1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
|
/*
* Read-Copy Update mechanism for mutual exclusion
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you can access it online at
* http://www.gnu.org/licenses/gpl-2.0.html.
*
* Copyright IBM Corporation, 2001
*
* Author: Dipankar Sarma <dipankar@in.ibm.com>
*
* Based on the original work by Paul McKenney <paulmck@us.ibm.com>
* and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
* Papers:
* http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
* http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
*
* For detailed explanation of Read-Copy Update mechanism see -
* http://lse.sourceforge.net/locking/rcupdate.html
*
*/
#ifndef __LINUX_RCUPDATE_H
#define __LINUX_RCUPDATE_H
#include <linux/types.h>
#include <linux/cache.h>
#include <linux/spinlock.h>
#include <linux/threads.h>
#include <linux/cpumask.h>
#include <linux/seqlock.h>
#include <linux/lockdep.h>
#include <linux/completion.h>
#include <linux/debugobjects.h>
#include <linux/bug.h>
#include <linux/compiler.h>
#include <asm/barrier.h>
extern int rcu_expedited; /* for sysctl */
#ifdef CONFIG_TINY_RCU
/* Tiny RCU doesn't expedite, as its purpose in life is instead to be tiny. */
static inline bool rcu_gp_is_expedited(void) /* Internal RCU use. */
{
return false;
}
static inline void rcu_expedite_gp(void)
{
}
static inline void rcu_unexpedite_gp(void)
{
}
#else /* #ifdef CONFIG_TINY_RCU */
bool rcu_gp_is_expedited(void); /* Internal RCU use. */
void rcu_expedite_gp(void);
void rcu_unexpedite_gp(void);
#endif /* #else #ifdef CONFIG_TINY_RCU */
enum rcutorture_type {
RCU_FLAVOR,
RCU_BH_FLAVOR,
RCU_SCHED_FLAVOR,
RCU_TASKS_FLAVOR,
SRCU_FLAVOR,
INVALID_RCU_FLAVOR
};
#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
unsigned long *gpnum, unsigned long *completed);
void rcutorture_record_test_transition(void);
void rcutorture_record_progress(unsigned long vernum);
void do_trace_rcu_torture_read(const char *rcutorturename,
struct rcu_head *rhp,
unsigned long secs,
unsigned long c_old,
unsigned long c);
#else
static inline void rcutorture_get_gp_data(enum rcutorture_type test_type,
int *flags,
unsigned long *gpnum,
unsigned long *completed)
{
*flags = 0;
*gpnum = 0;
*completed = 0;
}
static inline void rcutorture_record_test_transition(void)
{
}
static inline void rcutorture_record_progress(unsigned long vernum)
{
}
#ifdef CONFIG_RCU_TRACE
void do_trace_rcu_torture_read(const char *rcutorturename,
struct rcu_head *rhp,
unsigned long secs,
unsigned long c_old,
unsigned long c);
#else
#define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
do { } while (0)
#endif
#endif
#define UINT_CMP_GE(a, b) (UINT_MAX / 2 >= (a) - (b))
#define UINT_CMP_LT(a, b) (UINT_MAX / 2 < (a) - (b))
#define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))
#define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))
#define ulong2long(a) (*(long *)(&(a)))
/* Exported common interfaces */
#ifdef CONFIG_PREEMPT_RCU
/**
* call_rcu() - Queue an RCU callback for invocation after a grace period.
* @head: structure to be used for queueing the RCU updates.
* @func: actual callback function to be invoked after the grace period
*
* The callback function will be invoked some time after a full grace
* period elapses, in other words after all pre-existing RCU read-side
* critical sections have completed. However, the callback function
* might well execute concurrently with RCU read-side critical sections
* that started after call_rcu() was invoked. RCU read-side critical
* sections are delimited by rcu_read_lock() and rcu_read_unlock(),
* and may be nested.
*
* Note that all CPUs must agree that the grace period extended beyond
* all pre-existing RCU read-side critical section. On systems with more
* than one CPU, this means that when "func()" is invoked, each CPU is
* guaranteed to have executed a full memory barrier since the end of its
* last RCU read-side critical section whose beginning preceded the call
* to call_rcu(). It also means that each CPU executing an RCU read-side
* critical section that continues beyond the start of "func()" must have
* executed a memory barrier after the call_rcu() but before the beginning
* of that RCU read-side critical section. Note that these guarantees
* include CPUs that are offline, idle, or executing in user mode, as
* well as CPUs that are executing in the kernel.
*
* Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
* resulting RCU callback function "func()", then both CPU A and CPU B are
* guaranteed to execute a full memory barrier during the time interval
* between the call to call_rcu() and the invocation of "func()" -- even
* if CPU A and CPU B are the same CPU (but again only if the system has
* more than one CPU).
*/
void call_rcu(struct rcu_head *head,
void (*func)(struct rcu_head *head));
#else /* #ifdef CONFIG_PREEMPT_RCU */
/* In classic RCU, call_rcu() is just call_rcu_sched(). */
#define call_rcu call_rcu_sched
#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
/**
* call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
* @head: structure to be used for queueing the RCU updates.
* @func: actual callback function to be invoked after the grace period
*
* The callback function will be invoked some time after a full grace
* period elapses, in other words after all currently executing RCU
* read-side critical sections have completed. call_rcu_bh() assumes
* that the read-side critical sections end on completion of a softirq
* handler. This means that read-side critical sections in process
* context must not be interrupted by softirqs. This interface is to be
* used when most of the read-side critical sections are in softirq context.
* RCU read-side critical sections are delimited by :
* - rcu_read_lock() and rcu_read_unlock(), if in interrupt context.
* OR
* - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
* These may be nested.
*
* See the description of call_rcu() for more detailed information on
* memory ordering guarantees.
*/
void call_rcu_bh(struct rcu_head *head,
void (*func)(struct rcu_head *head));
/**
* call_rcu_sched() - Queue an RCU for invocation after sched grace period.
* @head: structure to be used for queueing the RCU updates.
* @func: actual callback function to be invoked after the grace period
*
* The callback function will be invoked some time after a full grace
* period elapses, in other words after all currently executing RCU
* read-side critical sections have completed. call_rcu_sched() assumes
* that the read-side critical sections end on enabling of preemption
* or on voluntary preemption.
* RCU read-side critical sections are delimited by :
* - rcu_read_lock_sched() and rcu_read_unlock_sched(),
* OR
* anything that disables preemption.
* These may be nested.
*
* See the description of call_rcu() for more detailed information on
* memory ordering guarantees.
*/
void call_rcu_sched(struct rcu_head *head,
void (*func)(struct rcu_head *rcu));
void synchronize_sched(void);
/*
* Structure allowing asynchronous waiting on RCU.
*/
struct rcu_synchronize {
struct rcu_head head;
struct completion completion;
};
void wakeme_after_rcu(struct rcu_head *head);
/**
* call_rcu_tasks() - Queue an RCU for invocation task-based grace period
* @head: structure to be used for queueing the RCU updates.
* @func: actual callback function to be invoked after the grace period
*
* The callback function will be invoked some time after a full grace
* period elapses, in other words after all currently executing RCU
* read-side critical sections have completed. call_rcu_tasks() assumes
* that the read-side critical sections end at a voluntary context
* switch (not a preemption!), entry into idle, or transition to usermode
* execution. As such, there are no read-side primitives analogous to
* rcu_read_lock() and rcu_read_unlock() because this primitive is intended
* to determine that all tasks have passed through a safe state, not so
* much for data-strcuture synchronization.
*
* See the description of call_rcu() for more detailed information on
* memory ordering guarantees.
*/
void call_rcu_tasks(struct rcu_head *head, void (*func)(struct rcu_head *head));
void synchronize_rcu_tasks(void);
void rcu_barrier_tasks(void);
#ifdef CONFIG_PREEMPT_RCU
void __rcu_read_lock(void);
void __rcu_read_unlock(void);
void rcu_read_unlock_special(struct task_struct *t);
void synchronize_rcu(void);
/*
* Defined as a macro as it is a very low level header included from
* areas that don't even know about current. This gives the rcu_read_lock()
* nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
* types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
*/
#define rcu_preempt_depth() (current->rcu_read_lock_nesting)
#else /* #ifdef CONFIG_PREEMPT_RCU */
static inline void __rcu_read_lock(void)
{
preempt_disable();
}
static inline void __rcu_read_unlock(void)
{
preempt_enable();
}
static inline void synchronize_rcu(void)
{
synchronize_sched();
}
static inline int rcu_preempt_depth(void)
{
return 0;
}
#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
/* Internal to kernel */
void rcu_init(void);
void rcu_end_inkernel_boot(void);
void rcu_sched_qs(void);
void rcu_bh_qs(void);
void rcu_check_callbacks(int user);
struct notifier_block;
int rcu_cpu_notify(struct notifier_block *self,
unsigned long action, void *hcpu);
#ifdef CONFIG_RCU_STALL_COMMON
void rcu_sysrq_start(void);
void rcu_sysrq_end(void);
#else /* #ifdef CONFIG_RCU_STALL_COMMON */
static inline void rcu_sysrq_start(void)
{
}
static inline void rcu_sysrq_end(void)
{
}
#endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
#ifdef CONFIG_RCU_USER_QS
void rcu_user_enter(void);
void rcu_user_exit(void);
#else
static inline void rcu_user_enter(void) { }
static inline void rcu_user_exit(void) { }
static inline void rcu_user_hooks_switch(struct task_struct *prev,
struct task_struct *next) { }
#endif /* CONFIG_RCU_USER_QS */
#ifdef CONFIG_RCU_NOCB_CPU
void rcu_init_nohz(void);
#else /* #ifdef CONFIG_RCU_NOCB_CPU */
static inline void rcu_init_nohz(void)
{
}
#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
/**
* RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
* @a: Code that RCU needs to pay attention to.
*
* RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden
* in the inner idle loop, that is, between the rcu_idle_enter() and
* the rcu_idle_exit() -- RCU will happily ignore any such read-side
* critical sections. However, things like powertop need tracepoints
* in the inner idle loop.
*
* This macro provides the way out: RCU_NONIDLE(do_something_with_RCU())
* will tell RCU that it needs to pay attending, invoke its argument
* (in this example, a call to the do_something_with_RCU() function),
* and then tell RCU to go back to ignoring this CPU. It is permissible
* to nest RCU_NONIDLE() wrappers, but the nesting level is currently
* quite limited. If deeper nesting is required, it will be necessary
* to adjust DYNTICK_TASK_NESTING_VALUE accordingly.
*/
#define RCU_NONIDLE(a) \
do { \
rcu_irq_enter(); \
do { a; } while (0); \
rcu_irq_exit(); \
} while (0)
/*
* Note a voluntary context switch for RCU-tasks benefit. This is a
* macro rather than an inline function to avoid #include hell.
*/
#ifdef CONFIG_TASKS_RCU
#define TASKS_RCU(x) x
extern struct srcu_struct tasks_rcu_exit_srcu;
#define rcu_note_voluntary_context_switch(t) \
do { \
rcu_all_qs(); \
if (READ_ONCE((t)->rcu_tasks_holdout)) \
WRITE_ONCE((t)->rcu_tasks_holdout, false); \
} while (0)
#else /* #ifdef CONFIG_TASKS_RCU */
#define TASKS_RCU(x) do { } while (0)
#define rcu_note_voluntary_context_switch(t) rcu_all_qs()
#endif /* #else #ifdef CONFIG_TASKS_RCU */
/**
* cond_resched_rcu_qs - Report potential quiescent states to RCU
*
* This macro resembles cond_resched(), except that it is defined to
* report potential quiescent states to RCU-tasks even if the cond_resched()
* machinery were to be shut off, as some advocate for PREEMPT kernels.
*/
#define cond_resched_rcu_qs() \
do { \
if (!cond_resched()) \
rcu_note_voluntary_context_switch(current); \
} while (0)
#if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP)
bool __rcu_is_watching(void);
#endif /* #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP) */
/*
* Infrastructure to implement the synchronize_() primitives in
* TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
*/
typedef void call_rcu_func_t(struct rcu_head *head,
void (*func)(struct rcu_head *head));
void wait_rcu_gp(call_rcu_func_t crf);
#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
#include <linux/rcutree.h>
#elif defined(CONFIG_TINY_RCU)
#include <linux/rcutiny.h>
#else
#error "Unknown RCU implementation specified to kernel configuration"
#endif
/*
* init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic
* initialization and destruction of rcu_head on the stack. rcu_head structures
* allocated dynamically in the heap or defined statically don't need any
* initialization.
*/
#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
void init_rcu_head(struct rcu_head *head);
void destroy_rcu_head(struct rcu_head *head);
void init_rcu_head_on_stack(struct rcu_head *head);
void destroy_rcu_head_on_stack(struct rcu_head *head);
#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
static inline void init_rcu_head(struct rcu_head *head)
{
}
static inline void destroy_rcu_head(struct rcu_head *head)
{
}
static inline void init_rcu_head_on_stack(struct rcu_head *head)
{
}
static inline void destroy_rcu_head_on_stack(struct rcu_head *head)
{
}
#endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
#if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
bool rcu_lockdep_current_cpu_online(void);
#else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
static inline bool rcu_lockdep_current_cpu_online(void)
{
return true;
}
#endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
#ifdef CONFIG_DEBUG_LOCK_ALLOC
static inline void rcu_lock_acquire(struct lockdep_map *map)
{
lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
}
static inline void rcu_lock_release(struct lockdep_map *map)
{
lock_release(map, 1, _THIS_IP_);
}
extern struct lockdep_map rcu_lock_map;
extern struct lockdep_map rcu_bh_lock_map;
extern struct lockdep_map rcu_sched_lock_map;
extern struct lockdep_map rcu_callback_map;
int debug_lockdep_rcu_enabled(void);
int rcu_read_lock_held(void);
int rcu_read_lock_bh_held(void);
/**
* rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
*
* If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
* RCU-sched read-side critical section. In absence of
* CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
* critical section unless it can prove otherwise. Note that disabling
* of preemption (including disabling irqs) counts as an RCU-sched
* read-side critical section. This is useful for debug checks in functions
* that required that they be called within an RCU-sched read-side
* critical section.
*
* Check debug_lockdep_rcu_enabled() to prevent false positives during boot
* and while lockdep is disabled.
*
* Note that if the CPU is in the idle loop from an RCU point of
* view (ie: that we are in the section between rcu_idle_enter() and
* rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
* did an rcu_read_lock(). The reason for this is that RCU ignores CPUs
* that are in such a section, considering these as in extended quiescent
* state, so such a CPU is effectively never in an RCU read-side critical
* section regardless of what RCU primitives it invokes. This state of
* affairs is required --- we need to keep an RCU-free window in idle
* where the CPU may possibly enter into low power mode. This way we can
* notice an extended quiescent state to other CPUs that started a grace
* period. Otherwise we would delay any grace period as long as we run in
* the idle task.
*
* Similarly, we avoid claiming an SRCU read lock held if the current
* CPU is offline.
*/
#ifdef CONFIG_PREEMPT_COUNT
static inline int rcu_read_lock_sched_held(void)
{
int lockdep_opinion = 0;
if (!debug_lockdep_rcu_enabled())
return 1;
if (!rcu_is_watching())
return 0;
if (!rcu_lockdep_current_cpu_online())
return 0;
if (debug_locks)
lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
return lockdep_opinion || preempt_count() != 0 || irqs_disabled();
}
#else /* #ifdef CONFIG_PREEMPT_COUNT */
static inline int rcu_read_lock_sched_held(void)
{
return 1;
}
#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
# define rcu_lock_acquire(a) do { } while (0)
# define rcu_lock_release(a) do { } while (0)
static inline int rcu_read_lock_held(void)
{
return 1;
}
static inline int rcu_read_lock_bh_held(void)
{
return 1;
}
#ifdef CONFIG_PREEMPT_COUNT
static inline int rcu_read_lock_sched_held(void)
{
return preempt_count() != 0 || irqs_disabled();
}
#else /* #ifdef CONFIG_PREEMPT_COUNT */
static inline int rcu_read_lock_sched_held(void)
{
return 1;
}
#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
#ifdef CONFIG_PROVE_RCU
/**
* rcu_lockdep_assert - emit lockdep splat if specified condition not met
* @c: condition to check
* @s: informative message
*/
#define rcu_lockdep_assert(c, s) \
do { \
static bool __section(.data.unlikely) __warned; \
if (debug_lockdep_rcu_enabled() && !__warned && !(c)) { \
__warned = true; \
lockdep_rcu_suspicious(__FILE__, __LINE__, s); \
} \
} while (0)
#if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
static inline void rcu_preempt_sleep_check(void)
{
rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
"Illegal context switch in RCU read-side critical section");
}
#else /* #ifdef CONFIG_PROVE_RCU */
static inline void rcu_preempt_sleep_check(void)
{
}
#endif /* #else #ifdef CONFIG_PROVE_RCU */
#define rcu_sleep_check() \
do { \
rcu_preempt_sleep_check(); \
rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map), \
"Illegal context switch in RCU-bh read-side critical section"); \
rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map), \
"Illegal context switch in RCU-sched read-side critical section"); \
} while (0)
#else /* #ifdef CONFIG_PROVE_RCU */
#define rcu_lockdep_assert(c, s) do { } while (0)
#define rcu_sleep_check() do { } while (0)
#endif /* #else #ifdef CONFIG_PROVE_RCU */
/*
* Helper functions for rcu_dereference_check(), rcu_dereference_protected()
* and rcu_assign_pointer(). Some of these could be folded into their
* callers, but they are left separate in order to ease introduction of
* multiple flavors of pointers to match the multiple flavors of RCU
* (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
* the future.
*/
#ifdef __CHECKER__
#define rcu_dereference_sparse(p, space) \
((void)(((typeof(*p) space *)p) == p))
#else /* #ifdef __CHECKER__ */
#define rcu_dereference_sparse(p, space)
#endif /* #else #ifdef __CHECKER__ */
#define __rcu_access_pointer(p, space) \
({ \
typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \
rcu_dereference_sparse(p, space); \
((typeof(*p) __force __kernel *)(_________p1)); \
})
#define __rcu_dereference_check(p, c, space) \
({ \
/* Dependency order vs. p above. */ \
typeof(*p) *________p1 = (typeof(*p) *__force)lockless_dereference(p); \
rcu_lockdep_assert(c, "suspicious rcu_dereference_check() usage"); \
rcu_dereference_sparse(p, space); \
((typeof(*p) __force __kernel *)(________p1)); \
})
#define __rcu_dereference_protected(p, c, space) \
({ \
rcu_lockdep_assert(c, "suspicious rcu_dereference_protected() usage"); \
rcu_dereference_sparse(p, space); \
((typeof(*p) __force __kernel *)(p)); \
})
/**
* RCU_INITIALIZER() - statically initialize an RCU-protected global variable
* @v: The value to statically initialize with.
*/
#define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
/**
* lockless_dereference() - safely load a pointer for later dereference
* @p: The pointer to load
*
* Similar to rcu_dereference(), but for situations where the pointed-to
* object's lifetime is managed by something other than RCU. That
* "something other" might be reference counting or simple immortality.
*/
#define lockless_dereference(p) \
({ \
typeof(p) _________p1 = READ_ONCE(p); \
smp_read_barrier_depends(); /* Dependency order vs. p above. */ \
(_________p1); \
})
/**
* rcu_assign_pointer() - assign to RCU-protected pointer
* @p: pointer to assign to
* @v: value to assign (publish)
*
* Assigns the specified value to the specified RCU-protected
* pointer, ensuring that any concurrent RCU readers will see
* any prior initialization.
*
* Inserts memory barriers on architectures that require them
* (which is most of them), and also prevents the compiler from
* reordering the code that initializes the structure after the pointer
* assignment. More importantly, this call documents which pointers
* will be dereferenced by RCU read-side code.
*
* In some special cases, you may use RCU_INIT_POINTER() instead
* of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due
* to the fact that it does not constrain either the CPU or the compiler.
* That said, using RCU_INIT_POINTER() when you should have used
* rcu_assign_pointer() is a very bad thing that results in
* impossible-to-diagnose memory corruption. So please be careful.
* See the RCU_INIT_POINTER() comment header for details.
*
* Note that rcu_assign_pointer() evaluates each of its arguments only
* once, appearances notwithstanding. One of the "extra" evaluations
* is in typeof() and the other visible only to sparse (__CHECKER__),
* neither of which actually execute the argument. As with most cpp
* macros, this execute-arguments-only-once property is important, so
* please be careful when making changes to rcu_assign_pointer() and the
* other macros that it invokes.
*/
#define rcu_assign_pointer(p, v) smp_store_release(&p, RCU_INITIALIZER(v))
/**
* rcu_access_pointer() - fetch RCU pointer with no dereferencing
* @p: The pointer to read
*
* Return the value of the specified RCU-protected pointer, but omit the
* smp_read_barrier_depends() and keep the READ_ONCE(). This is useful
* when the value of this pointer is accessed, but the pointer is not
* dereferenced, for example, when testing an RCU-protected pointer against
* NULL. Although rcu_access_pointer() may also be used in cases where
* update-side locks prevent the value of the pointer from changing, you
* should instead use rcu_dereference_protected() for this use case.
*
* It is also permissible to use rcu_access_pointer() when read-side
* access to the pointer was removed at least one grace period ago, as
* is the case in the context of the RCU callback that is freeing up
* the data, or after a synchronize_rcu() returns. This can be useful
* when tearing down multi-linked structures after a grace period
* has elapsed.
*/
#define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
/**
* rcu_dereference_check() - rcu_dereference with debug checking
* @p: The pointer to read, prior to dereferencing
* @c: The conditions under which the dereference will take place
*
* Do an rcu_dereference(), but check that the conditions under which the
* dereference will take place are correct. Typically the conditions
* indicate the various locking conditions that should be held at that
* point. The check should return true if the conditions are satisfied.
* An implicit check for being in an RCU read-side critical section
* (rcu_read_lock()) is included.
*
* For example:
*
* bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
*
* could be used to indicate to lockdep that foo->bar may only be dereferenced
* if either rcu_read_lock() is held, or that the lock required to replace
* the bar struct at foo->bar is held.
*
* Note that the list of conditions may also include indications of when a lock
* need not be held, for example during initialisation or destruction of the
* target struct:
*
* bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
* atomic_read(&foo->usage) == 0);
*
* Inserts memory barriers on architectures that require them
* (currently only the Alpha), prevents the compiler from refetching
* (and from merging fetches), and, more importantly, documents exactly
* which pointers are protected by RCU and checks that the pointer is
* annotated as __rcu.
*/
#define rcu_dereference_check(p, c) \
__rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu)
/**
* rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
* @p: The pointer to read, prior to dereferencing
* @c: The conditions under which the dereference will take place
*
* This is the RCU-bh counterpart to rcu_dereference_check().
*/
#define rcu_dereference_bh_check(p, c) \
__rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu)
/**
* rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
* @p: The pointer to read, prior to dereferencing
* @c: The conditions under which the dereference will take place
*
* This is the RCU-sched counterpart to rcu_dereference_check().
*/
#define rcu_dereference_sched_check(p, c) \
__rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \
__rcu)
#define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/
/*
* The tracing infrastructure traces RCU (we want that), but unfortunately
* some of the RCU checks causes tracing to lock up the system.
*
* The tracing version of rcu_dereference_raw() must not call
* rcu_read_lock_held().
*/
#define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu)
/**
* rcu_dereference_protected() - fetch RCU pointer when updates prevented
* @p: The pointer to read, prior to dereferencing
* @c: The conditions under which the dereference will take place
*
* Return the value of the specified RCU-protected pointer, but omit
* both the smp_read_barrier_depends() and the READ_ONCE(). This
* is useful in cases where update-side locks prevent the value of the
* pointer from changing. Please note that this primitive does -not-
* prevent the compiler from repeating this reference or combining it
* with other references, so it should not be used without protection
* of appropriate locks.
*
* This function is only for update-side use. Using this function
* when protected only by rcu_read_lock() will result in infrequent
* but very ugly failures.
*/
#define rcu_dereference_protected(p, c) \
__rcu_dereference_protected((p), (c), __rcu)
/**
* rcu_dereference() - fetch RCU-protected pointer for dereferencing
* @p: The pointer to read, prior to dereferencing
*
* This is a simple wrapper around rcu_dereference_check().
*/
#define rcu_dereference(p) rcu_dereference_check(p, 0)
/**
* rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
* @p: The pointer to read, prior to dereferencing
*
* Makes rcu_dereference_check() do the dirty work.
*/
#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
/**
* rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
* @p: The pointer to read, prior to dereferencing
*
* Makes rcu_dereference_check() do the dirty work.
*/
#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
/**
* rcu_read_lock() - mark the beginning of an RCU read-side critical section
*
* When synchronize_rcu() is invoked on one CPU while other CPUs
* are within RCU read-side critical sections, then the
* synchronize_rcu() is guaranteed to block until after all the other
* CPUs exit their critical sections. Similarly, if call_rcu() is invoked
* on one CPU while other CPUs are within RCU read-side critical
* sections, invocation of the corresponding RCU callback is deferred
* until after the all the other CPUs exit their critical sections.
*
* Note, however, that RCU callbacks are permitted to run concurrently
* with new RCU read-side critical sections. One way that this can happen
* is via the following sequence of events: (1) CPU 0 enters an RCU
* read-side critical section, (2) CPU 1 invokes call_rcu() to register
* an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
* (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
* callback is invoked. This is legal, because the RCU read-side critical
* section that was running concurrently with the call_rcu() (and which
* therefore might be referencing something that the corresponding RCU
* callback would free up) has completed before the corresponding
* RCU callback is invoked.
*
* RCU read-side critical sections may be nested. Any deferred actions
* will be deferred until the outermost RCU read-side critical section
* completes.
*
* You can avoid reading and understanding the next paragraph by
* following this rule: don't put anything in an rcu_read_lock() RCU
* read-side critical section that would block in a !PREEMPT kernel.
* But if you want the full story, read on!
*
* In non-preemptible RCU implementations (TREE_RCU and TINY_RCU),
* it is illegal to block while in an RCU read-side critical section.
* In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPT
* kernel builds, RCU read-side critical sections may be preempted,
* but explicit blocking is illegal. Finally, in preemptible RCU
* implementations in real-time (with -rt patchset) kernel builds, RCU
* read-side critical sections may be preempted and they may also block, but
* only when acquiring spinlocks that are subject to priority inheritance.
*/
static inline void rcu_read_lock(void)
{
__rcu_read_lock();
__acquire(RCU);
rcu_lock_acquire(&rcu_lock_map);
rcu_lockdep_assert(rcu_is_watching(),
"rcu_read_lock() used illegally while idle");
}
/*
* So where is rcu_write_lock()? It does not exist, as there is no
* way for writers to lock out RCU readers. This is a feature, not
* a bug -- this property is what provides RCU's performance benefits.
* Of course, writers must coordinate with each other. The normal
* spinlock primitives work well for this, but any other technique may be
* used as well. RCU does not care how the writers keep out of each
* others' way, as long as they do so.
*/
/**
* rcu_read_unlock() - marks the end of an RCU read-side critical section.
*
* In most situations, rcu_read_unlock() is immune from deadlock.
* However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock()
* is responsible for deboosting, which it does via rt_mutex_unlock().
* Unfortunately, this function acquires the scheduler's runqueue and
* priority-inheritance spinlocks. This means that deadlock could result
* if the caller of rcu_read_unlock() already holds one of these locks or
* any lock that is ever acquired while holding them; or any lock which
* can be taken from interrupt context because rcu_boost()->rt_mutex_lock()
* does not disable irqs while taking ->wait_lock.
*
* That said, RCU readers are never priority boosted unless they were
* preempted. Therefore, one way to avoid deadlock is to make sure
* that preemption never happens within any RCU read-side critical
* section whose outermost rcu_read_unlock() is called with one of
* rt_mutex_unlock()'s locks held. Such preemption can be avoided in
* a number of ways, for example, by invoking preempt_disable() before
* critical section's outermost rcu_read_lock().
*
* Given that the set of locks acquired by rt_mutex_unlock() might change
* at any time, a somewhat more future-proofed approach is to make sure
* that that preemption never happens within any RCU read-side critical
* section whose outermost rcu_read_unlock() is called with irqs disabled.
* This approach relies on the fact that rt_mutex_unlock() currently only
* acquires irq-disabled locks.
*
* The second of these two approaches is best in most situations,
* however, the first approach can also be useful, at least to those
* developers willing to keep abreast of the set of locks acquired by
* rt_mutex_unlock().
*
* See rcu_read_lock() for more information.
*/
static inline void rcu_read_unlock(void)
{
rcu_lockdep_assert(rcu_is_watching(),
"rcu_read_unlock() used illegally while idle");
__release(RCU);
__rcu_read_unlock();
rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
}
/**
* rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
*
* This is equivalent of rcu_read_lock(), but to be used when updates
* are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
* both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
* softirq handler to be a quiescent state, a process in RCU read-side
* critical section must be protected by disabling softirqs. Read-side
* critical sections in interrupt context can use just rcu_read_lock(),
* though this should at least be commented to avoid confusing people
* reading the code.
*
* Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
* must occur in the same context, for example, it is illegal to invoke
* rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
* was invoked from some other task.
*/
static inline void rcu_read_lock_bh(void)
{
local_bh_disable();
__acquire(RCU_BH);
rcu_lock_acquire(&rcu_bh_lock_map);
rcu_lockdep_assert(rcu_is_watching(),
"rcu_read_lock_bh() used illegally while idle");
}
/*
* rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
*
* See rcu_read_lock_bh() for more information.
*/
static inline void rcu_read_unlock_bh(void)
{
rcu_lockdep_assert(rcu_is_watching(),
"rcu_read_unlock_bh() used illegally while idle");
rcu_lock_release(&rcu_bh_lock_map);
__release(RCU_BH);
local_bh_enable();
}
/**
* rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
*
* This is equivalent of rcu_read_lock(), but to be used when updates
* are being done using call_rcu_sched() or synchronize_rcu_sched().
* Read-side critical sections can also be introduced by anything that
* disables preemption, including local_irq_disable() and friends.
*
* Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
* must occur in the same context, for example, it is illegal to invoke
* rcu_read_unlock_sched() from process context if the matching
* rcu_read_lock_sched() was invoked from an NMI handler.
*/
static inline void rcu_read_lock_sched(void)
{
preempt_disable();
__acquire(RCU_SCHED);
rcu_lock_acquire(&rcu_sched_lock_map);
rcu_lockdep_assert(rcu_is_watching(),
"rcu_read_lock_sched() used illegally while idle");
}
/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
static inline notrace void rcu_read_lock_sched_notrace(void)
{
preempt_disable_notrace();
__acquire(RCU_SCHED);
}
/*
* rcu_read_unlock_sched - marks the end of a RCU-classic critical section
*
* See rcu_read_lock_sched for more information.
*/
static inline void rcu_read_unlock_sched(void)
{
rcu_lockdep_assert(rcu_is_watching(),
"rcu_read_unlock_sched() used illegally while idle");
rcu_lock_release(&rcu_sched_lock_map);
__release(RCU_SCHED);
preempt_enable();
}
/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
static inline notrace void rcu_read_unlock_sched_notrace(void)
{
__release(RCU_SCHED);
preempt_enable_notrace();
}
/**
* RCU_INIT_POINTER() - initialize an RCU protected pointer
*
* Initialize an RCU-protected pointer in special cases where readers
* do not need ordering constraints on the CPU or the compiler. These
* special cases are:
*
* 1. This use of RCU_INIT_POINTER() is NULLing out the pointer -or-
* 2. The caller has taken whatever steps are required to prevent
* RCU readers from concurrently accessing this pointer -or-
* 3. The referenced data structure has already been exposed to
* readers either at compile time or via rcu_assign_pointer() -and-
* a. You have not made -any- reader-visible changes to
* this structure since then -or-
* b. It is OK for readers accessing this structure from its
* new location to see the old state of the structure. (For
* example, the changes were to statistical counters or to
* other state where exact synchronization is not required.)
*
* Failure to follow these rules governing use of RCU_INIT_POINTER() will
* result in impossible-to-diagnose memory corruption. As in the structures
* will look OK in crash dumps, but any concurrent RCU readers might
* see pre-initialized values of the referenced data structure. So
* please be very careful how you use RCU_INIT_POINTER()!!!
*
* If you are creating an RCU-protected linked structure that is accessed
* by a single external-to-structure RCU-protected pointer, then you may
* use RCU_INIT_POINTER() to initialize the internal RCU-protected
* pointers, but you must use rcu_assign_pointer() to initialize the
* external-to-structure pointer -after- you have completely initialized
* the reader-accessible portions of the linked structure.
*
* Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
* ordering guarantees for either the CPU or the compiler.
*/
#define RCU_INIT_POINTER(p, v) \
do { \
rcu_dereference_sparse(p, __rcu); \
p = RCU_INITIALIZER(v); \
} while (0)
/**
* RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
*
* GCC-style initialization for an RCU-protected pointer in a structure field.
*/
#define RCU_POINTER_INITIALIZER(p, v) \
.p = RCU_INITIALIZER(v)
/*
* Does the specified offset indicate that the corresponding rcu_head
* structure can be handled by kfree_rcu()?
*/
#define __is_kfree_rcu_offset(offset) ((offset) < 4096)
/*
* Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
*/
#define __kfree_rcu(head, offset) \
do { \
BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
kfree_call_rcu(head, (void (*)(struct rcu_head *))(unsigned long)(offset)); \
} while (0)
/**
* kfree_rcu() - kfree an object after a grace period.
* @ptr: pointer to kfree
* @rcu_head: the name of the struct rcu_head within the type of @ptr.
*
* Many rcu callbacks functions just call kfree() on the base structure.
* These functions are trivial, but their size adds up, and furthermore
* when they are used in a kernel module, that module must invoke the
* high-latency rcu_barrier() function at module-unload time.
*
* The kfree_rcu() function handles this issue. Rather than encoding a
* function address in the embedded rcu_head structure, kfree_rcu() instead
* encodes the offset of the rcu_head structure within the base structure.
* Because the functions are not allowed in the low-order 4096 bytes of
* kernel virtual memory, offsets up to 4095 bytes can be accommodated.
* If the offset is larger than 4095 bytes, a compile-time error will
* be generated in __kfree_rcu(). If this error is triggered, you can
* either fall back to use of call_rcu() or rearrange the structure to
* position the rcu_head structure into the first 4096 bytes.
*
* Note that the allowable offset might decrease in the future, for example,
* to allow something like kmem_cache_free_rcu().
*
* The BUILD_BUG_ON check must not involve any function calls, hence the
* checks are done in macros here.
*/
#define kfree_rcu(ptr, rcu_head) \
__kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
#ifdef CONFIG_TINY_RCU
static inline int rcu_needs_cpu(unsigned long *delta_jiffies)
{
*delta_jiffies = ULONG_MAX;
return 0;
}
#endif /* #ifdef CONFIG_TINY_RCU */
#if defined(CONFIG_RCU_NOCB_CPU_ALL)
static inline bool rcu_is_nocb_cpu(int cpu) { return true; }
#elif defined(CONFIG_RCU_NOCB_CPU)
bool rcu_is_nocb_cpu(int cpu);
#else
static inline bool rcu_is_nocb_cpu(int cpu) { return false; }
#endif
/* Only for use by adaptive-ticks code. */
#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
bool rcu_sys_is_idle(void);
void rcu_sysidle_force_exit(void);
#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
static inline bool rcu_sys_is_idle(void)
{
return false;
}
static inline void rcu_sysidle_force_exit(void)
{
}
#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
#endif /* __LINUX_RCUPDATE_H */
|