summaryrefslogtreecommitdiff
path: root/Documentation/device-mapper/dm-integrity.txt
diff options
context:
space:
mode:
authorMikulas Patocka <mpatocka@redhat.com>2017-01-04 20:23:53 +0100
committerMike Snitzer <snitzer@redhat.com>2017-03-24 15:49:07 -0400
commit7eada909bfd7ac90a4522e56aa3179d1fd68cd14 (patch)
treec39c6f09604428e790a9fe8946431830c75bb790 /Documentation/device-mapper/dm-integrity.txt
parent400a0befc96240f7bb2a53b9622deffd55d385fe (diff)
downloadlinux-rt-7eada909bfd7ac90a4522e56aa3179d1fd68cd14.tar.gz
dm: add integrity target
The dm-integrity target emulates a block device that has additional per-sector tags that can be used for storing integrity information. A general problem with storing integrity tags with every sector is that writing the sector and the integrity tag must be atomic - i.e. in case of crash, either both sector and integrity tag or none of them is written. To guarantee write atomicity the dm-integrity target uses a journal. It writes sector data and integrity tags into a journal, commits the journal and then copies the data and integrity tags to their respective location. The dm-integrity target can be used with the dm-crypt target - in this situation the dm-crypt target creates the integrity data and passes them to the dm-integrity target via bio_integrity_payload attached to the bio. In this mode, the dm-crypt and dm-integrity targets provide authenticated disk encryption - if the attacker modifies the encrypted device, an I/O error is returned instead of random data. The dm-integrity target can also be used as a standalone target, in this mode it calculates and verifies the integrity tag internally. In this mode, the dm-integrity target can be used to detect silent data corruption on the disk or in the I/O path. Signed-off-by: Mikulas Patocka <mpatocka@redhat.com> Signed-off-by: Milan Broz <gmazyland@gmail.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Diffstat (limited to 'Documentation/device-mapper/dm-integrity.txt')
-rw-r--r--Documentation/device-mapper/dm-integrity.txt189
1 files changed, 189 insertions, 0 deletions
diff --git a/Documentation/device-mapper/dm-integrity.txt b/Documentation/device-mapper/dm-integrity.txt
new file mode 100644
index 000000000000..2406f56501dc
--- /dev/null
+++ b/Documentation/device-mapper/dm-integrity.txt
@@ -0,0 +1,189 @@
+The dm-integrity target emulates a block device that has additional
+per-sector tags that can be used for storing integrity information.
+
+A general problem with storing integrity tags with every sector is that
+writing the sector and the integrity tag must be atomic - i.e. in case of
+crash, either both sector and integrity tag or none of them is written.
+
+To guarantee write atomicity, the dm-integrity target uses journal, it
+writes sector data and integrity tags into a journal, commits the journal
+and then copies the data and integrity tags to their respective location.
+
+The dm-integrity target can be used with the dm-crypt target - in this
+situation the dm-crypt target creates the integrity data and passes them
+to the dm-integrity target via bio_integrity_payload attached to the bio.
+In this mode, the dm-crypt and dm-integrity targets provide authenticated
+disk encryption - if the attacker modifies the encrypted device, an I/O
+error is returned instead of random data.
+
+The dm-integrity target can also be used as a standalone target, in this
+mode it calculates and verifies the integrity tag internally. In this
+mode, the dm-integrity target can be used to detect silent data
+corruption on the disk or in the I/O path.
+
+
+When loading the target for the first time, the kernel driver will format
+the device. But it will only format the device if the superblock contains
+zeroes. If the superblock is neither valid nor zeroed, the dm-integrity
+target can't be loaded.
+
+To use the target for the first time:
+1. overwrite the superblock with zeroes
+2. load the dm-integrity target with one-sector size, the kernel driver
+ will format the device
+3. unload the dm-integrity target
+4. read the "provided_data_sectors" value from the superblock
+5. load the dm-integrity target with the the target size
+ "provided_data_sectors"
+6. if you want to use dm-integrity with dm-crypt, load the dm-crypt target
+ with the size "provided_data_sectors"
+
+
+Target arguments:
+
+1. the underlying block device
+
+2. the number of reserved sector at the beginning of the device - the
+ dm-integrity won't read of write these sectors
+
+3. the size of the integrity tag (if "-" is used, the size is taken from
+ the internal-hash algorithm)
+
+4. mode:
+ D - direct writes (without journal) - in this mode, journaling is
+ not used and data sectors and integrity tags are written
+ separately. In case of crash, it is possible that the data
+ and integrity tag doesn't match.
+ J - journaled writes - data and integrity tags are written to the
+ journal and atomicity is guaranteed. In case of crash,
+ either both data and tag or none of them are written. The
+ journaled mode degrades write throughput twice because the
+ data have to be written twice.
+
+5. the number of additional arguments
+
+Additional arguments:
+
+journal-sectors:number
+ The size of journal, this argument is used only if formatting the
+ device. If the device is already formatted, the value from the
+ superblock is used.
+
+interleave-sectors:number
+ The number of interleaved sectors. This values is rounded down to
+ a power of two. If the device is already formatted, the value from
+ the superblock is used.
+
+buffer-sectors:number
+ The number of sectors in one buffer. The value is rounded down to
+ a power of two.
+
+ The tag area is accessed using buffers, the buffer size is
+ configurable. The large buffer size means that the I/O size will
+ be larger, but there could be less I/Os issued.
+
+journal-watermark:number
+ The journal watermark in percents. When the size of the journal
+ exceeds this watermark, the thread that flushes the journal will
+ be started.
+
+commit-time:number
+ Commit time in milliseconds. When this time passes, the journal is
+ written. The journal is also written immediatelly if the FLUSH
+ request is received.
+
+internal-hash:algorithm(:key) (the key is optional)
+ Use internal hash or crc.
+ When this argument is used, the dm-integrity target won't accept
+ integrity tags from the upper target, but it will automatically
+ generate and verify the integrity tags.
+
+ You can use a crc algorithm (such as crc32), then integrity target
+ will protect the data against accidental corruption.
+ You can also use a hmac algorithm (for example
+ "hmac(sha256):0123456789abcdef"), in this mode it will provide
+ cryptographic authentication of the data without encryption.
+
+ When this argument is not used, the integrity tags are accepted
+ from an upper layer target, such as dm-crypt. The upper layer
+ target should check the validity of the integrity tags.
+
+journal-crypt:algorithm(:key) (the key is optional)
+ Encrypt the journal using given algorithm to make sure that the
+ attacker can't read the journal. You can use a block cipher here
+ (such as "cbc(aes)") or a stream cipher (for example "chacha20",
+ "salsa20", "ctr(aes)" or "ecb(arc4)").
+
+ The journal contains history of last writes to the block device,
+ an attacker reading the journal could see the last sector nubmers
+ that were written. From the sector numbers, the attacker can infer
+ the size of files that were written. To protect against this
+ situation, you can encrypt the journal.
+
+journal-mac:algorithm(:key) (the key is optional)
+ Protect sector numbers in the journal from accidental or malicious
+ modification. To protect against accidental modification, use a
+ crc algorithm, to protect against malicious modification, use a
+ hmac algorithm with a key.
+
+ This option is not needed when using internal-hash because in this
+ mode, the integrity of journal entries is checked when replaying
+ the journal. Thus, modified sector number would be detected at
+ this stage.
+
+
+The journal mode (D/J), buffer-sectors, journal-watermark, commit-time can
+be changed when reloading the target (load an inactive table and swap the
+tables with suspend and resume). The other arguments should not be changed
+when reloading the target because the layout of disk data depend on them
+and the reloaded target would be non-functional.
+
+
+The layout of the formatted block device:
+* reserved sectors (they are not used by this target, they can be used for
+ storing LUKS metadata or for other purpose), the size of the reserved
+ area is specified in the target arguments
+* superblock (4kiB)
+ * magic string - identifies that the device was formatted
+ * version
+ * log2(interleave sectors)
+ * integrity tag size
+ * the number of journal sections
+ * provided data sectors - the number of sectors that this target
+ provides (i.e. the size of the device minus the size of all
+ metadata and padding). The user of this target should not send
+ bios that access data beyond the "provided data sectors" limit.
+ * flags - a flag is set if journal-mac is used
+* journal
+ The journal is divided into sections, each section contains:
+ * metadata area (4kiB), it contains journal entries
+ every journal entry contains:
+ * logical sector (specifies where the data and tag should
+ be written)
+ * last 8 bytes of data
+ * integrity tag (the size is specified in the superblock)
+ every metadata sector ends with
+ * mac (8-bytes), all the macs in 8 metadata sectors form a
+ 64-byte value. It is used to store hmac of sector
+ numbers in the journal section, to protect against a
+ possibility that the attacker tampers with sector
+ numbers in the journal.
+ * commit id
+ * data area (the size is variable; it depends on how many journal
+ entries fit into the metadata area)
+ every sector in the data area contains:
+ * data (504 bytes of data, the last 8 bytes are stored in
+ the journal entry)
+ * commit id
+ To test if the whole journal section was written correctly, every
+ 512-byte sector of the journal ends with 8-byte commit id. If the
+ commit id matches on all sectors in a journal section, then it is
+ assumed that the section was written correctly. If the commit id
+ doesn't match, the section was written partially and it should not
+ be replayed.
+* one or more runs of interleaved tags and data. Each run contains:
+ * tag area - it contains integrity tags. There is one tag for each
+ sector in the data area
+ * data area - it contains data sectors. The number of data sectors
+ in one run must be a power of two. log2 of this value is stored
+ in the superblock.