IB_WIDTH_12X = 8 }; static inline int ib_width_enum_to_int(enum ib_port_width width) { switch (width) { case IB_WIDTH_1X: return 1; case IB_WIDTH_2X: return 2; case IB_WIDTH_4X: return 4; case IB_WIDTH_8X: return 8; case IB_WIDTH_12X: return 12; default: return -1; } } enum ib_port_speed { IB_SPEED_SDR = 1, IB_SPEED_DDR = 2, IB_SPEED_QDR = 4, IB_SPEED_FDR10 = 8, IB_SPEED_FDR = 16, IB_SPEED_EDR = 32, IB_SPEED_HDR = 64 }; /** * struct rdma_hw_stats * @lock - Mutex to protect parallel write access to lifespan and values * of counters, which are 64bits and not guaranteeed to be written * atomicaly on 32bits systems. * @timestamp - Used by the core code to track when the last update was * @lifespan - Used by the core code to determine how old the counters * should be before being updated again. Stored in jiffies, defaults * to 10 milliseconds, drivers can override the default be specifying * their own value during their allocation routine. * @name - Array of pointers to static names used for the counters in * directory. * @num_counters - How many hardware counters there are. If name is * shorter than this number, a kernel oops will result. Driver authors * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters) * in their code to prevent this. * @value - Array of u64 counters that are accessed by the sysfs code and * filled in by the drivers get_stats routine */ struct rdma_hw_stats { struct mutex lock; /* Protect lifespan and values[] */ unsigned long timestamp; unsigned long lifespan; const char * const *names; int num_counters; u64 value[]; }; #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10 /** * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct * for drivers. * @names - Array of static const char * * @num_counters - How many elements in array * @lifespan - How many milliseconds between updates */ static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct( const char * const *names, int num_counters, unsigned long lifespan) { struct rdma_hw_stats *stats; stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64), GFP_KERNEL); if (!stats) return NULL; stats->names = names; stats->num_counters = num_counters; stats->lifespan = msecs_to_jiffies(lifespan); return stats; } /* Define bits for the various functionality this port needs to be supported by * the core. */ /* Management 0x00000FFF */ #define RDMA_CORE_CAP_IB_MAD 0x00000001 #define RDMA_CORE_CAP_IB_SMI 0x00000002 #define RDMA_CORE_CAP_IB_CM 0x00000004 #define RDMA_CORE_CAP_IW_CM 0x00000008 #define RDMA_CORE_CAP_IB_SA 0x00000010 #define RDMA_CORE_CAP_OPA_MAD 0x00000020 /* Address format 0x000FF000 */ #define RDMA_CORE_CAP_AF_IB 0x00001000 #define RDMA_CORE_CAP_ETH_AH 0x00002000 #define RDMA_CORE_CAP_OPA_AH 0x00004000 #define RDMA_CORE_CAP_IB_GRH_REQUIRED 0x00008000 /* Protocol 0xFFF00000 */ #define RDMA_CORE_CAP_PROT_IB 0x00100000 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000 #define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000 #define RDMA_CORE_CAP_PROT_USNIC 0x02000000 #define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \ | RDMA_CORE_CAP_PROT_ROCE \ | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP) #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \ | RDMA_CORE_CAP_IB_MAD \ | RDMA_CORE_CAP_IB_SMI \ | RDMA_CORE_CAP_IB_CM \ | RDMA_CORE_CAP_IB_SA \ | RDMA_CORE_CAP_AF_IB) #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \ | RDMA_CORE_CAP_IB_MAD \ | RDMA_CORE_CAP_IB_CM \ | RDMA_CORE_CAP_AF_IB \ | RDMA_CORE_CAP_ETH_AH) #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \ (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \ | RDMA_CORE_CAP_IB_MAD \ | RDMA_CORE_CAP_IB_CM \ | RDMA_CORE_CAP_AF_IB \ | RDMA_CORE_CAP_ETH_AH) #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \ | RDMA_CORE_CAP_IW_CM) #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \ | RDMA_CORE_CAP_OPA_MAD) #define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET) #define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC) struct ib_port_attr { u64 subnet_prefix; enum ib_port_state state; enum ib_mtu max_mtu; enum ib_mtu active_mtu; int gid_tbl_len; unsigned int ip_gids:1; /* This is the value from PortInfo CapabilityMask, defined by IBA */ u32 port_cap_flags; u32 max_msg_sz; u32 bad_pkey_cntr; u32 qkey_viol_cntr; u16 pkey_tbl_len; u32 sm_lid; u32 lid; u8 lmc; u8 max_vl_num; u8 sm_sl; u8 subnet_timeout; u8 init_type_reply; u8 active_width; u8 active_speed; u8 phys_state; u16 port_cap_flags2; }; enum ib_device_modify_flags { IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 }; #define IB_DEVICE_NODE_DESC_MAX 64 struct ib_device_modify { u64 sys_image_guid; char node_desc[IB_DEVICE_NODE_DESC_MAX]; }; enum ib_port_modify_flags { IB_PORT_SHUTDOWN = 1, IB_PORT_INIT_TYPE = (1<<2), IB_PORT_RESET_QKEY_CNTR = (1<<3), IB_PORT_OPA_MASK_CHG = (1<<4) }; struct ib_port_modify { u32 set_port_cap_mask; u32 clr_port_cap_mask; u8 init_type; }; enum ib_event_type { IB_EVENT_CQ_ERR, IB_EVENT_QP_FATAL, IB_EVENT_QP_REQ_ERR, IB_EVENT_QP_ACCESS_ERR, IB_EVENT_COMM_EST, IB_EVENT_SQ_DRAINED, IB_EVENT_PATH_MIG, IB_EVENT_PATH_MIG_ERR, IB_EVENT_DEVICE_FATAL, IB_EVENT_PORT_ACTIVE, IB_EVENT_PORT_ERR, IB_EVENT_LID_CHANGE, IB_EVENT_PKEY_CHANGE, IB_EVENT_SM_CHANGE, IB_EVENT_SRQ_ERR, IB_EVENT_SRQ_LIMIT_REACHED, IB_EVENT_QP_LAST_WQE_REACHED, IB_EVENT_CLIENT_REREGISTER, IB_EVENT_GID_CHANGE, IB_EVENT_WQ_FATAL, }; const char *__attribute_const__ ib_event_msg(enum ib_event_type event); struct ib_event { struct ib_device *device; union { struct ib_cq *cq; struct ib_qp *qp; struct ib_srq *srq; struct ib_wq *wq; u8 port_num; } element; enum ib_event_type event; }; struct ib_event_handler { struct ib_device *device; void (*handler)(struct ib_event_handler *, struct ib_event *); struct list_head list; }; #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ do { \ (_ptr)->device = _device; \ (_ptr)->handler = _handler; \ INIT_LIST_HEAD(&(_ptr)->list); \ } while (0) struct ib_global_route { const struct ib_gid_attr *sgid_attr; union ib_gid dgid; u32 flow_label; u8 sgid_index; u8 hop_limit; u8 traffic_class; }; struct ib_grh { __be32 version_tclass_flow; __be16 paylen; u8 next_hdr; u8 hop_limit; union ib_gid sgid; union ib_gid dgid; }; union rdma_network_hdr { struct ib_grh ibgrh; struct { /* The IB spec states that if it's IPv4, the header * is located in the last 20 bytes of the header. */ u8 reserved[20]; struct iphdr roce4grh; }; }; #define IB_QPN_MASK 0xFFFFFF enum { IB_MULTICAST_QPN = 0xffffff }; #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF) #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000) enum ib_ah_flags { IB_AH_GRH = 1 }; enum ib_rate { IB_RATE_PORT_CURRENT = 0, IB_RATE_2_5_GBPS = 2, IB_RATE_5_GBPS = 5, IB_RATE_10_GBPS = 3, IB_RATE_20_GBPS = 6, IB_RATE_30_GBPS = 4, IB_RATE_40_GBPS = 7, IB_RATE_60_GBPS = 8, IB_RATE_80_GBPS = 9, IB_RATE_120_GBPS = 10, IB_RATE_14_GBPS = 11, IB_RATE_56_GBPS = 12, IB_RATE_112_GBPS = 13, IB_RATE_168_GBPS = 14, IB_RATE_25_GBPS = 15, IB_RATE_100_GBPS = 16, IB_RATE_200_GBPS = 17, IB_RATE_300_GBPS = 18, IB_RATE_28_GBPS = 19, IB_RATE_50_GBPS = 20, IB_RATE_400_GBPS = 21, IB_RATE_600_GBPS = 22, }; /** * ib_rate_to_mult - Convert the IB rate enum to a multiple of the * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. * @rate: rate to convert. */ __attribute_const__ int ib_rate_to_mult(enum ib_rate rate); /** * ib_rate_to_mbps - Convert the IB rate enum to Mbps. * For example, IB_RATE_2_5_GBPS will be converted to 2500. * @rate: rate to convert. */ __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate); /** * enum ib_mr_type - memory region type * @IB_MR_TYPE_MEM_REG: memory region that is used for * normal registration * @IB_MR_TYPE_SIGNATURE: memory region that is used for * signature operations (data-integrity * capable regions) * @IB_MR_TYPE_SG_GAPS: memory region that is capable to * register any arbitrary sg lists (without * the normal mr constraints - see * ib_map_mr_sg) */ enum ib_mr_type { IB_MR_TYPE_MEM_REG, IB_MR_TYPE_SIGNATURE, IB_MR_TYPE_SG_GAPS, }; /** * Signature types * IB_SIG_TYPE_NONE: Unprotected. * IB_SIG_TYPE_T10_DIF: Type T10-DIF */ enum ib_signature_type { IB_SIG_TYPE_NONE, IB_SIG_TYPE_T10_DIF, }; /** * Signature T10-DIF block-guard types * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules. * IB_T10DIF_CSUM: Corresponds to IP checksum rules. */ enum ib_t10_dif_bg_type { IB_T10DIF_CRC, IB_T10DIF_CSUM }; /** * struct ib_t10_dif_domain - Parameters specific for T10-DIF * domain. * @bg_type: T10-DIF block guard type (CRC|CSUM) * @pi_interval: protection information interval. * @bg: seed of guard computation. * @app_tag: application tag of guard block * @ref_tag: initial guard block reference tag. * @ref_remap: Indicate wethear the reftag increments each block * @app_escape: Indicate to skip block check if apptag=0xffff * @ref_escape: Indicate to skip block check if reftag=0xffffffff * @apptag_check_mask: check bitmask of application tag. */ struct ib_t10_dif_domain { enum ib_t10_dif_bg_type bg_type; u16 pi_interval; u16 bg; u16 app_tag; u32 ref_tag; bool ref_remap; bool app_escape; bool ref_escape; u16 apptag_check_mask; }; /** * struct ib_sig_domain - Parameters for signature domain * @sig_type: specific signauture type * @sig: union of all signature domain attributes that may * be used to set domain layout. */ struct ib_sig_domain { enum ib_signature_type sig_type; union { struct ib_t10_dif_domain dif; } sig; }; /** * struct ib_sig_attrs - Parameters for signature handover operation * @check_mask: bitmask for signature byte check (8 bytes) * @mem: memory domain layout desciptor. * @wire: wire domain layout desciptor. */ struct ib_sig_attrs { u8 check_mask; struct ib_sig_domain mem; struct ib_sig_domain wire; }; enum ib_sig_err_type { IB_SIG_BAD_GUARD, IB_SIG_BAD_REFTAG, IB_SIG_BAD_APPTAG, }; /** * Signature check masks (8 bytes in total) according to the T10-PI standard: * -------- -------- ------------ * | GUARD | APPTAG | REFTAG | * | 2B | 2B | 4B | * -------- -------- ------------ */ enum { IB_SIG_CHECK_GUARD = 0xc0, IB_SIG_CHECK_APPTAG = 0x30, IB_SIG_CHECK_REFTAG = 0x0f, }; /** * struct ib_sig_err - signature error descriptor */ struct ib_sig_err { enum ib_sig_err_type err_type; u32 expected; u32 actual; u64 sig_err_offset; u32 key; }; enum ib_mr_status_check { IB_MR_CHECK_SIG_STATUS = 1, }; /** * struct ib_mr_status - Memory region status container * * @fail_status: Bitmask of MR checks status. For each * failed check a corresponding status bit is set. * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS * failure. */ struct ib_mr_status { u32 fail_status; struct ib_sig_err sig_err; }; /** * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate * enum. * @mult: multiple to convert. */ __attribute_const__ enum ib_rate mult_to_ib_rate(int mult); enum rdma_ah_attr_type { RDMA_AH_ATTR_TYPE_UNDEFINED, RDMA_AH_ATTR_TYPE_IB, RDMA_AH_ATTR_TYPE_ROCE, RDMA_AH_ATTR_TYPE_OPA, }; struct ib_ah_attr { u16 dlid; u8 src_path_bits; }; struct roce_ah_attr { u8 dmac[ETH_ALEN]; }; struct opa_ah_attr { u32 dlid; u8 src_path_bits; bool make_grd; }; struct rdma_ah_attr { struct ib_global_route grh; u8 sl; u8 static_rate; u8 port_num; u8 ah_flags; enum rdma_ah_attr_type type; union { struct ib_ah_attr ib; struct roce_ah_attr roce; struct opa_ah_attr opa; }; }; enum ib_wc_status { IB_WC_SUCCESS, IB_WC_LOC_LEN_ERR, IB_WC_LOC_QP_OP_ERR, IB_WC_LOC_EEC_OP_ERR, IB_WC_LOC_PROT_ERR, IB_WC_WR_FLUSH_ERR, IB_WC_MW_BIND_ERR, IB_WC_BAD_RESP_ERR, IB_WC_LOC_ACCESS_ERR, IB_WC_REM_INV_REQ_ERR, IB_WC_REM_ACCESS_ERR, IB_WC_REM_OP_ERR, IB_WC_RETRY_EXC_ERR, IB_WC_RNR_RETRY_EXC_ERR, IB_WC_LOC_RDD_VIOL_ERR, IB_WC_REM_INV_RD_REQ_ERR, IB_WC_REM_ABORT_ERR, IB_WC_INV_EECN_ERR, IB_WC_INV_EEC_STATE_ERR, IB_WC_FATAL_ERR, IB_WC_RESP_TIMEOUT_ERR, IB_WC_GENERAL_ERR }; const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status); enum ib_wc_opcode { IB_WC_SEND, IB_WC_RDMA_WRITE, IB_WC_RDMA_READ, IB_WC_COMP_SWAP, IB_WC_FETCH_ADD, IB_WC_LSO, IB_WC_LOCAL_INV, IB_WC_REG_MR, IB_WC_MASKED_COMP_SWAP, IB_WC_MASKED_FETCH_ADD, /* * Set value of IB_WC_RECV so consumers can test if a completion is a * receive by testing (opcode & IB_WC_RECV). */ IB_WC_RECV = 1 << 7, IB_WC_RECV_RDMA_WITH_IMM }; enum ib_wc_flags { IB_WC_GRH = 1, IB_WC_WITH_IMM = (1<<1), IB_WC_WITH_INVALIDATE = (1<<2), IB_WC_IP_CSUM_OK = (1<<3), IB_WC_WITH_SMAC = (1<<4), IB_WC_WITH_VLAN = (1<<5), IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6), }; struct ib_wc { union { u64 wr_id; struct ib_cqe *wr_cqe; }; enum ib_wc_status status; enum ib_wc_opcode opcode; u32 vendor_err; u32 byte_len; struct ib_qp *qp; union { __be32 imm_data; u32 invalidate_rkey; } ex; u32 src_qp; u32 slid; int wc_flags; u16 pkey_index; u8 sl; u8 dlid_path_bits; u8 port_num; /* valid only for DR SMPs on switches */ u8 smac[ETH_ALEN]; u16 vlan_id; u8 network_hdr_type; }; enum ib_cq_notify_flags { IB_CQ_SOLICITED = 1 << 0, IB_CQ_NEXT_COMP = 1 << 1, IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, }; enum ib_srq_type { IB_SRQT_BASIC, IB_SRQT_XRC, IB_SRQT_TM, }; static inline bool ib_srq_has_cq(enum ib_srq_type srq_type) { return srq_type == IB_SRQT_XRC || srq_type == IB_SRQT_TM; } enum ib_srq_attr_mask { IB_SRQ_MAX_WR = 1 << 0, IB_SRQ_LIMIT = 1 << 1, }; struct ib_srq_attr { u32 max_wr; u32 max_sge; u32 srq_limit; }; struct ib_srq_init_attr { void (*event_handler)(struct ib_event *, void *); void *srq_context; struct ib_srq_attr attr; enum ib_srq_type srq_type; struct { struct ib_cq *cq; union { struct { struct ib_xrcd *xrcd; } xrc; struct { u32 max_num_tags; } tag_matching; }; } ext; }; struct ib_qp_cap { u32 max_send_wr; u32 max_recv_wr; u32 max_send_sge; u32 max_recv_sge; u32 max_inline_data; /* * Maximum number of rdma_rw_ctx structures in flight at a time. * ib_create_qp() will calculate the right amount of neededed WRs * and MRs based on this. */ u32 max_rdma_ctxs; }; enum ib_sig_type { IB_SIGNAL_ALL_WR, IB_SIGNAL_REQ_WR }; enum ib_qp_type { /* * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries * here (and in that order) since the MAD layer uses them as * indices into a 2-entry table. */ IB_QPT_SMI, IB_QPT_GSI, IB_QPT_RC, IB_QPT_UC, IB_QPT_UD, IB_QPT_RAW_IPV6, IB_QPT_RAW_ETHERTYPE, IB_QPT_RAW_PACKET = 8, IB_QPT_XRC_INI = 9, IB_QPT_XRC_TGT, IB_QPT_MAX, IB_QPT_DRIVER = 0xFF, /* Reserve a range for qp types internal to the low level driver. * These qp types will not be visible at the IB core layer, so the * IB_QPT_MAX usages should not be affected in the core layer */ IB_QPT_RESERVED1 = 0x1000, IB_QPT_RESERVED2, IB_QPT_RESERVED3, IB_QPT_RESERVED4, IB_QPT_RESERVED5, IB_QPT_RESERVED6, IB_QPT_RESERVED7, IB_QPT_RESERVED8, IB_QPT_RESERVED9, IB_QPT_RESERVED10, }; enum ib_qp_create_flags { IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0, IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1, IB_QP_CREATE_CROSS_CHANNEL = 1 << 2, IB_QP_CREATE_MANAGED_SEND = 1 << 3, IB_QP_CREATE_MANAGED_RECV = 1 << 4, IB_QP_CREATE_NETIF_QP = 1 << 5, IB_QP_CREATE_SIGNATURE_EN = 1 << 6, /* FREE = 1 << 7, */ IB_QP_CREATE_SCATTER_FCS = 1 << 8, IB_QP_CREATE_CVLAN_STRIPPING = 1 << 9, IB_QP_CREATE_SOURCE_QPN = 1 << 10, IB_QP_CREATE_PCI_WRITE_END_PADDING = 1 << 11, /* reserve bits 26-31 for low level drivers' internal use */ IB_QP_CREATE_RESERVED_START = 1 << 26, IB_QP_CREATE_RESERVED_END = 1 << 31, }; /* * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler * callback to destroy the passed in QP. */ struct ib_qp_init_attr { /* Consumer's event_handler callback must not block */ void (*event_handler)(struct ib_event *, void *); void *qp_context; struct ib_cq *send_cq; struct ib_cq *recv_cq; struct ib_srq *srq; struct ib_xrcd *xrcd; /* XRC TGT QPs only */ struct ib_qp_cap cap; enum ib_sig_type sq_sig_type; enum ib_qp_type qp_type; u32 create_flags; /* * Only needed for special QP types, or when using the RW API. */ u8 port_num; struct ib_rwq_ind_table *rwq_ind_tbl; u32 source_qpn; }; struct ib_qp_open_attr { void (*event_handler)(struct ib_event *, void *); void *qp_context; u32 qp_num; enum ib_qp_type qp_type; }; enum ib_rnr_timeout { IB_RNR_TIMER_655_36 = 0, IB_RNR_TIMER_000_01 = 1, IB_RNR_TIMER_000_02 = 2, IB_RNR_TIMER_000_03 = 3, IB_RNR_TIMER_000_04 = 4, IB_RNR_TIMER_000_06 = 5, IB_RNR_TIMER_000_08 = 6, IB_RNR_TIMER_000_12 = 7, IB_RNR_TIMER_000_16 = 8, IB_RNR_TIMER_000_24 = 9, IB_RNR_TIMER_000_32 = 10, IB_RNR_TIMER_000_48 = 11, IB_RNR_TIMER_000_64 = 12, IB_RNR_TIMER_000_96 = 13, IB_RNR_TIMER_001_28 = 14, IB_RNR_TIMER_001_92 = 15, IB_RNR_TIMER_002_56 = 16, IB_RNR_TIMER_003_84 = 17, IB_RNR_TIMER_005_12 = 18, IB_RNR_TIMER_007_68 = 19, IB_RNR_TIMER_010_24 = 20, IB_RNR_TIMER_015_36 = 21, IB_RNR_TIMER_020_48 = 22, IB_RNR_TIMER_030_72 = 23, IB_RNR_TIMER_040_96 = 24, IB_RNR_TIMER_061_44 = 25, IB_RNR_TIMER_081_92 = 26, IB_RNR_TIMER_122_88 = 27, IB_RNR_TIMER_163_84 = 28, IB_RNR_TIMER_245_76 = 29, IB_RNR_TIMER_327_68 = 30, IB_RNR_TIMER_491_52 = 31 }; enum ib_qp_attr_mask { IB_QP_STATE = 1, IB_QP_CUR_STATE = (1<<1), IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), IB_QP_ACCESS_FLAGS = (1<<3), IB_QP_PKEY_INDEX = (1<<4), IB_QP_PORT = (1<<5), IB_QP_QKEY = (1<<6), IB_QP_AV = (1<<7), IB_QP_PATH_MTU = (1<<8), IB_QP_TIMEOUT = (1<<9), IB_QP_RETRY_CNT = (1<<10), IB_QP_RNR_RETRY = (1<<11), IB_QP_RQ_PSN = (1<<12), IB_QP_MAX_QP_RD_ATOMIC = (1<<13), IB_QP_ALT_PATH = (1<<14), IB_QP_MIN_RNR_TIMER = (1<<15), IB_QP_SQ_PSN = (1<<16), IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), IB_QP_PATH_MIG_STATE = (1<<18), IB_QP_CAP = (1<<19), IB_QP_DEST_QPN = (1<<20), IB_QP_RESERVED1 = (1<<21), IB_QP_RESERVED2 = (1<<22), IB_QP_RESERVED3 = (1<<23), IB_QP_RESERVED4 = (1<<24), IB_QP_RATE_LIMIT = (1<<25), }; enum ib_qp_state { IB_QPS_RESET, IB_QPS_INIT, IB_QPS_RTR, IB_QPS_RTS, IB_QPS_SQD, IB_QPS_SQE, IB_QPS_ERR }; enum ib_mig_state { IB_MIG_MIGRATED, IB_MIG_REARM, IB_MIG_ARMED }; enum ib_mw_type { IB_MW_TYPE_1 = 1, IB_MW_TYPE_2 = 2 }; struct ib_qp_attr { enum ib_qp_state qp_state; enum ib_qp_state cur_qp_state; enum ib_mtu path_mtu; enum ib_mig_state path_mig_state; u32 qkey; u32 rq_psn; u32 sq_psn; u32 dest_qp_num; int qp_access_flags; struct ib_qp_cap cap; struct rdma_ah_attr ah_attr; struct rdma_ah_attr alt_ah_attr; u16 pkey_index; u16 alt_pkey_index; u8 en_sqd_async_notify; u8 sq_draining; u8 max_rd_atomic; u8 max_dest_rd_atomic; u8 min_rnr_timer; u8 port_num; u8 timeout; u8 retry_cnt; u8 rnr_retry; u8 alt_port_num; u8 alt_timeout; u32 rate_limit; }; enum ib_wr_opcode { /* These are shared with userspace */ IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE, IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM, IB_WR_SEND = IB_UVERBS_WR_SEND, IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM, IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ, IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP, IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD, IB_WR_LSO = IB_UVERBS_WR_TSO, IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV, IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV, IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV, IB_WR_MASKED_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP, IB_WR_MASKED_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD, /* These are kernel only and can not be issued by userspace */ IB_WR_REG_MR = 0x20, IB_WR_REG_SIG_MR, /* reserve values for low level drivers' internal use. * These values will not be used at all in the ib core layer. */ IB_WR_RESERVED1 = 0xf0, IB_WR_RESERVED2, IB_WR_RESERVED3, IB_WR_RESERVED4, IB_WR_RESERVED5, IB_WR_RESERVED6, IB_WR_RESERVED7, IB_WR_RESERVED8, IB_WR_RESERVED9, IB_WR_RESERVED10, }; enum ib_send_flags { IB_SEND_FENCE = 1, IB_SEND_SIGNALED = (1<<1), IB_SEND_SOLICITED = (1<<2), IB_SEND_INLINE = (1<<3), IB_SEND_IP_CSUM = (1<<4), /* reserve bits 26-31 for low level drivers' internal use */ IB_SEND_RESERVED_START = (1 << 26), IB_SEND_RESERVED_END = (1 << 31), }; struct ib_sge { u64 addr; u32 length; u32 lkey; }; struct ib_cqe { void (*done)(struct ib_cq *cq, struct ib_wc *wc); }; struct ib_send_wr { struct ib_send_wr *next; union { u64 wr_id; struct ib_cqe *wr_cqe; }; struct ib_sge *sg_list; int num_sge; enum ib_wr_opcode opcode; int send_flags; union { __be32 imm_data; u32 invalidate_rkey; } ex; }; struct ib_rdma_wr { struct ib_send_wr wr; u64 remote_addr; u32 rkey; }; static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr) { return container_of(wr, struct ib_rdma_wr, wr); } struct ib_atomic_wr { struct ib_send_wr wr; u64 remote_addr; u64 compare_add; u64 swap; u64 compare_add_mask; u64 swap_mask; u32 rkey; }; static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr) { return container_of(wr, struct ib_atomic_wr, wr); } struct ib_ud_wr { struct ib_send_wr wr; struct ib_ah *ah; void *header; int hlen; int mss; u32 remote_qpn; u32 remote_qkey; u16 pkey_index; /* valid for GSI only */ u8 port_num; /* valid for DR SMPs on switch only */ }; static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr) { return container_of(wr, struct ib_ud_wr, wr); } struct ib_reg_wr { struct ib_send_wr wr; struct ib_mr *mr; u32 key; int access; }; static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr) { return container_of(wr, struct ib_reg_wr, wr); } struct ib_sig_handover_wr { struct ib_send_wr wr; struct ib_sig_attrs *sig_attrs; struct ib_mr *sig_mr; int access_flags; struct ib_sge *prot; }; static inline const struct ib_sig_handover_wr * sig_handover_wr(const struct ib_send_wr *wr) { return container_of(wr, struct ib_sig_handover_wr, wr); } struct ib_recv_wr { struct ib_recv_wr *next; union { u64 wr_id; struct ib_cqe *wr_cqe; }; struct ib_sge *sg_list; int num_sge; }; enum ib_access_flags { IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE, IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE, IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ, IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC, IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND, IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED, IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND, IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB, IB_ACCESS_SUPPORTED = ((IB_ACCESS_HUGETLB << 1) - 1) }; /* * XXX: these are apparently used for ->rereg_user_mr, no idea why they * are hidden here instead of a uapi header! */ enum ib_mr_rereg_flags { IB_MR_REREG_TRANS = 1, IB_MR_REREG_PD = (1<<1), IB_MR_REREG_ACCESS = (1<<2), IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1) }; struct ib_fmr_attr { int max_pages; int max_maps; u8 page_shift; }; struct ib_umem; enum rdma_remove_reason { /* * Userspace requested uobject deletion or initial try * to remove uobject via cleanup. Call could fail */ RDMA_REMOVE_DESTROY, /* Context deletion. This call should delete the actual object itself */ RDMA_REMOVE_CLOSE, /* Driver is being hot-unplugged. This call should delete the actual object itself */ RDMA_REMOVE_DRIVER_REMOVE, /* uobj is being cleaned-up before being committed */ RDMA_REMOVE_ABORT, }; struct ib_rdmacg_object { #ifdef CONFIG_CGROUP_RDMA struct rdma_cgroup *cg; /* owner rdma cgroup */ #endif }; struct ib_ucontext { struct ib_device *device; struct ib_uverbs_file *ufile; /* * 'closing' can be read by the driver only during a destroy callback, * it is set when we are closing the file descriptor and indicates * that mm_sem may be locked. */ bool closing; bool cleanup_retryable; void (*invalidate_range)(struct ib_umem_odp *umem_odp, unsigned long start, unsigned long end); struct mutex per_mm_list_lock; struct list_head per_mm_list; struct ib_rdmacg_object cg_obj; /* * Implementation details of the RDMA core, don't use in drivers: */ struct rdma_restrack_entry res; }; struct ib_uobject { u64 user_handle; /* handle given to us by userspace */ /* ufile & ucontext owning this object */ struct ib_uverbs_file *ufile; /* FIXME, save memory: ufile->context == context */ struct ib_ucontext *context; /* associated user context */ void *object; /* containing object */ struct list_head list; /* link to context's list */ struct ib_rdmacg_object cg_obj; /* rdmacg object */ int id; /* index into kernel idr */ struct kref ref; atomic_t usecnt; /* protects exclusive access */ struct rcu_head rcu; /* kfree_rcu() overhead */ const struct uverbs_api_object *uapi_object; }; struct ib_udata { const void __user *inbuf; void __user *outbuf; size_t inlen; size_t outlen; }; struct ib_pd { u32 local_dma_lkey; u32 flags; struct ib_device *device; struct ib_uobject *uobject; atomic_t usecnt; /* count all resources */ u32 unsafe_global_rkey; /* * Implementation details of the RDMA core, don't use in drivers: */ struct ib_mr *__internal_mr; struct rdma_restrack_entry res; }; struct ib_xrcd { struct ib_device *device; atomic_t usecnt; /* count all exposed resources */ struct inode *inode; struct mutex tgt_qp_mutex; struct list_head tgt_qp_list; }; struct ib_ah { struct ib_device *device; struct ib_pd *pd; struct ib_uobject *uobject; const struct ib_gid_attr *sgid_attr; enum rdma_ah_attr_type type; }; typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); enum ib_poll_context { IB_POLL_DIRECT, /* caller context, no hw completions */ IB_POLL_SOFTIRQ, /* poll from softirq context */ IB_POLL_WORKQUEUE, /* poll from workqueue */ IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */ }; struct ib_cq { struct ib_device *device; struct ib_uobject *uobject; ib_comp_handler comp_handler; void (*event_handler)(struct ib_event *, void *); void *cq_context; int cqe; atomic_t usecnt; /* count number of work queues */ enum ib_poll_context poll_ctx; struct ib_wc *wc; union { struct irq_poll iop; struct work_struct work; }; struct workqueue_struct *comp_wq; /* * Implementation details of the RDMA core, don't use in drivers: */ struct rdma_restrack_entry res; }; struct ib_srq { struct ib_device *device; struct ib_pd *pd; struct ib_uobject *uobject; void (*event_handler)(struct ib_event *, void *); void *srq_context; enum ib_srq_type srq_type; atomic_t usecnt; struct { struct ib_cq *cq; union { struct { struct ib_xrcd *xrcd; u32 srq_num; } xrc; }; } ext; }; enum ib_raw_packet_caps { /* Strip cvlan from incoming packet and report it in the matching work * completion is supported. */ IB_RAW_PACKET_CAP_CVLAN_STRIPPING = (1 << 0), /* Scatter FCS field of an incoming packet to host memory is supported. */ IB_RAW_PACKET_CAP_SCATTER_FCS = (1 << 1), /* Checksum offloads are supported (for both send and receive). */ IB_RAW_PACKET_CAP_IP_CSUM = (1 << 2), /* When a packet is received for an RQ with no receive WQEs, the * packet processing is delayed. */ IB_RAW_PACKET_CAP_DELAY_DROP = (1 << 3), }; enum ib_wq_type { IB_WQT_RQ }; enum ib_wq_state { IB_WQS_RESET, IB_WQS_RDY, IB_WQS_ERR }; struct ib_wq { struct ib_device *device; struct ib_uobject *uobject; void *wq_context; void (*event_handler)(struct ib_event *, void *); struct ib_pd *pd; struct ib_cq *cq; u32 wq_num; enum ib_wq_state state; enum ib_wq_type wq_type; atomic_t usecnt; }; enum ib_wq_flags { IB_WQ_FLAGS_CVLAN_STRIPPING = 1 << 0, IB_WQ_FLAGS_SCATTER_FCS = 1 << 1, IB_WQ_FLAGS_DELAY_DROP = 1 << 2, IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1 << 3, }; struct ib_wq_init_attr { void *wq_context; enum ib_wq_type wq_type; u32 max_wr; u32 max_sge; struct ib_cq *cq; void (*event_handler)(struct ib_event *, void *); u32 create_flags; /* Use enum ib_wq_flags */ }; enum ib_wq_attr_mask { IB_WQ_STATE = 1 << 0, IB_WQ_CUR_STATE = 1 << 1, IB_WQ_FLAGS = 1 << 2, }; struct ib_wq_attr { enum ib_wq_state wq_state; enum ib_wq_state curr_wq_state; u32 flags; /* Use enum ib_wq_flags */ u32 flags_mask; /* Use enum ib_wq_flags */ }; struct ib_rwq_ind_table { struct ib_device *device; struct ib_uobject *uobject; atomic_t usecnt; u32 ind_tbl_num; u32 log_ind_tbl_size; struct ib_wq **ind_tbl; }; struct ib_rwq_ind_table_init_attr { u32 log_ind_tbl_size; /* Each entry is a pointer to Receive Work Queue */ struct ib_wq **ind_tbl; }; enum port_pkey_state { IB_PORT_PKEY_NOT_VALID = 0, IB_PORT_PKEY_VALID = 1, IB_PORT_PKEY_LISTED = 2, }; struct ib_qp_security; struct ib_port_pkey { enum port_pkey_state state; u16 pkey_index; u8 port_num; struct list_head qp_list; struct list_head to_error_list; struct ib_qp_security *sec; }; struct ib_ports_pkeys { struct ib_port_pkey main; struct ib_port_pkey alt; }; struct ib_qp_security { struct ib_qp *qp; struct ib_device *dev; /* Hold this mutex when changing port and pkey settings. */ struct mutex mutex; struct ib_ports_pkeys *ports_pkeys; /* A list of all open shared QP handles. Required to enforce security * properly for all users of a shared QP. */ struct list_head shared_qp_list; void *security; bool destroying; atomic_t error_list_count; struct completion error_complete; int error_comps_pending; }; /* * @max_write_sge: Maximum SGE elements per RDMA WRITE request. * @max_read_sge: Maximum SGE elements per RDMA READ request. */ struct ib_qp { struct ib_device *device; struct ib_pd *pd; struct ib_cq *send_cq; struct ib_cq *recv_cq; spinlock_t mr_lock; int mrs_used; struct list_head rdma_mrs; struct list_head sig_mrs; struct ib_srq *srq; struct ib_xrcd *xrcd; /* XRC TGT QPs only */ struct list_head xrcd_list; /* count times opened, mcast attaches, flow attaches */ atomic_t usecnt; struct list_head open_list; struct ib_qp *real_qp; struct ib_uobject *uobject; void (*event_handler)(struct ib_event *, void *); void *qp_context; /* sgid_attrs associated with the AV's */ const struct ib_gid_attr *av_sgid_attr; const struct ib_gid_attr *alt_path_sgid_attr; u32 qp_num; u32 max_write_sge; u32 max_read_sge; enum ib_qp_type qp_type; struct ib_rwq_ind_table *rwq_ind_tbl; struct ib_qp_security *qp_sec; u8 port; /* * Implementation details of the RDMA core, don't use in drivers: */ struct rdma_restrack_entry res; }; struct ib_dm { struct ib_device *device; u32 length; u32 flags; struct ib_uobject *uobject; atomic_t usecnt; }; struct ib_mr { struct ib_device *device; struct ib_pd *pd; u32 lkey; u32 rkey; u64 iova; u64 length; unsigned int page_size; bool need_inval; union { struct ib_uobject *uobject; /* user */ struct list_head qp_entry; /* FR */ }; struct ib_dm *dm; /* * Implementation details of the RDMA core, don't use in drivers: */ struct rdma_restrack_entry res; }; struct ib_mw { struct ib_device *device; struct ib_pd *pd; struct ib_uobject *uobject; u32 rkey; enum ib_mw_type type; }; struct ib_fmr { struct ib_device *device; struct ib_pd *pd; struct list_head list; u32 lkey; u32 rkey; }; /* Supported steering options */ enum ib_flow_attr_type { /* steering according to rule specifications */ IB_FLOW_ATTR_NORMAL = 0x0, /* default unicast and multicast rule - * receive all Eth traffic which isn't steered to any QP */ IB_FLOW_ATTR_ALL_DEFAULT = 0x1, /* default multicast rule - * receive all Eth multicast traffic which isn't steered to any QP */ IB_FLOW_ATTR_MC_DEFAULT = 0x2, /* sniffer rule - receive all port traffic */ IB_FLOW_ATTR_SNIFFER = 0x3 }; /* Supported steering header types */ enum ib_flow_spec_type { /* L2 headers*/ IB_FLOW_SPEC_ETH = 0x20, IB_FLOW_SPEC_IB = 0x22, /* L3 header*/ IB_FLOW_SPEC_IPV4 = 0x30, IB_FLOW_SPEC_IPV6 = 0x31, IB_FLOW_SPEC_ESP = 0x34, /* L4 headers*/ IB_FLOW_SPEC_TCP = 0x40, IB_FLOW_SPEC_UDP = 0x41, IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50, IB_FLOW_SPEC_GRE = 0x51, IB_FLOW_SPEC_MPLS = 0x60, IB_FLOW_SPEC_INNER = 0x100, /* Actions */ IB_FLOW_SPEC_ACTION_TAG = 0x1000, IB_FLOW_SPEC_ACTION_DROP = 0x1001, IB_FLOW_SPEC_ACTION_HANDLE = 0x1002, IB_FLOW_SPEC_ACTION_COUNT = 0x1003, }; #define IB_FLOW_SPEC_LAYER_MASK 0xF0 #define IB_FLOW_SPEC_SUPPORT_LAYERS 10 /* Flow steering rule priority is set according to it's domain. * Lower domain value means higher priority. */ enum ib_flow_domain { IB_FLOW_DOMAIN_USER, IB_FLOW_DOMAIN_ETHTOOL, IB_FLOW_DOMAIN_RFS, IB_FLOW_DOMAIN_NIC, IB_FLOW_DOMAIN_NUM /* Must be last */ }; enum ib_flow_flags { IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */ IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */ IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 3 /* Must be last */ }; struct ib_flow_eth_filter { u8 dst_mac[6]; u8 src_mac[6]; __be16 ether_type; __be16 vlan_tag; /* Must be last */ u8 real_sz[0]; }; struct ib_flow_spec_eth { u32 type; u16 size; struct ib_flow_eth_filter val; struct ib_flow_eth_filter mask; }; struct ib_flow_ib_filter { __be16 dlid; __u8 sl; /* Must be last */ u8 real_sz[0]; }; struct ib_flow_spec_ib { u32 type; u16 size; struct ib_flow_ib_filter val; struct ib_flow_ib_filter mask; }; /* IPv4 header flags */ enum ib_ipv4_flags { IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */ IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the last have this flag set */ }; struct ib_flow_ipv4_filter { __be32 src_ip; __be32 dst_ip; u8 proto; u8 tos; u8 ttl; u8 flags; /* Must be last */ u8 real_sz[0]; }; struct ib_flow_spec_ipv4 { u32 type; u16 size; struct ib_flow_ipv4_filter val; struct ib_flow_ipv4_filter mask; }; struct ib_flow_ipv6_filter { u8 src_ip[16]; u8 dst_ip[16]; __be32 flow_label; u8 next_hdr; u8 traffic_class; u8 hop_limit; /* Must be last */ u8 real_sz[0]; }; struct ib_flow_spec_ipv6 { u32 type; u16 size; struct ib_flow_ipv6_filter val; struct ib_flow_ipv6_filter mask; }; struct ib_flow_tcp_udp_filter { __be16 dst_port; __be16 src_port; /* Must be last */ u8 real_sz[0]; }; struct ib_flow_spec_tcp_udp { u32 type; u16 size; struct ib_flow_tcp_udp_filter val; struct ib_flow_tcp_udp_filter mask; }; struct ib_flow_tunnel_filter { __be32 tunnel_id; u8 real_sz[0]; }; /* ib_flow_spec_tunnel describes the Vxlan tunnel * the tunnel_id from val has the vni value */ struct ib_flow_spec_tunnel { u32 type; u16 size; struct ib_flow_tunnel_filter val; struct ib_flow_tunnel_filter mask; }; struct ib_flow_esp_filter { __be32 spi; __be32 seq; /* Must be last */ u8 real_sz[0]; }; struct ib_flow_spec_esp { u32 type; u16 size; struct ib_flow_esp_filter val; struct ib_flow_esp_filter mask; }; struct ib_flow_gre_filter { __be16 c_ks_res0_ver; __be16 protocol; __be32 key; /* Must be last */ u8 real_sz[0]; }; struct ib_flow_spec_gre { u32 type; u16 size; struct ib_flow_gre_filter val; struct ib_flow_gre_filter mask; }; struct ib_flow_mpls_filter { __be32 tag; /* Must be last */ u8 real_sz[0]; }; struct ib_flow_spec_mpls { u32 type; u16 size; struct ib_flow_mpls_filter val; struct ib_flow_mpls_filter mask; }; struct ib_flow_spec_action_tag { enum ib_flow_spec_type type; u16 size; u32 tag_id; }; struct ib_flow_spec_action_drop { enum ib_flow_spec_type type; u16 size; }; struct ib_flow_spec_action_handle { enum ib_flow_spec_type type; u16 size; struct ib_flow_action *act; }; enum ib_counters_description { IB_COUNTER_PACKETS, IB_COUNTER_BYTES, }; struct ib_flow_spec_action_count { enum ib_flow_spec_type type; u16 size; struct ib_counters *counters; }; union ib_flow_spec { struct { u32 type; u16 size; }; struct ib_flow_spec_eth eth; struct ib_flow_spec_ib ib; struct ib_flow_spec_ipv4 ipv4; struct ib_flow_spec_tcp_udp tcp_udp; struct ib_flow_spec_ipv6 ipv6; struct ib_flow_spec_tunnel tunnel; struct ib_flow_spec_esp esp; struct ib_flow_spec_gre gre; struct ib_flow_spec_mpls mpls; struct ib_flow_spec_action_tag flow_tag; struct ib_flow_spec_action_drop drop; struct ib_flow_spec_action_handle action; struct ib_flow_spec_action_count flow_count; }; struct ib_flow_attr { enum ib_flow_attr_type type; u16 size; u16 priority; u32 flags; u8 num_of_specs; u8 port; union ib_flow_spec flows[]; }; struct ib_flow { struct ib_qp *qp; struct ib_device *device; struct ib_uobject *uobject; }; enum ib_flow_action_type { IB_FLOW_ACTION_UNSPECIFIED, IB_FLOW_ACTION_ESP = 1, }; struct ib_flow_action_attrs_esp_keymats { enum ib_uverbs_flow_action_esp_keymat protocol; union { struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm; } keymat; }; struct ib_flow_action_attrs_esp_replays { enum ib_uverbs_flow_action_esp_replay protocol; union { struct ib_uverbs_flow_action_esp_replay_bmp bmp; } replay; }; enum ib_flow_action_attrs_esp_flags { /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags * This is done in order to share the same flags between user-space and * kernel and spare an unnecessary translation. */ /* Kernel flags */ IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED = 1ULL << 32, IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS = 1ULL << 33, }; struct ib_flow_spec_list { struct ib_flow_spec_list *next; union ib_flow_spec spec; }; struct ib_flow_action_attrs_esp { struct ib_flow_action_attrs_esp_keymats *keymat; struct ib_flow_action_attrs_esp_replays *replay; struct ib_flow_spec_list *encap; /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled. * Value of 0 is a valid value. */ u32 esn; u32 spi; u32 seq; u32 tfc_pad; /* Use enum ib_flow_action_attrs_esp_flags */ u64 flags; u64 hard_limit_pkts; }; struct ib_flow_action { struct ib_device *device; struct ib_uobject *uobject; enum ib_flow_action_type type; atomic_t usecnt; }; struct ib_mad_hdr; struct ib_grh; enum ib_process_mad_flags { IB_MAD_IGNORE_MKEY = 1, IB_MAD_IGNORE_BKEY = 2, IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY }; enum ib_mad_result { IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ }; struct ib_port_cache { u64 subnet_prefix; struct ib_pkey_cache *pkey; struct ib_gid_table *gid; u8 lmc; enum ib_port_state port_state; }; struct ib_cache { rwlock_t lock; struct ib_event_handler event_handler; }; struct ib_port_immutable { int pkey_tbl_len; int gid_tbl_len; u32 core_cap_flags; u32 max_mad_size; }; struct ib_port_data { struct ib_device *ib_dev; struct ib_port_immutable immutable; spinlock_t pkey_list_lock; struct list_head pkey_list; struct ib_port_cache cache; spinlock_t netdev_lock; struct net_device __rcu *netdev; struct hlist_node ndev_hash_link; }; /* rdma netdev type - specifies protocol type */ enum rdma_netdev_t { RDMA_NETDEV_OPA_VNIC, RDMA_NETDEV_IPOIB, }; /** * struct rdma_netdev - rdma netdev * For cases where netstack interfacing is required. */ struct rdma_netdev { void *clnt_priv; struct ib_device *hca; u8 port_num; /* * cleanup function must be specified. * FIXME: This is only used for OPA_VNIC and that usage should be * removed too. */ void (*free_rdma_netdev)(struct net_device *netdev); /* control functions */ void (*set_id)(struct net_device *netdev, int id); /* send packet */ int (*send)(struct net_device *dev, struct sk_buff *skb, struct ib_ah *address, u32 dqpn); /* multicast */ int (*attach_mcast)(struct net_device *dev, struct ib_device *hca, union ib_gid *gid, u16 mlid, int set_qkey, u32 qkey); int (*detach_mcast)(struct net_device *dev, struct ib_device *hca, union ib_gid *gid, u16 mlid); }; struct rdma_netdev_alloc_params { size_t sizeof_priv; unsigned int txqs; unsigned int rxqs; void *param; int (*initialize_rdma_netdev)(struct ib_device *device, u8 port_num, struct net_device *netdev, void *param); }; struct ib_counters { struct ib_device *device; struct ib_uobject *uobject; /* num of objects attached */ atomic_t usecnt; }; struct ib_counters_read_attr { u64 *counters_buff; u32 ncounters; u32 flags; /* use enum ib_read_counters_flags */ }; struct uverbs_attr_bundle; struct iw_cm_id; struct iw_cm_conn_param; #define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member) \ .size_##ib_struct = \ (sizeof(struct drv_struct) + \ BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) + \ BUILD_BUG_ON_ZERO( \ !__same_type(((struct drv_struct *)NULL)->member, \ struct ib_struct))) #define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp) \ ((struct ib_type *)kzalloc(ib_dev->ops.size_##ib_type, gfp)) #define rdma_zalloc_drv_obj(ib_dev, ib_type) \ rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL) #define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct /** * struct ib_device_ops - InfiniBand device operations * This structure defines all the InfiniBand device operations, providers will * need to define the supported operations, otherwise they will be set to null. */ struct ib_device_ops { int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr, const struct ib_send_wr **bad_send_wr); int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr, const struct ib_recv_wr **bad_recv_wr); void (*drain_rq)(struct ib_qp *qp); void (*drain_sq)(struct ib_qp *qp); int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc); int (*peek_cq)(struct ib_cq *cq, int wc_cnt); int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags); int (*req_ncomp_notif)(struct ib_cq *cq, int wc_cnt); int (*post_srq_recv)(struct ib_srq *srq, const struct ib_recv_wr *recv_wr, const struct ib_recv_wr **bad_recv_wr); int (*process_mad)(struct ib_device *device, int process_mad_flags, u8 port_num, const struct ib_wc *in_wc, const struct ib_grh *in_grh, const struct ib_mad_hdr *in_mad, size_t in_mad_size, struct ib_mad_hdr *out_mad, size_t *out_mad_size, u16 *out_mad_pkey_index); int (*query_device)(struct ib_device *device, struct ib_device_attr *device_attr, struct ib_udata *udata); int (*modify_device)(struct ib_device *device, int device_modify_mask, struct ib_device_modify *device_modify); void (*get_dev_fw_str)(struct ib_device *device, char *str); const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev, int comp_vector); int (*query_port)(struct ib_device *device, u8 port_num, struct ib_port_attr *port_attr); int (*modify_port)(struct ib_device *device, u8 port_num, int port_modify_mask, struct ib_port_modify *port_modify); /** * The following mandatory functions are used only at device * registration. Keep functions such as these at the end of this * structure to avoid cache line misses when accessing struct ib_device * in fast paths. */ int (*get_port_immutable)(struct ib_device *device, u8 port_num, struct ib_port_immutable *immutable); enum rdma_link_layer (*get_link_layer)(struct ib_device *device, u8 port_num); /** * When calling get_netdev, the HW vendor's driver should return the * net device of device @device at port @port_num or NULL if such * a net device doesn't exist. The vendor driver should call dev_hold * on this net device. The HW vendor's device driver must guarantee * that this function returns NULL before the net device has finished * NETDEV_UNREGISTER state. */ struct net_device *(*get_netdev)(struct ib_device *device, u8 port_num); /** * rdma netdev operation * * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params * must return -EOPNOTSUPP if it doesn't support the specified type. */ struct net_device *(*alloc_rdma_netdev)( struct ib_device *device, u8 port_num, enum rdma_netdev_t type, const char *name, unsigned char name_assign_type, void (*setup)(struct net_device *)); int (*rdma_netdev_get_params)(struct ib_device *device, u8 port_num, enum rdma_netdev_t type, struct rdma_netdev_alloc_params *params); /** * query_gid should be return GID value for @device, when @port_num * link layer is either IB or iWarp. It is no-op if @port_num port * is RoCE link layer. */ int (*query_gid)(struct ib_device *device, u8 port_num, int index, union ib_gid *gid); /** * When calling add_gid, the HW vendor's driver should add the gid * of device of port at gid index available at @attr. Meta-info of * that gid (for example, the network device related to this gid) is * available at @attr. @context allows the HW vendor driver to store * extra information together with a GID entry. The HW vendor driver may * allocate memory to contain this information and store it in @context * when a new GID entry is written to. Params are consistent until the * next call of add_gid or delete_gid. The function should return 0 on * success or error otherwise. The function could be called * concurrently for different ports. This function is only called when * roce_gid_table is used. */ int (*add_gid)(const struct ib_gid_attr *attr, void **context); /** * When calling del_gid, the HW vendor's driver should delete the * gid of device @device at gid index gid_index of port port_num * available in @attr. * Upon the deletion of a GID entry, the HW vendor must free any * allocated memory. The caller will clear @context afterwards. * This function is only called when roce_gid_table is used. */ int (*del_gid)(const struct ib_gid_attr *attr, void **context); int (*query_pkey)(struct ib_device *device, u8 port_num, u16 index, u16 *pkey); int (*alloc_ucontext)(struct ib_ucontext *context, struct ib_udata *udata); void (*dealloc_ucontext)(struct ib_ucontext *context); int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma); void (*disassociate_ucontext)(struct ib_ucontext *ibcontext); int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata); void (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata); int (*create_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr, u32 flags, struct ib_udata *udata); int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); void (*destroy_ah)(struct ib_ah *ah, u32 flags); int (*create_srq)(struct ib_srq *srq, struct ib_srq_init_attr *srq_init_attr, struct ib_udata *udata); int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr, enum ib_srq_attr_mask srq_attr_mask, struct ib_udata *udata); int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr); void (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata); struct ib_qp *(*create_qp)(struct ib_pd *pd, struct ib_qp_init_attr *qp_init_attr, struct ib_udata *udata); int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr, int qp_attr_mask, struct ib_udata *udata); int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr, int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr); int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata); struct ib_cq *(*create_cq)(struct ib_device *device, const struct ib_cq_init_attr *attr, struct ib_udata *udata); int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period); int (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata); int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata); struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags); struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length, u64 virt_addr, int mr_access_flags, struct ib_udata *udata); int (*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start, u64 length, u64 virt_addr, int mr_access_flags, struct ib_pd *pd, struct ib_udata *udata); int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata); struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type, u32 max_num_sg, struct ib_udata *udata); int (*advise_mr)(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice, u32 flags, struct ib_sge *sg_list, u32 num_sge, struct uverbs_attr_bundle *attrs); int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, unsigned int *sg_offset); int (*check_mr_status)(struct ib_mr *mr, u32 check_mask, struct ib_mr_status *mr_status); struct ib_mw *(*alloc_mw)(struct ib_pd *pd, enum ib_mw_type type, struct ib_udata *udata); int (*dealloc_mw)(struct ib_mw *mw); struct ib_fmr *(*alloc_fmr)(struct ib_pd *pd, int mr_access_flags, struct ib_fmr_attr *fmr_attr); int (*map_phys_fmr)(struct ib_fmr *fmr, u64 *page_list, int list_len, u64 iova); int (*unmap_fmr)(struct list_head *fmr_list); int (*dealloc_fmr)(struct ib_fmr *fmr); int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid); int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid); struct ib_xrcd *(*alloc_xrcd)(struct ib_device *device, struct ib_udata *udata); int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata); struct ib_flow *(*create_flow)(struct ib_qp *qp, struct ib_flow_attr *flow_attr, int domain, struct ib_udata *udata); int (*destroy_flow)(struct ib_flow *flow_id); struct ib_flow_action *(*create_flow_action_esp)( struct ib_device *device, const struct ib_flow_action_attrs_esp *attr, struct uverbs_attr_bundle *attrs); int (*destroy_flow_action)(struct ib_flow_action *action); int (*modify_flow_action_esp)( struct ib_flow_action *action, const struct ib_flow_action_attrs_esp *attr, struct uverbs_attr_bundle *attrs); int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port, int state); int (*get_vf_config)(struct ib_device *device, int vf, u8 port, struct ifla_vf_info *ivf); int (*get_vf_stats)(struct ib_device *device, int vf, u8 port, struct ifla_vf_stats *stats); int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid, int type); struct ib_wq *(*create_wq)(struct ib_pd *pd, struct ib_wq_init_attr *init_attr, struct ib_udata *udata); int (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata); int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr, u32 wq_attr_mask, struct ib_udata *udata); struct ib_rwq_ind_table *(*create_rwq_ind_table)( struct ib_device *device, struct ib_rwq_ind_table_init_attr *init_attr, struct ib_udata *udata); int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table); struct ib_dm *(*alloc_dm)(struct ib_device *device, struct ib_ucontext *context, struct ib_dm_alloc_attr *attr, struct uverbs_attr_bundle *attrs); int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs); struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm, struct ib_dm_mr_attr *attr, struct uverbs_attr_bundle *attrs); struct ib_counters *(*create_counters)( struct ib_device *device, struct uverbs_attr_bundle *attrs); int (*destroy_counters)(struct ib_counters *counters); int (*read_counters)(struct ib_counters *counters, struct ib_counters_read_attr *counters_read_attr, struct uverbs_attr_bundle *attrs); /** * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the * driver initialized data. The struct is kfree()'ed by the sysfs * core when the device is removed. A lifespan of -1 in the return * struct tells the core to set a default lifespan. */ struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device, u8 port_num); /** * get_hw_stats - Fill in the counter value(s) in the stats struct. * @index - The index in the value array we wish to have updated, or * num_counters if we want all stats updated * Return codes - * < 0 - Error, no counters updated * index - Updated the single counter pointed to by index * num_counters - Updated all counters (will reset the timestamp * and prevent further calls for lifespan milliseconds) * Drivers are allowed to update all counters in leiu of just the * one given in index at their option */ int (*get_hw_stats)(struct ib_device *device, struct rdma_hw_stats *stats, u8 port, int index); /* * This function is called once for each port when a ib device is * registered. */ int (*init_port)(struct ib_device *device, u8 port_num, struct kobject *port_sysfs); /** * Allows rdma drivers to add their own restrack attributes. */ int (*fill_res_entry)(struct sk_buff *msg, struct rdma_restrack_entry *entry); /* Device lifecycle callbacks */ /* * Called after the device becomes registered, before clients are * attached */ int (*enable_driver)(struct ib_device *dev); /* * This is called as part of ib_dealloc_device(). */ void (*dealloc_driver)(struct ib_device *dev); /* iWarp CM callbacks */ void (*iw_add_ref)(struct ib_qp *qp); void (*iw_rem_ref)(struct ib_qp *qp); struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn); int (*iw_connect)(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param); int (*iw_accept)(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param); int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata, u8 pdata_len); int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog); int (*iw_destroy_listen)(struct iw_cm_id *cm_id); DECLARE_RDMA_OBJ_SIZE(ib_ah); DECLARE_RDMA_OBJ_SIZE(ib_pd); DECLARE_RDMA_OBJ_SIZE(ib_srq); DECLARE_RDMA_OBJ_SIZE(ib_ucontext); }; struct ib_core_device { /* device must be the first element in structure until, * union of ib_core_device and device exists in ib_device. */ struct device dev; possible_net_t rdma_net; struct kobject *ports_kobj; struct list_head port_list; struct ib_device *owner; /* reach back to owner ib_device */ }; struct rdma_restrack_root; struct ib_device { /* Do not access @dma_device directly from ULP nor from HW drivers. */ struct device *dma_device; struct ib_device_ops ops; char name[IB_DEVICE_NAME_MAX]; struct rcu_head rcu_head; struct list_head event_handler_list; spinlock_t event_handler_lock; struct rw_semaphore client_data_rwsem; struct xarray client_data; struct mutex unregistration_lock; struct ib_cache cache; /** * port_data is indexed by port number */ struct ib_port_data *port_data; int num_comp_vectors; struct module *owner; union { struct device dev; struct ib_core_device coredev; }; /* First group for device attributes, * Second group for driver provided attributes (optional). * It is NULL terminated array. */ const struct attribute_group *groups[3]; int uverbs_abi_ver; u64 uverbs_cmd_mask; u64 uverbs_ex_cmd_mask; char node_desc[IB_DEVICE_NODE_DESC_MAX]; __be64 node_guid; u32 local_dma_lkey; u16 is_switch:1; /* Indicates kernel verbs support, should not be used in drivers */ u16 kverbs_provider:1; u8 node_type; u8 phys_port_cnt; struct ib_device_attr attrs; struct attribute_group *hw_stats_ag; struct rdma_hw_stats *hw_stats; #ifdef CONFIG_CGROUP_RDMA struct rdmacg_device cg_device; #endif u32 index; struct rdma_restrack_root *res; const struct uapi_definition *driver_def; enum rdma_driver_id driver_id; /* * Positive refcount indicates that the device is currently * registered and cannot be unregistered. */ refcount_t refcount; struct completion unreg_completion; struct work_struct unregistration_work; const struct rdma_link_ops *link_ops; /* Protects compat_devs xarray modifications */ struct mutex compat_devs_mutex; /* Maintains compat devices for each net namespace */ struct xarray compat_devs; /* Used by iWarp CM */ char iw_ifname[IFNAMSIZ]; u32 iw_driver_flags; }; struct ib_client { const char *name; void (*add) (struct ib_device *); void (*remove)(struct ib_device *, void *client_data); /* Returns the net_dev belonging to this ib_client and matching the * given parameters. * @dev: An RDMA device that the net_dev use for communication. * @port: A physical port number on the RDMA device. * @pkey: P_Key that the net_dev uses if applicable. * @gid: A GID that the net_dev uses to communicate. * @addr: An IP address the net_dev is configured with. * @client_data: The device's client data set by ib_set_client_data(). * * An ib_client that implements a net_dev on top of RDMA devices * (such as IP over IB) should implement this callback, allowing the * rdma_cm module to find the right net_dev for a given request. * * The caller is responsible for calling dev_put on the returned * netdev. */ struct net_device *(*get_net_dev_by_params)( struct ib_device *dev, u8 port, u16 pkey, const union ib_gid *gid, const struct sockaddr *addr, void *client_data); struct list_head list; u32 client_id; /* kverbs are not required by the client */ u8 no_kverbs_req:1; }; /* * IB block DMA iterator * * Iterates the DMA-mapped SGL in contiguous memory blocks aligned * to a HW supported page size. */ struct ib_block_iter { /* internal states */ struct scatterlist *__sg; /* sg holding the current aligned block */ dma_addr_t __dma_addr; /* unaligned DMA address of this block */ unsigned int __sg_nents; /* number of SG entries */ unsigned int __sg_advance; /* number of bytes to advance in sg in next step */ unsigned int __pg_bit; /* alignment of current block */ }; struct ib_device *_ib_alloc_device(size_t size); #define ib_alloc_device(drv_struct, member) \ container_of(_ib_alloc_device(sizeof(struct drv_struct) + \ BUILD_BUG_ON_ZERO(offsetof( \ struct drv_struct, member))), \ struct drv_struct, member) void ib_dealloc_device(struct ib_device *device); void ib_get_device_fw_str(struct ib_device *device, char *str); int ib_register_device(struct ib_device *device, const char *name); void ib_unregister_device(struct ib_device *device); void ib_unregister_driver(enum rdma_driver_id driver_id); void ib_unregister_device_and_put(struct ib_device *device); void ib_unregister_device_queued(struct ib_device *ib_dev); int ib_register_client (struct ib_client *client); void ib_unregister_client(struct ib_client *client); void __rdma_block_iter_start(struct ib_block_iter *biter, struct scatterlist *sglist, unsigned int nents, unsigned long pgsz); bool __rdma_block_iter_next(struct ib_block_iter *biter); /** * rdma_block_iter_dma_address - get the aligned dma address of the current * block held by the block iterator. * @biter: block iterator holding the memory block */ static inline dma_addr_t rdma_block_iter_dma_address(struct ib_block_iter *biter) { return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1); } /** * rdma_for_each_block - iterate over contiguous memory blocks of the sg list * @sglist: sglist to iterate over * @biter: block iterator holding the memory block * @nents: maximum number of sg entries to iterate over * @pgsz: best HW supported page size to use * * Callers may use rdma_block_iter_dma_address() to get each * blocks aligned DMA address. */ #define rdma_for_each_block(sglist, biter, nents, pgsz) \ for (__rdma_block_iter_start(biter, sglist, nents, \ pgsz); \ __rdma_block_iter_next(biter);) /** * ib_get_client_data - Get IB client context * @device:Device to get context for * @client:Client to get context for * * ib_get_client_data() returns the client context data set with * ib_set_client_data(). This can only be called while the client is * registered to the device, once the ib_client remove() callback returns this * cannot be called. */ static inline void *ib_get_client_data(struct ib_device *device, struct ib_client *client) { return xa_load(&device->client_data, client->client_id); } void ib_set_client_data(struct ib_device *device, struct ib_client *client, void *data); void ib_set_device_ops(struct ib_device *device, const struct ib_device_ops *ops); #if IS_ENABLED(CONFIG_INFINIBAND_USER_ACCESS) int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma, unsigned long pfn, unsigned long size, pgprot_t prot); #else static inline int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma, unsigned long pfn, unsigned long size, pgprot_t prot) { return -EINVAL; } #endif static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) { return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; } static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) { return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; } static inline bool ib_is_buffer_cleared(const void __user *p, size_t len) { bool ret; u8 *buf; if (len > USHRT_MAX) return false; buf = memdup_user(p, len); if (IS_ERR(buf)) return false; ret = !memchr_inv(buf, 0, len); kfree(buf); return ret; } static inline bool ib_is_udata_cleared(struct ib_udata *udata, size_t offset, size_t len) { return ib_is_buffer_cleared(udata->inbuf + offset, len); } /** * ib_is_destroy_retryable - Check whether the uobject destruction * is retryable. * @ret: The initial destruction return code * @why: remove reason * @uobj: The uobject that is destroyed * * This function is a helper function that IB layer and low-level drivers * can use to consider whether the destruction of the given uobject is * retry-able. * It checks the original return code, if it wasn't success the destruction * is retryable according to the ucontext state (i.e. cleanup_retryable) and * the remove reason. (i.e. why). * Must be called with the object locked for destroy. */ static inline bool ib_is_destroy_retryable(int ret, enum rdma_remove_reason why, struct ib_uobject *uobj) { return ret && (why == RDMA_REMOVE_DESTROY || uobj->context->cleanup_retryable); } /** * ib_destroy_usecnt - Called during destruction to check the usecnt * @usecnt: The usecnt atomic * @why: remove reason * @uobj: The uobject that is destroyed * * Non-zero usecnts will block destruction unless destruction was triggered by * a ucontext cleanup. */ static inline int ib_destroy_usecnt(atomic_t *usecnt, enum rdma_remove_reason why, struct ib_uobject *uobj) { if (atomic_read(usecnt) && ib_is_destroy_retryable(-EBUSY, why, uobj)) return -EBUSY; return 0; } /** * ib_modify_qp_is_ok - Check that the supplied attribute mask * contains all required attributes and no attributes not allowed for * the given QP state transition. * @cur_state: Current QP state * @next_state: Next QP state * @type: QP type * @mask: Mask of supplied QP attributes * * This function is a helper function that a low-level driver's * modify_qp method can use to validate the consumer's input. It * checks that cur_state and next_state are valid QP states, that a * transition from cur_state to next_state is allowed by the IB spec, * and that the attribute mask supplied is allowed for the transition. */ bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, enum ib_qp_type type, enum ib_qp_attr_mask mask); void ib_register_event_handler(struct ib_event_handler *event_handler); void ib_unregister_event_handler(struct ib_event_handler *event_handler); void ib_dispatch_event(struct ib_event *event); int ib_query_port(struct ib_device *device, u8 port_num, struct ib_port_attr *port_attr); enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num); /** * rdma_cap_ib_switch - Check if the device is IB switch * @device: Device to check * * Device driver is responsible for setting is_switch bit on * in ib_device structure at init time. * * Return: true if the device is IB switch. */ static inline bool rdma_cap_ib_switch(const struct ib_device *device) { return device->is_switch; } /** * rdma_start_port - Return the first valid port number for the device * specified * * @device: Device to be checked * * Return start port number */ static inline u8 rdma_start_port(const struct ib_device *device) { return rdma_cap_ib_switch(device) ? 0 : 1; } /** * rdma_for_each_port - Iterate over all valid port numbers of the IB device * @device - The struct ib_device * to iterate over * @iter - The unsigned int to store the port number */ #define rdma_for_each_port(device, iter) \ for (iter = rdma_start_port(device + BUILD_BUG_ON_ZERO(!__same_type( \ unsigned int, iter))); \ iter <= rdma_end_port(device); (iter)++) /** * rdma_end_port - Return the last valid port number for the device * specified * * @device: Device to be checked * * Return last port number */ static inline u8 rdma_end_port(const struct ib_device *device) { return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt; } static inline int rdma_is_port_valid(const struct ib_device *device, unsigned int port) { return (port >= rdma_start_port(device) && port <= rdma_end_port(device)); } static inline bool rdma_is_grh_required(const struct ib_device *device, u8 port_num) { return device->port_data[port_num].immutable.core_cap_flags & RDMA_CORE_PORT_IB_GRH_REQUIRED; } static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num) { return device->port_data[port_num].immutable.core_cap_flags & RDMA_CORE_CAP_PROT_IB; } static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num) { return device->port_data[port_num].immutable.core_cap_flags & (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP); } static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num) { return device->port_data[port_num].immutable.core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP; } static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num) { return device->port_data[port_num].immutable.core_cap_flags & RDMA_CORE_CAP_PROT_ROCE; } static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num) { return device->port_data[port_num].immutable.core_cap_flags & RDMA_CORE_CAP_PROT_IWARP; } static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num) { return rdma_protocol_ib(device, port_num) || rdma_protocol_roce(device, port_num); } static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num) { return device->port_data[port_num].immutable.core_cap_flags & RDMA_CORE_CAP_PROT_RAW_PACKET; } static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num) { return device->port_data[port_num].immutable.core_cap_flags & RDMA_CORE_CAP_PROT_USNIC; } /** * rdma_cap_ib_mad - Check if the port of a device supports Infiniband * Management Datagrams. * @device: Device to check * @port_num: Port number to check * * Management Datagrams (MAD) are a required part of the InfiniBand * specification and are supported on all InfiniBand devices. A slightly * extended version are also supported on OPA interfaces. * * Return: true if the port supports sending/receiving of MAD packets. */ static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num) { return device->port_data[port_num].immutable.core_cap_flags & RDMA_CORE_CAP_IB_MAD; } /** * rdma_cap_opa_mad - Check if the port of device provides support for OPA * Management Datagrams. * @device: Device to check * @port_num: Port number to check * * Intel OmniPath devices extend and/or replace the InfiniBand Management * datagrams with their own versions. These OPA MADs share many but not all of * the characteristics of InfiniBand MADs. * * OPA MADs differ in the following ways: * * 1) MADs are variable size up to 2K * IBTA defined MADs remain fixed at 256 bytes * 2) OPA SMPs must carry valid PKeys * 3) OPA SMP packets are a different format * * Return: true if the port supports OPA MAD packet formats. */ static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num) { return device->port_data[port_num].immutable.core_cap_flags & RDMA_CORE_CAP_OPA_MAD; } /** * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI). * @device: Device to check * @port_num: Port number to check * * Each InfiniBand node is required to provide a Subnet Management Agent * that the subnet manager can access. Prior to the fabric being fully * configured by the subnet manager, the SMA is accessed via a well known * interface called the Subnet Management Interface (SMI). This interface * uses directed route packets to communicate with the SM to get around the * chicken and egg problem of the SM needing to know what's on the fabric * in order to configure the fabric, and needing to configure the fabric in * order to send packets to the devices on the fabric. These directed * route packets do not need the fabric fully configured in order to reach * their destination. The SMI is the only method allowed to send * directed route packets on an InfiniBand fabric. * * Return: true if the port provides an SMI. */ static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num) { return device->port_data[port_num].immutable.core_cap_flags & RDMA_CORE_CAP_IB_SMI; } /** * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband * Communication Manager. * @device: Device to check * @port_num: Port number to check * * The InfiniBand Communication Manager is one of many pre-defined General * Service Agents (GSA) that are accessed via the General Service * Interface (GSI). It's role is to facilitate establishment of connections * between nodes as well as other management related tasks for established * connections. * * Return: true if the port supports an IB CM (this does not guarantee that * a CM is actually running however). */ static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num) { return device->port_data[port_num].immutable.core_cap_flags & RDMA_CORE_CAP_IB_CM; } /** * rdma_cap_iw_cm - Check if the port of device has the capability IWARP * Communication Manager. * @device: Device to check * @port_num: Port number to check * * Similar to above, but specific to iWARP connections which have a different * managment protocol than InfiniBand. * * Return: true if the port supports an iWARP CM (this does not guarantee that * a CM is actually running however). */ static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num) { return device->port_data[port_num].immutable.core_cap_flags & RDMA_CORE_CAP_IW_CM; } /** * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband * Subnet Administration. * @device: Device to check * @port_num: Port number to check * * An InfiniBand Subnet Administration (SA) service is a pre-defined General * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand * fabrics, devices should resolve routes to other hosts by contacting the * SA to query the proper route. * * Return: true if the port should act as a client to the fabric Subnet * Administration interface. This does not imply that the SA service is * running locally. */ static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num) { return device->port_data[port_num].immutable.core_cap_flags & RDMA_CORE_CAP_IB_SA; } /** * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband * Multicast. * @device: Device to check * @port_num: Port number to check * * InfiniBand multicast registration is more complex than normal IPv4 or * IPv6 multicast registration. Each Host Channel Adapter must register * with the Subnet Manager when it wishes to join a multicast group. It * should do so only once regardless of how many queue pairs it subscribes * to this group. And it should leave the group only after all queue pairs * attached to the group have been detached. * * Return: true if the port must undertake the additional adminstrative * overhead of registering/unregistering with the SM and tracking of the * total number of queue pairs attached to the multicast group. */ static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num) { return rdma_cap_ib_sa(device, port_num); } /** * rdma_cap_af_ib - Check if the port of device has the capability * Native Infiniband Address. * @device: Device to check * @port_num: Port number to check * * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default * GID. RoCE uses a different mechanism, but still generates a GID via * a prescribed mechanism and port specific data. * * Return: true if the port uses a GID address to identify devices on the * network. */ static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num) { return device->port_data[port_num].immutable.core_cap_flags & RDMA_CORE_CAP_AF_IB; } /** * rdma_cap_eth_ah - Check if the port of device has the capability * Ethernet Address Handle. * @device: Device to check * @port_num: Port number to check * * RoCE is InfiniBand over Ethernet, and it uses a well defined technique * to fabricate GIDs over Ethernet/IP specific addresses native to the * port. Normally, packet headers are generated by the sending host * adapter, but when sending connectionless datagrams, we must manually * inject the proper headers for the fabric we are communicating over. * * Return: true if we are running as a RoCE port and must force the * addition of a Global Route Header built from our Ethernet Address * Handle into our header list for connectionless packets. */ static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num) { return device->port_data[port_num].immutable.core_cap_flags & RDMA_CORE_CAP_ETH_AH; } /** * rdma_cap_opa_ah - Check if the port of device supports * OPA Address handles * @device: Device to check * @port_num: Port number to check * * Return: true if we are running on an OPA device which supports * the extended OPA addressing. */ static inline bool rdma_cap_opa_ah(struct ib_device *device, u8 port_num) { return (device->port_data[port_num].immutable.core_cap_flags & RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH; } /** * rdma_max_mad_size - Return the max MAD size required by this RDMA Port. * * @device: Device * @port_num: Port number * * This MAD size includes the MAD headers and MAD payload. No other headers * are included. * * Return the max MAD size required by the Port. Will return 0 if the port * does not support MADs */ static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num) { return device->port_data[port_num].immutable.max_mad_size; } /** * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table * @device: Device to check * @port_num: Port number to check * * RoCE GID table mechanism manages the various GIDs for a device. * * NOTE: if allocating the port's GID table has failed, this call will still * return true, but any RoCE GID table API will fail. * * Return: true if the port uses RoCE GID table mechanism in order to manage * its GIDs. */ static inline bool rdma_cap_roce_gid_table(const struct ib_device *device, u8 port_num) { return rdma_protocol_roce(device, port_num) && device->ops.add_gid && device->ops.del_gid; } /* * Check if the device supports READ W/ INVALIDATE. */ static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num) { /* * iWarp drivers must support READ W/ INVALIDATE. No other protocol * has support for it yet. */ return rdma_protocol_iwarp(dev, port_num); } /** * rdma_find_pg_bit - Find page bit given address and HW supported page sizes * * @addr: address * @pgsz_bitmap: bitmap of HW supported page sizes */ static inline unsigned int rdma_find_pg_bit(unsigned long addr, unsigned long pgsz_bitmap) { unsigned long align; unsigned long pgsz; align = addr & -addr; /* Find page bit such that addr is aligned to the highest supported * HW page size */ pgsz = pgsz_bitmap & ~(-align << 1); if (!pgsz) return __ffs(pgsz_bitmap); return __fls(pgsz); } int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port, int state); int ib_get_vf_config(struct ib_device *device, int vf, u8 port, struct ifla_vf_info *info); int ib_get_vf_stats(struct ib_device *device, int vf, u8 port, struct ifla_vf_stats *stats); int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid, int type); int ib_query_pkey(struct ib_device *device, u8 port_num, u16 index, u16 *pkey); int ib_modify_device(struct ib_device *device, int device_modify_mask, struct ib_device_modify *device_modify); int ib_modify_port(struct ib_device *device, u8 port_num, int port_modify_mask, struct ib_port_modify *port_modify); int ib_find_gid(struct ib_device *device, union ib_gid *gid, u8 *port_num, u16 *index); int ib_find_pkey(struct ib_device *device, u8 port_num, u16 pkey, u16 *index); enum ib_pd_flags { /* * Create a memory registration for all memory in the system and place * the rkey for it into pd->unsafe_global_rkey. This can be used by * ULPs to avoid the overhead of dynamic MRs. * * This flag is generally considered unsafe and must only be used in * extremly trusted environments. Every use of it will log a warning * in the kernel log. */ IB_PD_UNSAFE_GLOBAL_RKEY = 0x01, }; struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags, const char *caller); #define ib_alloc_pd(device, flags) \ __ib_alloc_pd((device), (flags), KBUILD_MODNAME) /** * ib_dealloc_pd_user - Deallocate kernel/user PD * @pd: The protection domain * @udata: Valid user data or NULL for kernel objects */ void ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata); /** * ib_dealloc_pd - Deallocate kernel PD * @pd: The protection domain * * NOTE: for user PD use ib_dealloc_pd_user with valid udata! */ static inline void ib_dealloc_pd(struct ib_pd *pd) { ib_dealloc_pd_user(pd, NULL); } enum rdma_create_ah_flags { /* In a sleepable context */ RDMA_CREATE_AH_SLEEPABLE = BIT(0), }; /** * rdma_create_ah - Creates an address handle for the given address vector. * @pd: The protection domain associated with the address handle. * @ah_attr: The attributes of the address vector. * @flags: Create address handle flags (see enum rdma_create_ah_flags). * * The address handle is used to reference a local or global destination * in all UD QP post sends. */ struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr, u32 flags); /** * rdma_create_user_ah - Creates an address handle for the given address vector. * It resolves destination mac address for ah attribute of RoCE type. * @pd: The protection domain associated with the address handle. * @ah_attr: The attributes of the address vector. * @udata: pointer to user's input output buffer information need by * provider driver. * * It returns 0 on success and returns appropriate error code on error. * The address handle is used to reference a local or global destination * in all UD QP post sends. */ struct ib_ah *rdma_create_user_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr, struct ib_udata *udata); /** * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header * work completion. * @hdr: the L3 header to parse * @net_type: type of header to parse * @sgid: place to store source gid * @dgid: place to store destination gid */ int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr, enum rdma_network_type net_type, union ib_gid *sgid, union ib_gid *dgid); /** * ib_get_rdma_header_version - Get the header version * @hdr: the L3 header to parse */ int ib_get_rdma_header_version(const union rdma_network_hdr *hdr); /** * ib_init_ah_attr_from_wc - Initializes address handle attributes from a * work completion. * @device: Device on which the received message arrived. * @port_num: Port on which the received message arrived. * @wc: Work completion associated with the received message. * @grh: References the received global route header. This parameter is * ignored unless the work completion indicates that the GRH is valid. * @ah_attr: Returned attributes that can be used when creating an address * handle for replying to the message. * When ib_init_ah_attr_from_wc() returns success, * (a) for IB link layer it optionally contains a reference to SGID attribute * when GRH is present for IB link layer. * (b) for RoCE link layer it contains a reference to SGID attribute. * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID * attributes which are initialized using ib_init_ah_attr_from_wc(). * */ int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num, const struct ib_wc *wc, const struct ib_grh *grh, struct rdma_ah_attr *ah_attr); /** * ib_create_ah_from_wc - Creates an address handle associated with the * sender of the specified work completion. * @pd: The protection domain associated with the address handle. * @wc: Work completion information associated with a received message. * @grh: References the received global route header. This parameter is * ignored unless the work completion indicates that the GRH is valid. * @port_num: The outbound port number to associate with the address. * * The address handle is used to reference a local or global destination * in all UD QP post sends. */ struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, const struct ib_grh *grh, u8 port_num); /** * rdma_modify_ah - Modifies the address vector associated with an address * handle. * @ah: The address handle to modify. * @ah_attr: The new address vector attributes to associate with the * address handle. */ int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); /** * rdma_query_ah - Queries the address vector associated with an address * handle. * @ah: The address handle to query. * @ah_attr: The address vector attributes associated with the address * handle. */ int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); enum rdma_destroy_ah_flags { /* In a sleepable context */ RDMA_DESTROY_AH_SLEEPABLE = BIT(0), }; /** * rdma_destroy_ah_user - Destroys an address handle. * @ah: The address handle to destroy. * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags). * @udata: Valid user data or NULL for kernel objects */ int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata); /** * rdma_destroy_ah - Destroys an kernel address handle. * @ah: The address handle to destroy. * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags). * * NOTE: for user ah use rdma_destroy_ah_user with valid udata! */ static inline int rdma_destroy_ah(struct ib_ah *ah, u32 flags) { return rdma_destroy_ah_user(ah, flags, NULL); } /** * ib_create_srq - Creates a SRQ associated with the specified protection * domain. * @pd: The protection domain associated with the SRQ. * @srq_init_attr: A list of initial attributes required to create the * SRQ. If SRQ creation succeeds, then the attributes are updated to * the actual capabilities of the created SRQ. * * srq_attr->max_wr and srq_attr->max_sge are read the determine the * requested size of the SRQ, and set to the actual values allocated * on return. If ib_create_srq() succeeds, then max_wr and max_sge * will always be at least as large as the requested values. */ struct ib_srq *ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr); /** * ib_modify_srq - Modifies the attributes for the specified SRQ. * @srq: The SRQ to modify. * @srq_attr: On input, specifies the SRQ attributes to modify. On output, * the current values of selected SRQ attributes are returned. * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ * are being modified. * * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or * IB_SRQ_LIMIT to set the SRQ's limit and request notification when * the number of receives queued drops below the limit. */ int ib_modify_srq(struct ib_srq *srq, struct ib_srq_attr *srq_attr, enum ib_srq_attr_mask srq_attr_mask); /** * ib_query_srq - Returns the attribute list and current values for the * specified SRQ. * @srq: The SRQ to query. * @srq_attr: The attributes of the specified SRQ. */ int ib_query_srq(struct ib_srq *srq, struct ib_srq_attr *srq_attr); /** * ib_destroy_srq_user - Destroys the specified SRQ. * @srq: The SRQ to destroy. * @udata: Valid user data or NULL for kernel objects */ int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata); /** * ib_destroy_srq - Destroys the specified kernel SRQ. * @srq: The SRQ to destroy. * * NOTE: for user srq use ib_destroy_srq_user with valid udata! */ static inline int ib_destroy_srq(struct ib_srq *srq) { return ib_destroy_srq_user(srq, NULL); } /** * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. * @srq: The SRQ to post the work request on. * @recv_wr: A list of work requests to post on the receive queue. * @bad_recv_wr: On an immediate failure, this parameter will reference * the work request that failed to be posted on the QP. */ static inline int ib_post_srq_recv(struct ib_srq *srq, const struct ib_recv_wr *recv_wr, const struct ib_recv_wr **bad_recv_wr) { const struct ib_recv_wr *dummy; return srq->device->ops.post_srq_recv(srq, recv_wr, bad_recv_wr ? : &dummy); } /** * ib_create_qp_user - Creates a QP associated with the specified protection * domain. * @pd: The protection domain associated with the QP. * @qp_init_attr: A list of initial attributes required to create the * QP. If QP creation succeeds, then the attributes are updated to * the actual capabilities of the created QP. * @udata: Valid user data or NULL for kernel objects */ struct ib_qp *ib_create_qp_user(struct ib_pd *pd, struct ib_qp_init_attr *qp_init_attr, struct ib_udata *udata); /** * ib_create_qp - Creates a kernel QP associated with the specified protection * domain. * @pd: The protection domain associated with the QP. * @qp_init_attr: A list of initial attributes required to create the * QP. If QP creation succeeds, then the attributes are updated to * the actual capabilities of the created QP. * @udata: Valid user data or NULL for kernel objects * * NOTE: for user qp use ib_create_qp_user with valid udata! */ static inline struct ib_qp *ib_create_qp(struct ib_pd *pd, struct ib_qp_init_attr *qp_init_attr) { return ib_create_qp_user(pd, qp_init_attr, NULL); } /** * ib_modify_qp_with_udata - Modifies the attributes for the specified QP. * @qp: The QP to modify. * @attr: On input, specifies the QP attributes to modify. On output, * the current values of selected QP attributes are returned. * @attr_mask: A bit-mask used to specify which attributes of the QP * are being modified. * @udata: pointer to user's input output buffer information * are being modified. * It returns 0 on success and returns appropriate error code on error. */ int ib_modify_qp_with_udata(struct ib_qp *qp, struct ib_qp_attr *attr, int attr_mask, struct ib_udata *udata); /** * ib_modify_qp - Modifies the attributes for the specified QP and then * transitions the QP to the given state. * @qp: The QP to modify. * @qp_attr: On input, specifies the QP attributes to modify. On output, * the current values of selected QP attributes are returned. * @qp_attr_mask: A bit-mask used to specify which attributes of the QP * are being modified. */ int ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *qp_attr, int qp_attr_mask); /** * ib_query_qp - Returns the attribute list and current values for the * specified QP. * @qp: The QP to query. * @qp_attr: The attributes of the specified QP. * @qp_attr_mask: A bit-mask used to select specific attributes to query. * @qp_init_attr: Additional attributes of the selected QP. * * The qp_attr_mask may be used to limit the query to gathering only the * selected attributes. */ int ib_query_qp(struct ib_qp *qp, struct ib_qp_attr *qp_attr, int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr); /** * ib_destroy_qp - Destroys the specified QP. * @qp: The QP to destroy. * @udata: Valid udata or NULL for kernel objects */ int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata); /** * ib_destroy_qp - Destroys the specified kernel QP. * @qp: The QP to destroy. * * NOTE: for user qp use ib_destroy_qp_user with valid udata! */ static inline int ib_destroy_qp(struct ib_qp *qp) { return ib_destroy_qp_user(qp, NULL); } /** * ib_open_qp - Obtain a reference to an existing sharable QP. * @xrcd - XRC domain * @qp_open_attr: Attributes identifying the QP to open. * * Returns a reference to a sharable QP. */ struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, struct ib_qp_open_attr *qp_open_attr); /** * ib_close_qp - Release an external reference to a QP. * @qp: The QP handle to release * * The opened QP handle is released by the caller. The underlying * shared QP is not destroyed until all internal references are released. */ int ib_close_qp(struct ib_qp *qp); /** * ib_post_send - Posts a list of work requests to the send queue of * the specified QP. * @qp: The QP to post the work request on. * @send_wr: A list of work requests to post on the send queue. * @bad_send_wr: On an immediate failure, this parameter will reference * the work request that failed to be posted on the QP. * * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate * error is returned, the QP state shall not be affected, * ib_post_send() will return an immediate error after queueing any * earlier work requests in the list. */ static inline int ib_post_send(struct ib_qp *qp, const struct ib_send_wr *send_wr, const struct ib_send_wr **bad_send_wr) { const struct ib_send_wr *dummy; return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy); } /** * ib_post_recv - Posts a list of work requests to the receive queue of * the specified QP. * @qp: The QP to post the work request on. * @recv_wr: A list of work requests to post on the receive queue. * @bad_recv_wr: On an immediate failure, this parameter will reference * the work request that failed to be posted on the QP. */ static inline int ib_post_recv(struct ib_qp *qp, const struct ib_recv_wr *recv_wr, const struct ib_recv_wr **bad_recv_wr) { const struct ib_recv_wr *dummy; return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy); } struct ib_cq *__ib_alloc_cq_user(struct ib_device *dev, void *private, int nr_cqe, int comp_vector, enum ib_poll_context poll_ctx, const char *caller, struct ib_udata *udata); /** * ib_alloc_cq_user: Allocate kernel/user CQ * @dev: The IB device * @private: Private data attached to the CQE * @nr_cqe: Number of CQEs in the CQ * @comp_vector: Completion vector used for the IRQs * @poll_ctx: Context used for polling the CQ * @udata: Valid user data or NULL for kernel objects */ static inline struct ib_cq *ib_alloc_cq_user(struct ib_device *dev, void *private, int nr_cqe, int comp_vector, enum ib_poll_context poll_ctx, struct ib_udata *udata) { return __ib_alloc_cq_user(dev, private, nr_cqe, comp_vector, poll_ctx, KBUILD_MODNAME, udata); } /** * ib_alloc_cq: Allocate kernel CQ * @dev: The IB device * @private: Private data attached to the CQE * @nr_cqe: Number of CQEs in the CQ * @comp_vector: Completion vector used for the IRQs * @poll_ctx: Context used for polling the CQ * * NOTE: for user cq use ib_alloc_cq_user with valid udata! */ static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private, int nr_cqe, int comp_vector, enum ib_poll_context poll_ctx) { return ib_alloc_cq_user(dev, private, nr_cqe, comp_vector, poll_ctx, NULL); } /** * ib_free_cq_user - Free kernel/user CQ * @cq: The CQ to free * @udata: Valid user data or NULL for kernel objects */ void ib_free_cq_user(struct ib_cq *cq, struct ib_udata *udata); /** * ib_free_cq - Free kernel CQ * @cq: The CQ to free * * NOTE: for user cq use ib_free_cq_user with valid udata! */ static inline void ib_free_cq(struct ib_cq *cq) { ib_free_cq_user(cq, NULL); } int ib_process_cq_direct(struct ib_cq *cq, int budget); /** * ib_create_cq - Creates a CQ on the specified device. * @device: The device on which to create the CQ. * @comp_handler: A user-specified callback that is invoked when a * completion event occurs on the CQ. * @event_handler: A user-specified callback that is invoked when an * asynchronous event not associated with a completion occurs on the CQ. * @cq_context: Context associated with the CQ returned to the user via * the associated completion and event handlers. * @cq_attr: The attributes the CQ should be created upon. * * Users can examine the cq structure to determine the actual CQ size. */ struct ib_cq *__ib_create_cq(struct ib_device *device, ib_comp_handler comp_handler, void (*event_handler)(struct ib_event *, void *), void *cq_context, const struct ib_cq_init_attr *cq_attr, const char *caller); #define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \ __ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME) /** * ib_resize_cq - Modifies the capacity of the CQ. * @cq: The CQ to resize. * @cqe: The minimum size of the CQ. * * Users can examine the cq structure to determine the actual CQ size. */ int ib_resize_cq(struct ib_cq *cq, int cqe); /** * rdma_set_cq_moderation - Modifies moderation params of the CQ * @cq: The CQ to modify. * @cq_count: number of CQEs that will trigger an event * @cq_period: max period of time in usec before triggering an event * */ int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period); /** * ib_destroy_cq_user - Destroys the specified CQ. * @cq: The CQ to destroy. * @udata: Valid user data or NULL for kernel objects */ int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata); /** * ib_destroy_cq - Destroys the specified kernel CQ. * @cq: The CQ to destroy. * * NOTE: for user cq use ib_destroy_cq_user with valid udata! */ static inline int ib_destroy_cq(struct ib_cq *cq) { return ib_destroy_cq_user(cq, NULL); } /** * ib_poll_cq - poll a CQ for completion(s) * @cq:the CQ being polled * @num_entries:maximum number of completions to return * @wc:array of at least @num_entries &struct ib_wc where completions * will be returned * * Poll a CQ for (possibly multiple) completions. If the return value * is < 0, an error occurred. If the return value is >= 0, it is the * number of completions returned. If the return value is * non-negative and < num_entries, then the CQ was emptied. */ static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, struct ib_wc *wc) { return cq->device->ops.poll_cq(cq, num_entries, wc); } /** * ib_req_notify_cq - Request completion notification on a CQ. * @cq: The CQ to generate an event for. * @flags: * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP * to request an event on the next solicited event or next work * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS * may also be |ed in to request a hint about missed events, as * described below. * * Return Value: * < 0 means an error occurred while requesting notification * == 0 means notification was requested successfully, and if * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events * were missed and it is safe to wait for another event. In * this case is it guaranteed that any work completions added * to the CQ since the last CQ poll will trigger a completion * notification event. * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed * in. It means that the consumer must poll the CQ again to * make sure it is empty to avoid missing an event because of a * race between requesting notification and an entry being * added to the CQ. This return value means it is possible * (but not guaranteed) that a work completion has been added * to the CQ since the last poll without triggering a * completion notification event. */ static inline int ib_req_notify_cq(struct ib_cq *cq, enum ib_cq_notify_flags flags) { return cq->device->ops.req_notify_cq(cq, flags); } /** * ib_req_ncomp_notif - Request completion notification when there are * at least the specified number of unreaped completions on the CQ. * @cq: The CQ to generate an event for. * @wc_cnt: The number of unreaped completions that should be on the * CQ before an event is generated. */ static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt) { return cq->device->ops.req_ncomp_notif ? cq->device->ops.req_ncomp_notif(cq, wc_cnt) : -ENOSYS; } /** * ib_dma_mapping_error - check a DMA addr for error * @dev: The device for which the dma_addr was created * @dma_addr: The DMA address to check */ static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) { return dma_mapping_error(dev->dma_device, dma_addr); } /** * ib_dma_map_single - Map a kernel virtual address to DMA address * @dev: The device for which the dma_addr is to be created * @cpu_addr: The kernel virtual address * @size: The size of the region in bytes * @direction: The direction of the DMA */ static inline u64 ib_dma_map_single(struct ib_device *dev, void *cpu_addr, size_t size, enum dma_data_direction direction) { return dma_map_single(dev->dma_device, cpu_addr, size, direction); } /** * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() * @dev: The device for which the DMA address was created * @addr: The DMA address * @size: The size of the region in bytes * @direction: The direction of the DMA */ static inline void ib_dma_unmap_single(struct ib_device *dev, u64 addr, size_t size, enum dma_data_direction direction) { dma_unmap_single(dev->dma_device, addr, size, direction); } /** * ib_dma_map_page - Map a physical page to DMA address * @dev: The device for which the dma_addr is to be created * @page: The page to be mapped * @offset: The offset within the page * @size: The size of the region in bytes * @direction: The direction of the DMA */ static inline u64 ib_dma_map_page(struct ib_device *dev, struct page *page, unsigned long offset, size_t size, enum dma_data_direction direction) { return dma_map_page(dev->dma_device, page, offset, size, direction); } /** * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() * @dev: The device for which the DMA address was created * @addr: The DMA address * @size: The size of the region in bytes * @direction: The direction of the DMA */ static inline void ib_dma_unmap_page(struct ib_device *dev, u64 addr, size_t size, enum dma_data_direction direction) { dma_unmap_page(dev->dma_device, addr, size, direction); } /** * ib_dma_map_sg - Map a scatter/gather list to DMA addresses * @dev: The device for which the DMA addresses are to be created * @sg: The array of scatter/gather entries * @nents: The number of scatter/gather entries * @direction: The direction of the DMA */ static inline int ib_dma_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents, enum dma_data_direction direction) { return dma_map_sg(dev->dma_device, sg, nents, direction); } /** * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses * @dev: The device for which the DMA addresses were created * @sg: The array of scatter/gather entries * @nents: The number of scatter/gather entries * @direction: The direction of the DMA */ static inline void ib_dma_unmap_sg(struct ib_device *dev, struct scatterlist *sg, int nents, enum dma_data_direction direction) { dma_unmap_sg(dev->dma_device, sg, nents, direction); } static inline int ib_dma_map_sg_attrs(struct ib_device *dev, struct scatterlist *sg, int nents, enum dma_data_direction direction, unsigned long dma_attrs) { return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs); } static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev, struct scatterlist *sg, int nents, enum dma_data_direction direction, unsigned long dma_attrs) { dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs); } /** * ib_dma_max_seg_size - Return the size limit of a single DMA transfer * @dev: The device to query * * The returned value represents a size in bytes. */ static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev) { struct device_dma_parameters *p = dev->dma_device->dma_parms; return p ? p->max_segment_size : UINT_MAX; } /** * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU * @dev: The device for which the DMA address was created * @addr: The DMA address * @size: The size of the region in bytes * @dir: The direction of the DMA */ static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, u64 addr, size_t size, enum dma_data_direction dir) { dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); } /** * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device * @dev: The device for which the DMA address was created * @addr: The DMA address * @size: The size of the region in bytes * @dir: The direction of the DMA */ static inline void ib_dma_sync_single_for_device(struct ib_device *dev, u64 addr, size_t size, enum dma_data_direction dir) { dma_sync_single_for_device(dev->dma_device, addr, size, dir); } /** * ib_dma_alloc_coherent - Allocate memory and map it for DMA * @dev: The device for which the DMA address is requested * @size: The size of the region to allocate in bytes * @dma_handle: A pointer for returning the DMA address of the region * @flag: memory allocator flags */ static inline void *ib_dma_alloc_coherent(struct ib_device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag) { return dma_alloc_coherent(dev->dma_device, size, dma_handle, flag); } /** * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent() * @dev: The device for which the DMA addresses were allocated * @size: The size of the region * @cpu_addr: the address returned by ib_dma_alloc_coherent() * @dma_handle: the DMA address returned by ib_dma_alloc_coherent() */ static inline void ib_dma_free_coherent(struct ib_device *dev, size_t size, void *cpu_addr, dma_addr_t dma_handle) { dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle); } /** * ib_dereg_mr_user - Deregisters a memory region and removes it from the * HCA translation table. * @mr: The memory region to deregister. * @udata: Valid user data or NULL for kernel object * * This function can fail, if the memory region has memory windows bound to it. */ int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata); /** * ib_dereg_mr - Deregisters a kernel memory region and removes it from the * HCA translation table. * @mr: The memory region to deregister. * * This function can fail, if the memory region has memory windows bound to it. * * NOTE: for user mr use ib_dereg_mr_user with valid udata! */ static inline int ib_dereg_mr(struct ib_mr *mr) { return ib_dereg_mr_user(mr, NULL); } struct ib_mr *ib_alloc_mr_user(struct ib_pd *pd, enum ib_mr_type mr_type, u32 max_num_sg, struct ib_udata *udata); static inline struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, u32 max_num_sg) { return ib_alloc_mr_user(pd, mr_type, max_num_sg, NULL); } /** * ib_update_fast_reg_key - updates the key portion of the fast_reg MR * R_Key and L_Key. * @mr - struct ib_mr pointer to be updated. * @newkey - new key to be used. */ static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey) { mr->lkey = (mr->lkey & 0xffffff00) | newkey; mr->rkey = (mr->rkey & 0xffffff00) | newkey; } /** * ib_inc_rkey - increments the key portion of the given rkey. Can be used * for calculating a new rkey for type 2 memory windows. * @rkey - the rkey to increment. */ static inline u32 ib_inc_rkey(u32 rkey) { const u32 mask = 0x000000ff; return ((rkey + 1) & mask) | (rkey & ~mask); } /** * ib_alloc_fmr - Allocates a unmapped fast memory region. * @pd: The protection domain associated with the unmapped region. * @mr_access_flags: Specifies the memory access rights. * @fmr_attr: Attributes of the unmapped region. * * A fast memory region must be mapped before it can be used as part of * a work request. */ struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, int mr_access_flags, struct ib_fmr_attr *fmr_attr); /** * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region. * @fmr: The fast memory region to associate with the pages. * @page_list: An array of physical pages to map to the fast memory region. * @list_len: The number of pages in page_list. * @iova: The I/O virtual address to use with the mapped region. */ static inline int ib_map_phys_fmr(struct ib_fmr *fmr, u64 *page_list, int list_len, u64 iova) { return fmr->device->ops.map_phys_fmr(fmr, page_list, list_len, iova); } /** * ib_unmap_fmr - Removes the mapping from a list of fast memory regions. * @fmr_list: A linked list of fast memory regions to unmap. */ int ib_unmap_fmr(struct list_head *fmr_list); /** * ib_dealloc_fmr - Deallocates a fast memory region. * @fmr: The fast memory region to deallocate. */ int ib_dealloc_fmr(struct ib_fmr *fmr); /** * ib_attach_mcast - Attaches the specified QP to a multicast group. * @qp: QP to attach to the multicast group. The QP must be type * IB_QPT_UD. * @gid: Multicast group GID. * @lid: Multicast group LID in host byte order. * * In order to send and receive multicast packets, subnet * administration must have created the multicast group and configured * the fabric appropriately. The port associated with the specified * QP must also be a member of the multicast group. */ int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); /** * ib_detach_mcast - Detaches the specified QP from a multicast group. * @qp: QP to detach from the multicast group. * @gid: Multicast group GID. * @lid: Multicast group LID in host byte order. */ int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); /** * ib_alloc_xrcd - Allocates an XRC domain. * @device: The device on which to allocate the XRC domain. * @caller: Module name for kernel consumers */ struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller); #define ib_alloc_xrcd(device) \ __ib_alloc_xrcd((device), KBUILD_MODNAME) /** * ib_dealloc_xrcd - Deallocates an XRC domain. * @xrcd: The XRC domain to deallocate. * @udata: Valid user data or NULL for kernel object */ int ib_dealloc_xrcd(struct ib_xrcd *xrcd, struct ib_udata *udata); static inline int ib_check_mr_access(int flags) { /* * Local write permission is required if remote write or * remote atomic permission is also requested. */ if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) && !(flags & IB_ACCESS_LOCAL_WRITE)) return -EINVAL; return 0; } static inline bool ib_access_writable(int access_flags) { /* * We have writable memory backing the MR if any of the following * access flags are set. "Local write" and "remote write" obviously * require write access. "Remote atomic" can do things like fetch and * add, which will modify memory, and "MW bind" can change permissions * by binding a window. */ return access_flags & (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE | IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND); } /** * ib_check_mr_status: lightweight check of MR status. * This routine may provide status checks on a selected * ib_mr. first use is for signature status check. * * @mr: A memory region. * @check_mask: Bitmask of which checks to perform from * ib_mr_status_check enumeration. * @mr_status: The container of relevant status checks. * failed checks will be indicated in the status bitmask * and the relevant info shall be in the error item. */ int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, struct ib_mr_status *mr_status); /** * ib_device_try_get: Hold a registration lock * device: The device to lock * * A device under an active registration lock cannot become unregistered. It * is only possible to obtain a registration lock on a device that is fully * registered, otherwise this function returns false. * * The registration lock is only necessary for actions which require the * device to still be registered. Uses that only require the device pointer to * be valid should use get_device(&ibdev->dev) to hold the memory. * */ static inline bool ib_device_try_get(struct ib_device *dev) { return refcount_inc_not_zero(&dev->refcount); } void ib_device_put(struct ib_device *device); struct ib_device *ib_device_get_by_netdev(struct net_device *ndev, enum rdma_driver_id driver_id); struct ib_device *ib_device_get_by_name(const char *name, enum rdma_driver_id driver_id); struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port, u16 pkey, const union ib_gid *gid, const struct sockaddr *addr); int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev, unsigned int port); struct net_device *ib_device_netdev(struct ib_device *dev, u8 port); struct ib_wq *ib_create_wq(struct ib_pd *pd, struct ib_wq_init_attr *init_attr); int ib_destroy_wq(struct ib_wq *wq, struct ib_udata *udata); int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr, u32 wq_attr_mask); struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device, struct ib_rwq_ind_table_init_attr* wq_ind_table_init_attr); int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table); int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, unsigned int *sg_offset, unsigned int page_size); static inline int ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, unsigned int *sg_offset, unsigned int page_size) { int n; n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size); mr->iova = 0; return n; } int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64)); void ib_drain_rq(struct ib_qp *qp); void ib_drain_sq(struct ib_qp *qp); void ib_drain_qp(struct ib_qp *qp); int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width); static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr) { if (attr->type == RDMA_AH_ATTR_TYPE_ROCE) return attr->roce.dmac; return NULL; } static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid) { if (attr->type == RDMA_AH_ATTR_TYPE_IB) attr->ib.dlid = (u16)dlid; else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) attr->opa.dlid = dlid; } static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr) { if (attr->type == RDMA_AH_ATTR_TYPE_IB) return attr->ib.dlid; else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) return attr->opa.dlid; return 0; } static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl) { attr->sl = sl; } static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr) { return attr->sl; } static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr, u8 src_path_bits) { if (attr->type == RDMA_AH_ATTR_TYPE_IB) attr->ib.src_path_bits = src_path_bits; else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) attr->opa.src_path_bits = src_path_bits; } static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr) { if (attr->type == RDMA_AH_ATTR_TYPE_IB) return attr->ib.src_path_bits; else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) return attr->opa.src_path_bits; return 0; } static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr, bool make_grd) { if (attr->type == RDMA_AH_ATTR_TYPE_OPA) attr->opa.make_grd = make_grd; } static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr) { if (attr->type == RDMA_AH_ATTR_TYPE_OPA) return attr->opa.make_grd; return false; } static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u8 port_num) { attr->port_num = port_num; } static inline u8 rdma_ah_get_port_num(const struct rdma_ah_attr *attr) { return attr->port_num; } static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr, u8 static_rate) { attr->static_rate = static_rate; } static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr) { return attr->static_rate; } static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr, enum ib_ah_flags flag) { attr->ah_flags = flag; } static inline enum ib_ah_flags rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr) { return attr->ah_flags; } static inline const struct ib_global_route *rdma_ah_read_grh(const struct rdma_ah_attr *attr) { return &attr->grh; } /*To retrieve and modify the grh */ static inline struct ib_global_route *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr) { return &attr->grh; } static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid) { struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid)); } static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr, __be64 prefix) { struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); grh->dgid.global.subnet_prefix = prefix; } static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr, __be64 if_id) { struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); grh->dgid.global.interface_id = if_id; } static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr, union ib_gid *dgid, u32 flow_label, u8 sgid_index, u8 hop_limit, u8 traffic_class) { struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); attr->ah_flags = IB_AH_GRH; if (dgid) grh->dgid = *dgid; grh->flow_label = flow_label; grh->sgid_index = sgid_index; grh->hop_limit = hop_limit; grh->traffic_class = traffic_class; grh->sgid_attr = NULL; } void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr); void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid, u32 flow_label, u8 hop_limit, u8 traffic_class, const struct ib_gid_attr *sgid_attr); void rdma_copy_ah_attr(struct rdma_ah_attr *dest, const struct rdma_ah_attr *src); void rdma_replace_ah_attr(struct rdma_ah_attr *old, const struct rdma_ah_attr *new); void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src); /** * rdma_ah_find_type - Return address handle type. * * @dev: Device to be checked * @port_num: Port number */ static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev, u8 port_num) { if (rdma_protocol_roce(dev, port_num)) return RDMA_AH_ATTR_TYPE_ROCE; if (rdma_protocol_ib(dev, port_num)) { if (rdma_cap_opa_ah(dev, port_num)) return RDMA_AH_ATTR_TYPE_OPA; return RDMA_AH_ATTR_TYPE_IB; } return RDMA_AH_ATTR_TYPE_UNDEFINED; } /** * ib_lid_cpu16 - Return lid in 16bit CPU encoding. * In the current implementation the only way to get * get the 32bit lid is from other sources for OPA. * For IB, lids will always be 16bits so cast the * value accordingly. * * @lid: A 32bit LID */ static inline u16 ib_lid_cpu16(u32 lid) { WARN_ON_ONCE(lid & 0xFFFF0000); return (u16)lid; } /** * ib_lid_be16 - Return lid in 16bit BE encoding. * * @lid: A 32bit LID */ static inline __be16 ib_lid_be16(u32 lid) { WARN_ON_ONCE(lid & 0xFFFF0000); return cpu_to_be16((u16)lid); } /** * ib_get_vector_affinity - Get the affinity mappings of a given completion * vector * @device: the rdma device * @comp_vector: index of completion vector * * Returns NULL on failure, otherwise a corresponding cpu map of the * completion vector (returns all-cpus map if the device driver doesn't * implement get_vector_affinity). */ static inline const struct cpumask * ib_get_vector_affinity(struct ib_device *device, int comp_vector) { if (comp_vector < 0 || comp_vector >= device->num_comp_vectors || !device->ops.get_vector_affinity) return NULL; return device->ops.get_vector_affinity(device, comp_vector); } /** * rdma_roce_rescan_device - Rescan all of the network devices in the system * and add their gids, as needed, to the relevant RoCE devices. * * @device: the rdma device */ void rdma_roce_rescan_device(struct ib_device *ibdev); struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile); int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs); struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num, enum rdma_netdev_t type, const char *name, unsigned char name_assign_type, void (*setup)(struct net_device *)); int rdma_init_netdev(struct ib_device *device, u8 port_num, enum rdma_netdev_t type, const char *name, unsigned char name_assign_type, void (*setup)(struct net_device *), struct net_device *netdev); /** * rdma_set_device_sysfs_group - Set device attributes group to have * driver specific sysfs entries at * for infiniband class. * * @device: device pointer for which attributes to be created * @group: Pointer to group which should be added when device * is registered with sysfs. * rdma_set_device_sysfs_group() allows existing drivers to expose one * group per device to have sysfs attributes. * * NOTE: New drivers should not make use of this API; instead new device * parameter should be exposed via netlink command. This API and mechanism * exist only for existing drivers. */ static inline void rdma_set_device_sysfs_group(struct ib_device *dev, const struct attribute_group *group) { dev->groups[1] = group; } /** * rdma_device_to_ibdev - Get ib_device pointer from device pointer * * @device: device pointer for which ib_device pointer to retrieve * * rdma_device_to_ibdev() retrieves ib_device pointer from device. * */ static inline struct ib_device *rdma_device_to_ibdev(struct device *device) { struct ib_core_device *coredev = container_of(device, struct ib_core_device, dev); return coredev->owner; } /** * rdma_device_to_drv_device - Helper macro to reach back to driver's * ib_device holder structure from device pointer. * * NOTE: New drivers should not make use of this API; This API is only for * existing drivers who have exposed sysfs entries using * rdma_set_device_sysfs_group(). */ #define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member) \ container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member) bool rdma_dev_access_netns(const struct ib_device *device, const struct net *net); #endif /* IB_VERBS_H */