// SPDX-License-Identifier: GPL-2.0 //! String representations. use alloc::vec::Vec; use core::fmt::{self, Write}; use core::ops::{self, Deref, Index}; use crate::{bindings, c_types, error::code::*, Error}; /// Byte string without UTF-8 validity guarantee. /// /// `BStr` is simply an alias to `[u8]`, but has a more evident semantical meaning. pub type BStr = [u8]; /// Creates a new [`BStr`] from a string literal. /// /// `b_str!` converts the supplied string literal to byte string, so non-ASCII /// characters can be included. /// /// # Examples /// /// ``` /// # use kernel::b_str; /// # use kernel::str::BStr; /// const MY_BSTR: &BStr = b_str!("My awesome BStr!"); /// ``` #[macro_export] macro_rules! b_str { ($str:literal) => {{ const S: &'static str = $str; const C: &'static $crate::str::BStr = S.as_bytes(); C }}; } /// Possible errors when using conversion functions in [`CStr`]. #[derive(Debug, Clone, Copy)] pub enum CStrConvertError { /// Supplied bytes contain an interior `NUL`. InteriorNul, /// Supplied bytes are not terminated by `NUL`. NotNulTerminated, } impl From for Error { #[inline] fn from(_: CStrConvertError) -> Error { EINVAL } } /// A string that is guaranteed to have exactly one `NUL` byte, which is at the /// end. /// /// Used for interoperability with kernel APIs that take C strings. #[repr(transparent)] pub struct CStr([u8]); impl CStr { /// Returns the length of this string excluding `NUL`. #[inline] pub const fn len(&self) -> usize { self.len_with_nul() - 1 } /// Returns the length of this string with `NUL`. #[inline] pub const fn len_with_nul(&self) -> usize { // SAFETY: This is one of the invariant of `CStr`. // We add a `unreachable_unchecked` here to hint the optimizer that // the value returned from this function is non-zero. if self.0.is_empty() { unsafe { core::hint::unreachable_unchecked() }; } self.0.len() } /// Returns `true` if the string only includes `NUL`. #[inline] pub const fn is_empty(&self) -> bool { self.len() == 0 } /// Wraps a raw C string pointer. /// /// # Safety /// /// `ptr` must be a valid pointer to a `NUL`-terminated C string, and it must /// last at least `'a`. When `CStr` is alive, the memory pointed by `ptr` /// must not be mutated. #[inline] pub unsafe fn from_char_ptr<'a>(ptr: *const c_types::c_char) -> &'a Self { // SAFETY: The safety precondition guarantees `ptr` is a valid pointer // to a `NUL`-terminated C string. let len = unsafe { bindings::strlen(ptr) } + 1; // SAFETY: Lifetime guaranteed by the safety precondition. let bytes = unsafe { core::slice::from_raw_parts(ptr as _, len as _) }; // SAFETY: As `len` is returned by `strlen`, `bytes` does not contain interior `NUL`. // As we have added 1 to `len`, the last byte is known to be `NUL`. unsafe { Self::from_bytes_with_nul_unchecked(bytes) } } /// Creates a [`CStr`] from a `[u8]`. /// /// The provided slice must be `NUL`-terminated, does not contain any /// interior `NUL` bytes. pub const fn from_bytes_with_nul(bytes: &[u8]) -> Result<&Self, CStrConvertError> { if bytes.is_empty() { return Err(CStrConvertError::NotNulTerminated); } if bytes[bytes.len() - 1] != 0 { return Err(CStrConvertError::NotNulTerminated); } let mut i = 0; // `i + 1 < bytes.len()` allows LLVM to optimize away bounds checking, // while it couldn't optimize away bounds checks for `i < bytes.len() - 1`. while i + 1 < bytes.len() { if bytes[i] == 0 { return Err(CStrConvertError::InteriorNul); } i += 1; } // SAFETY: We just checked that all properties hold. Ok(unsafe { Self::from_bytes_with_nul_unchecked(bytes) }) } /// Creates a [`CStr`] from a `[u8]`, panic if input is not valid. /// /// This function is only meant to be used by `c_str!` macro, so /// crates using `c_str!` macro don't have to enable `const_panic` feature. #[doc(hidden)] pub const fn from_bytes_with_nul_unwrap(bytes: &[u8]) -> &Self { match Self::from_bytes_with_nul(bytes) { Ok(v) => v, Err(_) => panic!("string contains interior NUL"), } } /// Creates a [`CStr`] from a `[u8]` without performing any additional /// checks. /// /// # Safety /// /// `bytes` *must* end with a `NUL` byte, and should only have a single /// `NUL` byte (or the string will be truncated). #[inline] pub const unsafe fn from_bytes_with_nul_unchecked(bytes: &[u8]) -> &CStr { // SAFETY: Properties of `bytes` guaranteed by the safety precondition. unsafe { core::mem::transmute(bytes) } } /// Returns a C pointer to the string. #[inline] pub const fn as_char_ptr(&self) -> *const c_types::c_char { self.0.as_ptr() as _ } /// Convert the string to a byte slice without the trailing 0 byte. #[inline] pub fn as_bytes(&self) -> &[u8] { &self.0[..self.len()] } /// Convert the string to a byte slice containing the trailing 0 byte. #[inline] pub const fn as_bytes_with_nul(&self) -> &[u8] { &self.0 } /// Yields a [`&str`] slice if the [`CStr`] contains valid UTF-8. /// /// If the contents of the [`CStr`] are valid UTF-8 data, this /// function will return the corresponding [`&str`] slice. Otherwise, /// it will return an error with details of where UTF-8 validation failed. /// /// # Examples /// /// ``` /// # use kernel::str::CStr; /// let cstr = CStr::from_bytes_with_nul(b"foo\0").unwrap(); /// assert_eq!(cstr.to_str(), Ok("foo")); /// ``` #[inline] pub fn to_str(&self) -> Result<&str, core::str::Utf8Error> { core::str::from_utf8(self.as_bytes()) } /// Unsafely convert this [`CStr`] into a [`&str`], without checking for /// valid UTF-8. /// /// # Safety /// /// The contents must be valid UTF-8. /// /// # Examples /// /// ``` /// # use kernel::c_str; /// # use kernel::str::CStr; /// // SAFETY: String literals are guaranteed to be valid UTF-8 /// // by the Rust compiler. /// let bar = c_str!("ツ"); /// assert_eq!(unsafe { bar.as_str_unchecked() }, "ツ"); /// ``` #[inline] pub unsafe fn as_str_unchecked(&self) -> &str { unsafe { core::str::from_utf8_unchecked(self.as_bytes()) } } } impl fmt::Display for CStr { /// Formats printable ASCII characters, escaping the rest. /// /// ``` /// # use kernel::c_str; /// # use kernel::str::CStr; /// # use kernel::str::CString; /// let penguin = c_str!("🐧"); /// let s = CString::try_from_fmt(fmt!("{}", penguin)).unwrap(); /// assert_eq!(s.as_bytes_with_nul(), "\\xf0\\x9f\\x90\\xa7\0".as_bytes()); /// /// let ascii = c_str!("so \"cool\""); /// let s = CString::try_from_fmt(fmt!("{}", ascii)).unwrap(); /// assert_eq!(s.as_bytes_with_nul(), "so \"cool\"\0".as_bytes()); /// ``` fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { for &c in self.as_bytes() { if (0x20..0x7f).contains(&c) { // Printable character f.write_char(c as char)?; } else { write!(f, "\\x{:02x}", c)?; } } Ok(()) } } impl fmt::Debug for CStr { /// Formats printable ASCII characters with a double quote on either end, escaping the rest. /// /// ``` /// # use kernel::c_str; /// # use kernel::str::CStr; /// # use kernel::str::CString; /// let penguin = c_str!("🐧"); /// let s = CString::try_from_fmt(fmt!("{:?}", penguin)).unwrap(); /// assert_eq!(s.as_bytes_with_nul(), "\"\\xf0\\x9f\\x90\\xa7\"\0".as_bytes()); /// /// // Embedded double quotes are escaped. /// let ascii = c_str!("so \"cool\""); /// let s = CString::try_from_fmt(fmt!("{:?}", ascii)).unwrap(); /// assert_eq!(s.as_bytes_with_nul(), "\"so \\\"cool\\\"\"\0".as_bytes()); /// ``` fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.write_str("\"")?; for &c in self.as_bytes() { match c { // Printable characters b'\"' => f.write_str("\\\"")?, 0x20..=0x7e => f.write_char(c as char)?, _ => write!(f, "\\x{:02x}", c)?, } } f.write_str("\"") } } impl AsRef for CStr { #[inline] fn as_ref(&self) -> &BStr { self.as_bytes() } } impl Deref for CStr { type Target = BStr; #[inline] fn deref(&self) -> &Self::Target { self.as_bytes() } } impl Index> for CStr { type Output = CStr; #[inline] fn index(&self, index: ops::RangeFrom) -> &Self::Output { // Delegate bounds checking to slice. // Assign to _ to mute clippy's unnecessary operation warning. let _ = &self.as_bytes()[index.start..]; // SAFETY: We just checked the bounds. unsafe { Self::from_bytes_with_nul_unchecked(&self.0[index.start..]) } } } impl Index for CStr { type Output = CStr; #[inline] fn index(&self, _index: ops::RangeFull) -> &Self::Output { self } } mod private { use core::ops; // Marker trait for index types that can be forward to `BStr`. pub trait CStrIndex {} impl CStrIndex for usize {} impl CStrIndex for ops::Range {} impl CStrIndex for ops::RangeInclusive {} impl CStrIndex for ops::RangeToInclusive {} } impl Index for CStr where Idx: private::CStrIndex, BStr: Index, { type Output = >::Output; #[inline] fn index(&self, index: Idx) -> &Self::Output { &self.as_bytes()[index] } } /// Creates a new [`CStr`] from a string literal. /// /// The string literal should not contain any `NUL` bytes. /// /// # Examples /// /// ``` /// # use kernel::c_str; /// # use kernel::str::CStr; /// const MY_CSTR: &CStr = c_str!("My awesome CStr!"); /// ``` #[macro_export] macro_rules! c_str { ($str:expr) => {{ const S: &str = concat!($str, "\0"); const C: &$crate::str::CStr = $crate::str::CStr::from_bytes_with_nul_unwrap(S.as_bytes()); C }}; } #[cfg(test)] mod tests { use super::*; #[test] fn test_cstr_to_str() { let good_bytes = b"\xf0\x9f\xa6\x80\0"; let checked_cstr = CStr::from_bytes_with_nul(good_bytes).unwrap(); let checked_str = checked_cstr.to_str().unwrap(); assert_eq!(checked_str, "🦀"); } #[test] #[should_panic] fn test_cstr_to_str_panic() { let bad_bytes = b"\xc3\x28\0"; let checked_cstr = CStr::from_bytes_with_nul(bad_bytes).unwrap(); checked_cstr.to_str().unwrap(); } #[test] fn test_cstr_as_str_unchecked() { let good_bytes = b"\xf0\x9f\x90\xA7\0"; let checked_cstr = CStr::from_bytes_with_nul(good_bytes).unwrap(); let unchecked_str = unsafe { checked_cstr.as_str_unchecked() }; assert_eq!(unchecked_str, "🐧"); } } /// Allows formatting of [`fmt::Arguments`] into a raw buffer. /// /// It does not fail if callers write past the end of the buffer so that they can calculate the /// size required to fit everything. /// /// # Invariants /// /// The memory region between `pos` (inclusive) and `end` (exclusive) is valid for writes if `pos` /// is less than `end`. pub(crate) struct RawFormatter { // Use `usize` to use `saturating_*` functions. beg: usize, pos: usize, end: usize, } impl RawFormatter { /// Creates a new instance of [`RawFormatter`] with an empty buffer. fn new() -> Self { // INVARIANT: The buffer is empty, so the region that needs to be writable is empty. Self { beg: 0, pos: 0, end: 0, } } /// Creates a new instance of [`RawFormatter`] with the given buffer pointers. /// /// # Safety /// /// If `pos` is less than `end`, then the region between `pos` (inclusive) and `end` /// (exclusive) must be valid for writes for the lifetime of the returned [`RawFormatter`]. pub(crate) unsafe fn from_ptrs(pos: *mut u8, end: *mut u8) -> Self { // INVARIANT: The safety requierments guarantee the type invariants. Self { beg: pos as _, pos: pos as _, end: end as _, } } /// Creates a new instance of [`RawFormatter`] with the given buffer. /// /// # Safety /// /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes /// for the lifetime of the returned [`RawFormatter`]. pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self { let pos = buf as usize; // INVARIANT: We ensure that `end` is never less then `buf`, and the safety requirements // guarantees that the memory region is valid for writes. Self { pos, beg: pos, end: pos.saturating_add(len), } } /// Returns the current insert position. /// /// N.B. It may point to invalid memory. pub(crate) fn pos(&self) -> *mut u8 { self.pos as _ } /// Return the number of bytes written to the formatter. pub(crate) fn bytes_written(&self) -> usize { self.pos - self.beg } } impl fmt::Write for RawFormatter { fn write_str(&mut self, s: &str) -> fmt::Result { // `pos` value after writing `len` bytes. This does not have to be bounded by `end`, but we // don't want it to wrap around to 0. let pos_new = self.pos.saturating_add(s.len()); // Amount that we can copy. `saturating_sub` ensures we get 0 if `pos` goes past `end`. let len_to_copy = core::cmp::min(pos_new, self.end).saturating_sub(self.pos); if len_to_copy > 0 { // SAFETY: If `len_to_copy` is non-zero, then we know `pos` has not gone past `end` // yet, so it is valid for write per the type invariants. unsafe { core::ptr::copy_nonoverlapping( s.as_bytes().as_ptr(), self.pos as *mut u8, len_to_copy, ) }; } self.pos = pos_new; Ok(()) } } /// Allows formatting of [`fmt::Arguments`] into a raw buffer. /// /// Fails if callers attempt to write more than will fit in the buffer. pub(crate) struct Formatter(RawFormatter); impl Formatter { /// Creates a new instance of [`Formatter`] with the given buffer. /// /// # Safety /// /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes /// for the lifetime of the returned [`Formatter`]. pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self { // SAFETY: The safety requirements of this function satisfy those of the callee. Self(unsafe { RawFormatter::from_buffer(buf, len) }) } } impl Deref for Formatter { type Target = RawFormatter; fn deref(&self) -> &Self::Target { &self.0 } } impl fmt::Write for Formatter { fn write_str(&mut self, s: &str) -> fmt::Result { self.0.write_str(s)?; // Fail the request if we go past the end of the buffer. if self.0.pos > self.0.end { Err(fmt::Error) } else { Ok(()) } } } /// An owned string that is guaranteed to have exactly one `NUL` byte, which is at the end. /// /// Used for interoperability with kernel APIs that take C strings. /// /// # Invariants /// /// The string is always `NUL`-terminated and contains no other `NUL` bytes. /// /// # Examples /// /// ``` /// use kernel::str::CString; /// /// let s = CString::try_from_fmt(fmt!("{}{}{}", "abc", 10, 20)).unwrap(); /// assert_eq!(s.as_bytes_with_nul(), "abc1020\0".as_bytes()); /// /// let tmp = "testing"; /// let s = CString::try_from_fmt(fmt!("{tmp}{}", 123)).unwrap(); /// assert_eq!(s.as_bytes_with_nul(), "testing123\0".as_bytes()); /// /// // This fails because it has an embedded `NUL` byte. /// let s = CString::try_from_fmt(fmt!("a\0b{}", 123)); /// assert_eq!(s.is_ok(), false); /// ``` pub struct CString { buf: Vec, } impl CString { /// Creates an instance of [`CString`] from the given formatted arguments. pub fn try_from_fmt(args: fmt::Arguments<'_>) -> Result { // Calculate the size needed (formatted string plus `NUL` terminator). let mut f = RawFormatter::new(); f.write_fmt(args)?; f.write_str("\0")?; let size = f.bytes_written(); // Allocate a vector with the required number of bytes, and write to it. let mut buf = Vec::try_with_capacity(size)?; // SAFETY: The buffer stored in `buf` is at least of size `size` and is valid for writes. let mut f = unsafe { Formatter::from_buffer(buf.as_mut_ptr(), size) }; f.write_fmt(args)?; f.write_str("\0")?; // SAFETY: The number of bytes that can be written to `f` is bounded by `size`, which is // `buf`'s capacity. The contents of the buffer have been initialised by writes to `f`. unsafe { buf.set_len(f.bytes_written()) }; // Check that there are no `NUL` bytes before the end. // SAFETY: The buffer is valid for read because `f.bytes_written()` is bounded by `size` // (which the minimum buffer size) and is non-zero (we wrote at least the `NUL` terminator) // so `f.bytes_written() - 1` doesn't underflow. let ptr = unsafe { bindings::memchr(buf.as_ptr().cast(), 0, (f.bytes_written() - 1) as _) }; if !ptr.is_null() { return Err(EINVAL); } // INVARIANT: We wrote the `NUL` terminator and checked above that no other `NUL` bytes // exist in the buffer. Ok(Self { buf }) } } impl Deref for CString { type Target = CStr; fn deref(&self) -> &Self::Target { // SAFETY: The type invariants guarantee that the string is `NUL`-terminated and that no // other `NUL` bytes exist. unsafe { CStr::from_bytes_with_nul_unchecked(self.buf.as_slice()) } } } /// A convenience alias for [`core::format_args`]. #[macro_export] macro_rules! fmt { ($($f:tt)*) => ( core::format_args!($($f)*) ) }