summaryrefslogtreecommitdiff
path: root/Documentation/mm/page_owner.rst
blob: f5c954afe97c7473418a0e617b55e00cc4d7b697 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
.. _page_owner:

==================================================
page owner: Tracking about who allocated each page
==================================================

Introduction
============

page owner is for the tracking about who allocated each page.
It can be used to debug memory leak or to find a memory hogger.
When allocation happens, information about allocation such as call stack
and order of pages is stored into certain storage for each page.
When we need to know about status of all pages, we can get and analyze
this information.

Although we already have tracepoint for tracing page allocation/free,
using it for analyzing who allocate each page is rather complex. We need
to enlarge the trace buffer for preventing overlapping until userspace
program launched. And, launched program continually dump out the trace
buffer for later analysis and it would change system behaviour with more
possibility rather than just keeping it in memory, so bad for debugging.

page owner can also be used for various purposes. For example, accurate
fragmentation statistics can be obtained through gfp flag information of
each page. It is already implemented and activated if page owner is
enabled. Other usages are more than welcome.

page owner is disabled by default. So, if you'd like to use it, you need
to add "page_owner=on" to your boot cmdline. If the kernel is built
with page owner and page owner is disabled in runtime due to not enabling
boot option, runtime overhead is marginal. If disabled in runtime, it
doesn't require memory to store owner information, so there is no runtime
memory overhead. And, page owner inserts just two unlikely branches into
the page allocator hotpath and if not enabled, then allocation is done
like as the kernel without page owner. These two unlikely branches should
not affect to allocation performance, especially if the static keys jump
label patching functionality is available. Following is the kernel's code
size change due to this facility.

- Without page owner::

   text    data     bss     dec     hex filename
   48392   2333     644   51369    c8a9 mm/page_alloc.o

- With page owner::

   text    data     bss     dec     hex filename
   48800   2445     644   51889    cab1 mm/page_alloc.o
   6662     108      29    6799    1a8f mm/page_owner.o
   1025       8       8    1041     411 mm/page_ext.o

Although, roughly, 8 KB code is added in total, page_alloc.o increase by
520 bytes and less than half of it is in hotpath. Building the kernel with
page owner and turning it on if needed would be great option to debug
kernel memory problem.

There is one notice that is caused by implementation detail. page owner
stores information into the memory from struct page extension. This memory
is initialized some time later than that page allocator starts in sparse
memory system, so, until initialization, many pages can be allocated and
they would have no owner information. To fix it up, these early allocated
pages are investigated and marked as allocated in initialization phase.
Although it doesn't mean that they have the right owner information,
at least, we can tell whether the page is allocated or not,
more accurately. On 2GB memory x86-64 VM box, 13343 early allocated pages
are catched and marked, although they are mostly allocated from struct
page extension feature. Anyway, after that, no page is left in
un-tracking state.

Usage
=====

1) Build user-space helper::

	cd tools/vm
	make page_owner_sort

2) Enable page owner: add "page_owner=on" to boot cmdline.

3) Do the job that you want to debug.

4) Analyze information from page owner::

	cat /sys/kernel/debug/page_owner > page_owner_full.txt
	./page_owner_sort page_owner_full.txt sorted_page_owner.txt

   The general output of ``page_owner_full.txt`` is as follows::

	Page allocated via order XXX, ...
	PFN XXX ...
	// Detailed stack

	Page allocated via order XXX, ...
	PFN XXX ...
	// Detailed stack

   The ``page_owner_sort`` tool ignores ``PFN`` rows, puts the remaining rows
   in buf, uses regexp to extract the page order value, counts the times
   and pages of buf, and finally sorts them according to the parameter(s).

   See the result about who allocated each page
   in the ``sorted_page_owner.txt``. General output::

	XXX times, XXX pages:
	Page allocated via order XXX, ...
	// Detailed stack

   By default, ``page_owner_sort`` is sorted according to the times of buf.
   If you want to sort by the page nums of buf, use the ``-m`` parameter.
   The detailed parameters are:

   fundamental function::

	Sort:
		-a		Sort by memory allocation time.
		-m		Sort by total memory.
		-p		Sort by pid.
		-P		Sort by tgid.
		-n		Sort by task command name.
		-r		Sort by memory release time.
		-s		Sort by stack trace.
		-t		Sort by times (default).
		--sort <order>	Specify sorting order.  Sorting syntax is [+|-]key[,[+|-]key[,...]].
				Choose a key from the **STANDARD FORMAT SPECIFIERS** section. The "+" is
				optional since default direction is increasing numerical or lexicographic
				order. Mixed use of abbreviated and complete-form of keys is allowed.

		Examples:
				./page_owner_sort <input> <output> --sort=n,+pid,-tgid
				./page_owner_sort <input> <output> --sort=at

   additional function::

	Cull:
		--cull <rules>
				Specify culling rules.Culling syntax is key[,key[,...]].Choose a
				multi-letter key from the **STANDARD FORMAT SPECIFIERS** section.

		<rules> is a single argument in the form of a comma-separated list,
		which offers a way to specify individual culling rules.  The recognized
		keywords are described in the **STANDARD FORMAT SPECIFIERS** section below.
		<rules> can be specified by the sequence of keys k1,k2, ..., as described in
		the STANDARD SORT KEYS section below. Mixed use of abbreviated and
		complete-form of keys is allowed.

		Examples:
				./page_owner_sort <input> <output> --cull=stacktrace
				./page_owner_sort <input> <output> --cull=st,pid,name
				./page_owner_sort <input> <output> --cull=n,f

	Filter:
		-f		Filter out the information of blocks whose memory has been released.

	Select:
		--pid <pidlist>		Select by pid. This selects the blocks whose process ID
					numbers appear in <pidlist>.
		--tgid <tgidlist>	Select by tgid. This selects the blocks whose thread
					group ID numbers appear in <tgidlist>.
		--name <cmdlist>	Select by task command name. This selects the blocks whose
					task command name appear in <cmdlist>.

		<pidlist>, <tgidlist>, <cmdlist> are single arguments in the form of a comma-separated list,
		which offers a way to specify individual selecting rules.


		Examples:
				./page_owner_sort <input> <output> --pid=1
				./page_owner_sort <input> <output> --tgid=1,2,3
				./page_owner_sort <input> <output> --name name1,name2

STANDARD FORMAT SPECIFIERS
==========================
::

  For --sort option:

	KEY		LONG		DESCRIPTION
	p		pid		process ID
	tg		tgid		thread group ID
	n		name		task command name
	st		stacktrace	stack trace of the page allocation
	T		txt		full text of block
	ft		free_ts		timestamp of the page when it was released
	at		alloc_ts	timestamp of the page when it was allocated
	ator		allocator	memory allocator for pages

  For --curl option:

	KEY		LONG		DESCRIPTION
	p		pid		process ID
	tg		tgid		thread group ID
	n		name		task command name
	f		free		whether the page has been released or not
	st		stacktrace	stack trace of the page allocation
	ator		allocator	memory allocator for pages