summaryrefslogtreecommitdiff
path: root/kernel/bpf/ringbuf.c
blob: 80f4b4d88aafae0f8de0f7f3fa4fc289b87a9d23 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
#include <linux/bpf.h>
#include <linux/btf.h>
#include <linux/err.h>
#include <linux/irq_work.h>
#include <linux/slab.h>
#include <linux/filter.h>
#include <linux/mm.h>
#include <linux/vmalloc.h>
#include <linux/wait.h>
#include <linux/poll.h>
#include <linux/kmemleak.h>
#include <uapi/linux/btf.h>
#include <linux/btf_ids.h>

#define RINGBUF_CREATE_FLAG_MASK (BPF_F_NUMA_NODE)

/* non-mmap()'able part of bpf_ringbuf (everything up to consumer page) */
#define RINGBUF_PGOFF \
	(offsetof(struct bpf_ringbuf, consumer_pos) >> PAGE_SHIFT)
/* consumer page and producer page */
#define RINGBUF_POS_PAGES 2

#define RINGBUF_MAX_RECORD_SZ (UINT_MAX/4)

/* Maximum size of ring buffer area is limited by 32-bit page offset within
 * record header, counted in pages. Reserve 8 bits for extensibility, and take
 * into account few extra pages for consumer/producer pages and
 * non-mmap()'able parts. This gives 64GB limit, which seems plenty for single
 * ring buffer.
 */
#define RINGBUF_MAX_DATA_SZ \
	(((1ULL << 24) - RINGBUF_POS_PAGES - RINGBUF_PGOFF) * PAGE_SIZE)

struct bpf_ringbuf {
	wait_queue_head_t waitq;
	struct irq_work work;
	u64 mask;
	struct page **pages;
	int nr_pages;
	spinlock_t spinlock ____cacheline_aligned_in_smp;
	/* For user-space producer ring buffers, an atomic_t busy bit is used
	 * to synchronize access to the ring buffers in the kernel, rather than
	 * the spinlock that is used for kernel-producer ring buffers. This is
	 * done because the ring buffer must hold a lock across a BPF program's
	 * callback:
	 *
	 *    __bpf_user_ringbuf_peek() // lock acquired
	 * -> program callback_fn()
	 * -> __bpf_user_ringbuf_sample_release() // lock released
	 *
	 * It is unsafe and incorrect to hold an IRQ spinlock across what could
	 * be a long execution window, so we instead simply disallow concurrent
	 * access to the ring buffer by kernel consumers, and return -EBUSY from
	 * __bpf_user_ringbuf_peek() if the busy bit is held by another task.
	 */
	atomic_t busy ____cacheline_aligned_in_smp;
	/* Consumer and producer counters are put into separate pages to
	 * allow each position to be mapped with different permissions.
	 * This prevents a user-space application from modifying the
	 * position and ruining in-kernel tracking. The permissions of the
	 * pages depend on who is producing samples: user-space or the
	 * kernel.
	 *
	 * Kernel-producer
	 * ---------------
	 * The producer position and data pages are mapped as r/o in
	 * userspace. For this approach, bits in the header of samples are
	 * used to signal to user-space, and to other producers, whether a
	 * sample is currently being written.
	 *
	 * User-space producer
	 * -------------------
	 * Only the page containing the consumer position is mapped r/o in
	 * user-space. User-space producers also use bits of the header to
	 * communicate to the kernel, but the kernel must carefully check and
	 * validate each sample to ensure that they're correctly formatted, and
	 * fully contained within the ring buffer.
	 */
	unsigned long consumer_pos __aligned(PAGE_SIZE);
	unsigned long producer_pos __aligned(PAGE_SIZE);
	char data[] __aligned(PAGE_SIZE);
};

struct bpf_ringbuf_map {
	struct bpf_map map;
	struct bpf_ringbuf *rb;
};

/* 8-byte ring buffer record header structure */
struct bpf_ringbuf_hdr {
	u32 len;
	u32 pg_off;
};

static struct bpf_ringbuf *bpf_ringbuf_area_alloc(size_t data_sz, int numa_node)
{
	const gfp_t flags = GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL |
			    __GFP_NOWARN | __GFP_ZERO;
	int nr_meta_pages = RINGBUF_PGOFF + RINGBUF_POS_PAGES;
	int nr_data_pages = data_sz >> PAGE_SHIFT;
	int nr_pages = nr_meta_pages + nr_data_pages;
	struct page **pages, *page;
	struct bpf_ringbuf *rb;
	size_t array_size;
	int i;

	/* Each data page is mapped twice to allow "virtual"
	 * continuous read of samples wrapping around the end of ring
	 * buffer area:
	 * ------------------------------------------------------
	 * | meta pages |  real data pages  |  same data pages  |
	 * ------------------------------------------------------
	 * |            | 1 2 3 4 5 6 7 8 9 | 1 2 3 4 5 6 7 8 9 |
	 * ------------------------------------------------------
	 * |            | TA             DA | TA             DA |
	 * ------------------------------------------------------
	 *                               ^^^^^^^
	 *                                  |
	 * Here, no need to worry about special handling of wrapped-around
	 * data due to double-mapped data pages. This works both in kernel and
	 * when mmap()'ed in user-space, simplifying both kernel and
	 * user-space implementations significantly.
	 */
	array_size = (nr_meta_pages + 2 * nr_data_pages) * sizeof(*pages);
	pages = bpf_map_area_alloc(array_size, numa_node);
	if (!pages)
		return NULL;

	for (i = 0; i < nr_pages; i++) {
		page = alloc_pages_node(numa_node, flags, 0);
		if (!page) {
			nr_pages = i;
			goto err_free_pages;
		}
		pages[i] = page;
		if (i >= nr_meta_pages)
			pages[nr_data_pages + i] = page;
	}

	rb = vmap(pages, nr_meta_pages + 2 * nr_data_pages,
		  VM_MAP | VM_USERMAP, PAGE_KERNEL);
	if (rb) {
		kmemleak_not_leak(pages);
		rb->pages = pages;
		rb->nr_pages = nr_pages;
		return rb;
	}

err_free_pages:
	for (i = 0; i < nr_pages; i++)
		__free_page(pages[i]);
	bpf_map_area_free(pages);
	return NULL;
}

static void bpf_ringbuf_notify(struct irq_work *work)
{
	struct bpf_ringbuf *rb = container_of(work, struct bpf_ringbuf, work);

	wake_up_all(&rb->waitq);
}

static struct bpf_ringbuf *bpf_ringbuf_alloc(size_t data_sz, int numa_node)
{
	struct bpf_ringbuf *rb;

	rb = bpf_ringbuf_area_alloc(data_sz, numa_node);
	if (!rb)
		return NULL;

	spin_lock_init(&rb->spinlock);
	atomic_set(&rb->busy, 0);
	init_waitqueue_head(&rb->waitq);
	init_irq_work(&rb->work, bpf_ringbuf_notify);

	rb->mask = data_sz - 1;
	rb->consumer_pos = 0;
	rb->producer_pos = 0;

	return rb;
}

static struct bpf_map *ringbuf_map_alloc(union bpf_attr *attr)
{
	struct bpf_ringbuf_map *rb_map;

	if (attr->map_flags & ~RINGBUF_CREATE_FLAG_MASK)
		return ERR_PTR(-EINVAL);

	if (attr->key_size || attr->value_size ||
	    !is_power_of_2(attr->max_entries) ||
	    !PAGE_ALIGNED(attr->max_entries))
		return ERR_PTR(-EINVAL);

#ifdef CONFIG_64BIT
	/* on 32-bit arch, it's impossible to overflow record's hdr->pgoff */
	if (attr->max_entries > RINGBUF_MAX_DATA_SZ)
		return ERR_PTR(-E2BIG);
#endif

	rb_map = bpf_map_area_alloc(sizeof(*rb_map), NUMA_NO_NODE);
	if (!rb_map)
		return ERR_PTR(-ENOMEM);

	bpf_map_init_from_attr(&rb_map->map, attr);

	rb_map->rb = bpf_ringbuf_alloc(attr->max_entries, rb_map->map.numa_node);
	if (!rb_map->rb) {
		bpf_map_area_free(rb_map);
		return ERR_PTR(-ENOMEM);
	}

	return &rb_map->map;
}

static void bpf_ringbuf_free(struct bpf_ringbuf *rb)
{
	/* copy pages pointer and nr_pages to local variable, as we are going
	 * to unmap rb itself with vunmap() below
	 */
	struct page **pages = rb->pages;
	int i, nr_pages = rb->nr_pages;

	vunmap(rb);
	for (i = 0; i < nr_pages; i++)
		__free_page(pages[i]);
	bpf_map_area_free(pages);
}

static void ringbuf_map_free(struct bpf_map *map)
{
	struct bpf_ringbuf_map *rb_map;

	rb_map = container_of(map, struct bpf_ringbuf_map, map);
	bpf_ringbuf_free(rb_map->rb);
	bpf_map_area_free(rb_map);
}

static void *ringbuf_map_lookup_elem(struct bpf_map *map, void *key)
{
	return ERR_PTR(-ENOTSUPP);
}

static int ringbuf_map_update_elem(struct bpf_map *map, void *key, void *value,
				   u64 flags)
{
	return -ENOTSUPP;
}

static int ringbuf_map_delete_elem(struct bpf_map *map, void *key)
{
	return -ENOTSUPP;
}

static int ringbuf_map_get_next_key(struct bpf_map *map, void *key,
				    void *next_key)
{
	return -ENOTSUPP;
}

static int ringbuf_map_mmap_kern(struct bpf_map *map, struct vm_area_struct *vma)
{
	struct bpf_ringbuf_map *rb_map;

	rb_map = container_of(map, struct bpf_ringbuf_map, map);

	if (vma->vm_flags & VM_WRITE) {
		/* allow writable mapping for the consumer_pos only */
		if (vma->vm_pgoff != 0 || vma->vm_end - vma->vm_start != PAGE_SIZE)
			return -EPERM;
	} else {
		vma->vm_flags &= ~VM_MAYWRITE;
	}
	/* remap_vmalloc_range() checks size and offset constraints */
	return remap_vmalloc_range(vma, rb_map->rb,
				   vma->vm_pgoff + RINGBUF_PGOFF);
}

static int ringbuf_map_mmap_user(struct bpf_map *map, struct vm_area_struct *vma)
{
	struct bpf_ringbuf_map *rb_map;

	rb_map = container_of(map, struct bpf_ringbuf_map, map);

	if (vma->vm_flags & VM_WRITE) {
		if (vma->vm_pgoff == 0)
			/* Disallow writable mappings to the consumer pointer,
			 * and allow writable mappings to both the producer
			 * position, and the ring buffer data itself.
			 */
			return -EPERM;
	} else {
		vma->vm_flags &= ~VM_MAYWRITE;
	}
	/* remap_vmalloc_range() checks size and offset constraints */
	return remap_vmalloc_range(vma, rb_map->rb, vma->vm_pgoff + RINGBUF_PGOFF);
}

static unsigned long ringbuf_avail_data_sz(struct bpf_ringbuf *rb)
{
	unsigned long cons_pos, prod_pos;

	cons_pos = smp_load_acquire(&rb->consumer_pos);
	prod_pos = smp_load_acquire(&rb->producer_pos);
	return prod_pos - cons_pos;
}

static u32 ringbuf_total_data_sz(const struct bpf_ringbuf *rb)
{
	return rb->mask + 1;
}

static __poll_t ringbuf_map_poll_kern(struct bpf_map *map, struct file *filp,
				      struct poll_table_struct *pts)
{
	struct bpf_ringbuf_map *rb_map;

	rb_map = container_of(map, struct bpf_ringbuf_map, map);
	poll_wait(filp, &rb_map->rb->waitq, pts);

	if (ringbuf_avail_data_sz(rb_map->rb))
		return EPOLLIN | EPOLLRDNORM;
	return 0;
}

static __poll_t ringbuf_map_poll_user(struct bpf_map *map, struct file *filp,
				      struct poll_table_struct *pts)
{
	struct bpf_ringbuf_map *rb_map;

	rb_map = container_of(map, struct bpf_ringbuf_map, map);
	poll_wait(filp, &rb_map->rb->waitq, pts);

	if (ringbuf_avail_data_sz(rb_map->rb) < ringbuf_total_data_sz(rb_map->rb))
		return EPOLLOUT | EPOLLWRNORM;
	return 0;
}

BTF_ID_LIST_SINGLE(ringbuf_map_btf_ids, struct, bpf_ringbuf_map)
const struct bpf_map_ops ringbuf_map_ops = {
	.map_meta_equal = bpf_map_meta_equal,
	.map_alloc = ringbuf_map_alloc,
	.map_free = ringbuf_map_free,
	.map_mmap = ringbuf_map_mmap_kern,
	.map_poll = ringbuf_map_poll_kern,
	.map_lookup_elem = ringbuf_map_lookup_elem,
	.map_update_elem = ringbuf_map_update_elem,
	.map_delete_elem = ringbuf_map_delete_elem,
	.map_get_next_key = ringbuf_map_get_next_key,
	.map_btf_id = &ringbuf_map_btf_ids[0],
};

BTF_ID_LIST_SINGLE(user_ringbuf_map_btf_ids, struct, bpf_ringbuf_map)
const struct bpf_map_ops user_ringbuf_map_ops = {
	.map_meta_equal = bpf_map_meta_equal,
	.map_alloc = ringbuf_map_alloc,
	.map_free = ringbuf_map_free,
	.map_mmap = ringbuf_map_mmap_user,
	.map_poll = ringbuf_map_poll_user,
	.map_lookup_elem = ringbuf_map_lookup_elem,
	.map_update_elem = ringbuf_map_update_elem,
	.map_delete_elem = ringbuf_map_delete_elem,
	.map_get_next_key = ringbuf_map_get_next_key,
	.map_btf_id = &user_ringbuf_map_btf_ids[0],
};

/* Given pointer to ring buffer record metadata and struct bpf_ringbuf itself,
 * calculate offset from record metadata to ring buffer in pages, rounded
 * down. This page offset is stored as part of record metadata and allows to
 * restore struct bpf_ringbuf * from record pointer. This page offset is
 * stored at offset 4 of record metadata header.
 */
static size_t bpf_ringbuf_rec_pg_off(struct bpf_ringbuf *rb,
				     struct bpf_ringbuf_hdr *hdr)
{
	return ((void *)hdr - (void *)rb) >> PAGE_SHIFT;
}

/* Given pointer to ring buffer record header, restore pointer to struct
 * bpf_ringbuf itself by using page offset stored at offset 4
 */
static struct bpf_ringbuf *
bpf_ringbuf_restore_from_rec(struct bpf_ringbuf_hdr *hdr)
{
	unsigned long addr = (unsigned long)(void *)hdr;
	unsigned long off = (unsigned long)hdr->pg_off << PAGE_SHIFT;

	return (void*)((addr & PAGE_MASK) - off);
}

static void *__bpf_ringbuf_reserve(struct bpf_ringbuf *rb, u64 size)
{
	unsigned long cons_pos, prod_pos, new_prod_pos, flags;
	u32 len, pg_off;
	struct bpf_ringbuf_hdr *hdr;

	if (unlikely(size > RINGBUF_MAX_RECORD_SZ))
		return NULL;

	len = round_up(size + BPF_RINGBUF_HDR_SZ, 8);
	if (len > ringbuf_total_data_sz(rb))
		return NULL;

	cons_pos = smp_load_acquire(&rb->consumer_pos);

	if (in_nmi()) {
		if (!spin_trylock_irqsave(&rb->spinlock, flags))
			return NULL;
	} else {
		spin_lock_irqsave(&rb->spinlock, flags);
	}

	prod_pos = rb->producer_pos;
	new_prod_pos = prod_pos + len;

	/* check for out of ringbuf space by ensuring producer position
	 * doesn't advance more than (ringbuf_size - 1) ahead
	 */
	if (new_prod_pos - cons_pos > rb->mask) {
		spin_unlock_irqrestore(&rb->spinlock, flags);
		return NULL;
	}

	hdr = (void *)rb->data + (prod_pos & rb->mask);
	pg_off = bpf_ringbuf_rec_pg_off(rb, hdr);
	hdr->len = size | BPF_RINGBUF_BUSY_BIT;
	hdr->pg_off = pg_off;

	/* pairs with consumer's smp_load_acquire() */
	smp_store_release(&rb->producer_pos, new_prod_pos);

	spin_unlock_irqrestore(&rb->spinlock, flags);

	return (void *)hdr + BPF_RINGBUF_HDR_SZ;
}

BPF_CALL_3(bpf_ringbuf_reserve, struct bpf_map *, map, u64, size, u64, flags)
{
	struct bpf_ringbuf_map *rb_map;

	if (unlikely(flags))
		return 0;

	rb_map = container_of(map, struct bpf_ringbuf_map, map);
	return (unsigned long)__bpf_ringbuf_reserve(rb_map->rb, size);
}

const struct bpf_func_proto bpf_ringbuf_reserve_proto = {
	.func		= bpf_ringbuf_reserve,
	.ret_type	= RET_PTR_TO_RINGBUF_MEM_OR_NULL,
	.arg1_type	= ARG_CONST_MAP_PTR,
	.arg2_type	= ARG_CONST_ALLOC_SIZE_OR_ZERO,
	.arg3_type	= ARG_ANYTHING,
};

static void bpf_ringbuf_commit(void *sample, u64 flags, bool discard)
{
	unsigned long rec_pos, cons_pos;
	struct bpf_ringbuf_hdr *hdr;
	struct bpf_ringbuf *rb;
	u32 new_len;

	hdr = sample - BPF_RINGBUF_HDR_SZ;
	rb = bpf_ringbuf_restore_from_rec(hdr);
	new_len = hdr->len ^ BPF_RINGBUF_BUSY_BIT;
	if (discard)
		new_len |= BPF_RINGBUF_DISCARD_BIT;

	/* update record header with correct final size prefix */
	xchg(&hdr->len, new_len);

	/* if consumer caught up and is waiting for our record, notify about
	 * new data availability
	 */
	rec_pos = (void *)hdr - (void *)rb->data;
	cons_pos = smp_load_acquire(&rb->consumer_pos) & rb->mask;

	if (flags & BPF_RB_FORCE_WAKEUP)
		irq_work_queue(&rb->work);
	else if (cons_pos == rec_pos && !(flags & BPF_RB_NO_WAKEUP))
		irq_work_queue(&rb->work);
}

BPF_CALL_2(bpf_ringbuf_submit, void *, sample, u64, flags)
{
	bpf_ringbuf_commit(sample, flags, false /* discard */);
	return 0;
}

const struct bpf_func_proto bpf_ringbuf_submit_proto = {
	.func		= bpf_ringbuf_submit,
	.ret_type	= RET_VOID,
	.arg1_type	= ARG_PTR_TO_RINGBUF_MEM | OBJ_RELEASE,
	.arg2_type	= ARG_ANYTHING,
};

BPF_CALL_2(bpf_ringbuf_discard, void *, sample, u64, flags)
{
	bpf_ringbuf_commit(sample, flags, true /* discard */);
	return 0;
}

const struct bpf_func_proto bpf_ringbuf_discard_proto = {
	.func		= bpf_ringbuf_discard,
	.ret_type	= RET_VOID,
	.arg1_type	= ARG_PTR_TO_RINGBUF_MEM | OBJ_RELEASE,
	.arg2_type	= ARG_ANYTHING,
};

BPF_CALL_4(bpf_ringbuf_output, struct bpf_map *, map, void *, data, u64, size,
	   u64, flags)
{
	struct bpf_ringbuf_map *rb_map;
	void *rec;

	if (unlikely(flags & ~(BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP)))
		return -EINVAL;

	rb_map = container_of(map, struct bpf_ringbuf_map, map);
	rec = __bpf_ringbuf_reserve(rb_map->rb, size);
	if (!rec)
		return -EAGAIN;

	memcpy(rec, data, size);
	bpf_ringbuf_commit(rec, flags, false /* discard */);
	return 0;
}

const struct bpf_func_proto bpf_ringbuf_output_proto = {
	.func		= bpf_ringbuf_output,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_CONST_MAP_PTR,
	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
	.arg4_type	= ARG_ANYTHING,
};

BPF_CALL_2(bpf_ringbuf_query, struct bpf_map *, map, u64, flags)
{
	struct bpf_ringbuf *rb;

	rb = container_of(map, struct bpf_ringbuf_map, map)->rb;

	switch (flags) {
	case BPF_RB_AVAIL_DATA:
		return ringbuf_avail_data_sz(rb);
	case BPF_RB_RING_SIZE:
		return ringbuf_total_data_sz(rb);
	case BPF_RB_CONS_POS:
		return smp_load_acquire(&rb->consumer_pos);
	case BPF_RB_PROD_POS:
		return smp_load_acquire(&rb->producer_pos);
	default:
		return 0;
	}
}

const struct bpf_func_proto bpf_ringbuf_query_proto = {
	.func		= bpf_ringbuf_query,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_CONST_MAP_PTR,
	.arg2_type	= ARG_ANYTHING,
};

BPF_CALL_4(bpf_ringbuf_reserve_dynptr, struct bpf_map *, map, u32, size, u64, flags,
	   struct bpf_dynptr_kern *, ptr)
{
	struct bpf_ringbuf_map *rb_map;
	void *sample;
	int err;

	if (unlikely(flags)) {
		bpf_dynptr_set_null(ptr);
		return -EINVAL;
	}

	err = bpf_dynptr_check_size(size);
	if (err) {
		bpf_dynptr_set_null(ptr);
		return err;
	}

	rb_map = container_of(map, struct bpf_ringbuf_map, map);

	sample = __bpf_ringbuf_reserve(rb_map->rb, size);
	if (!sample) {
		bpf_dynptr_set_null(ptr);
		return -EINVAL;
	}

	bpf_dynptr_init(ptr, sample, BPF_DYNPTR_TYPE_RINGBUF, 0, size);

	return 0;
}

const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto = {
	.func		= bpf_ringbuf_reserve_dynptr,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_CONST_MAP_PTR,
	.arg2_type	= ARG_ANYTHING,
	.arg3_type	= ARG_ANYTHING,
	.arg4_type	= ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | MEM_UNINIT,
};

BPF_CALL_2(bpf_ringbuf_submit_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags)
{
	if (!ptr->data)
		return 0;

	bpf_ringbuf_commit(ptr->data, flags, false /* discard */);

	bpf_dynptr_set_null(ptr);

	return 0;
}

const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto = {
	.func		= bpf_ringbuf_submit_dynptr,
	.ret_type	= RET_VOID,
	.arg1_type	= ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | OBJ_RELEASE,
	.arg2_type	= ARG_ANYTHING,
};

BPF_CALL_2(bpf_ringbuf_discard_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags)
{
	if (!ptr->data)
		return 0;

	bpf_ringbuf_commit(ptr->data, flags, true /* discard */);

	bpf_dynptr_set_null(ptr);

	return 0;
}

const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto = {
	.func		= bpf_ringbuf_discard_dynptr,
	.ret_type	= RET_VOID,
	.arg1_type	= ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | OBJ_RELEASE,
	.arg2_type	= ARG_ANYTHING,
};

static int __bpf_user_ringbuf_peek(struct bpf_ringbuf *rb, void **sample, u32 *size)
{
	int err;
	u32 hdr_len, sample_len, total_len, flags, *hdr;
	u64 cons_pos, prod_pos;

	/* Synchronizes with smp_store_release() in user-space producer. */
	prod_pos = smp_load_acquire(&rb->producer_pos);
	if (prod_pos % 8)
		return -EINVAL;

	/* Synchronizes with smp_store_release() in __bpf_user_ringbuf_sample_release() */
	cons_pos = smp_load_acquire(&rb->consumer_pos);
	if (cons_pos >= prod_pos)
		return -ENODATA;

	hdr = (u32 *)((uintptr_t)rb->data + (uintptr_t)(cons_pos & rb->mask));
	/* Synchronizes with smp_store_release() in user-space producer. */
	hdr_len = smp_load_acquire(hdr);
	flags = hdr_len & (BPF_RINGBUF_BUSY_BIT | BPF_RINGBUF_DISCARD_BIT);
	sample_len = hdr_len & ~flags;
	total_len = round_up(sample_len + BPF_RINGBUF_HDR_SZ, 8);

	/* The sample must fit within the region advertised by the producer position. */
	if (total_len > prod_pos - cons_pos)
		return -EINVAL;

	/* The sample must fit within the data region of the ring buffer. */
	if (total_len > ringbuf_total_data_sz(rb))
		return -E2BIG;

	/* The sample must fit into a struct bpf_dynptr. */
	err = bpf_dynptr_check_size(sample_len);
	if (err)
		return -E2BIG;

	if (flags & BPF_RINGBUF_DISCARD_BIT) {
		/* If the discard bit is set, the sample should be skipped.
		 *
		 * Update the consumer pos, and return -EAGAIN so the caller
		 * knows to skip this sample and try to read the next one.
		 */
		smp_store_release(&rb->consumer_pos, cons_pos + total_len);
		return -EAGAIN;
	}

	if (flags & BPF_RINGBUF_BUSY_BIT)
		return -ENODATA;

	*sample = (void *)((uintptr_t)rb->data +
			   (uintptr_t)((cons_pos + BPF_RINGBUF_HDR_SZ) & rb->mask));
	*size = sample_len;
	return 0;
}

static void __bpf_user_ringbuf_sample_release(struct bpf_ringbuf *rb, size_t size, u64 flags)
{
	u64 consumer_pos;
	u32 rounded_size = round_up(size + BPF_RINGBUF_HDR_SZ, 8);

	/* Using smp_load_acquire() is unnecessary here, as the busy-bit
	 * prevents another task from writing to consumer_pos after it was read
	 * by this task with smp_load_acquire() in __bpf_user_ringbuf_peek().
	 */
	consumer_pos = rb->consumer_pos;
	 /* Synchronizes with smp_load_acquire() in user-space producer. */
	smp_store_release(&rb->consumer_pos, consumer_pos + rounded_size);
}

BPF_CALL_4(bpf_user_ringbuf_drain, struct bpf_map *, map,
	   void *, callback_fn, void *, callback_ctx, u64, flags)
{
	struct bpf_ringbuf *rb;
	long samples, discarded_samples = 0, ret = 0;
	bpf_callback_t callback = (bpf_callback_t)callback_fn;
	u64 wakeup_flags = BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP;
	int busy = 0;

	if (unlikely(flags & ~wakeup_flags))
		return -EINVAL;

	rb = container_of(map, struct bpf_ringbuf_map, map)->rb;

	/* If another consumer is already consuming a sample, wait for them to finish. */
	if (!atomic_try_cmpxchg(&rb->busy, &busy, 1))
		return -EBUSY;

	for (samples = 0; samples < BPF_MAX_USER_RINGBUF_SAMPLES && ret == 0; samples++) {
		int err;
		u32 size;
		void *sample;
		struct bpf_dynptr_kern dynptr;

		err = __bpf_user_ringbuf_peek(rb, &sample, &size);
		if (err) {
			if (err == -ENODATA) {
				break;
			} else if (err == -EAGAIN) {
				discarded_samples++;
				continue;
			} else {
				ret = err;
				goto schedule_work_return;
			}
		}

		bpf_dynptr_init(&dynptr, sample, BPF_DYNPTR_TYPE_LOCAL, 0, size);
		ret = callback((uintptr_t)&dynptr, (uintptr_t)callback_ctx, 0, 0, 0);
		__bpf_user_ringbuf_sample_release(rb, size, flags);
	}
	ret = samples - discarded_samples;

schedule_work_return:
	/* Prevent the clearing of the busy-bit from being reordered before the
	 * storing of any rb consumer or producer positions.
	 */
	smp_mb__before_atomic();
	atomic_set(&rb->busy, 0);

	if (flags & BPF_RB_FORCE_WAKEUP)
		irq_work_queue(&rb->work);
	else if (!(flags & BPF_RB_NO_WAKEUP) && samples > 0)
		irq_work_queue(&rb->work);
	return ret;
}

const struct bpf_func_proto bpf_user_ringbuf_drain_proto = {
	.func		= bpf_user_ringbuf_drain,
	.ret_type	= RET_INTEGER,
	.arg1_type	= ARG_CONST_MAP_PTR,
	.arg2_type	= ARG_PTR_TO_FUNC,
	.arg3_type	= ARG_PTR_TO_STACK_OR_NULL,
	.arg4_type	= ARG_ANYTHING,
};