diff options
author | Daniel Borkmann <daniel@iogearbox.net> | 2018-05-04 01:08:14 +0200 |
---|---|---|
committer | Alexei Starovoitov <ast@kernel.org> | 2018-05-03 16:49:19 -0700 |
commit | e0cea7ce988cf48cc4052235d2ad2550b3bc4fa0 (patch) | |
tree | 3feda57e257135a845c78d214590d7e665f03f22 /include/linux | |
parent | 93731ef086cee90af594e62874bb98ae6d6eee91 (diff) | |
download | linux-rt-e0cea7ce988cf48cc4052235d2ad2550b3bc4fa0.tar.gz |
bpf: implement ld_abs/ld_ind in native bpf
The main part of this work is to finally allow removal of LD_ABS
and LD_IND from the BPF core by reimplementing them through native
eBPF instead. Both LD_ABS/LD_IND were carried over from cBPF and
keeping them around in native eBPF caused way more trouble than
actually worth it. To just list some of the security issues in
the past:
* fdfaf64e7539 ("x86: bpf_jit: support negative offsets")
* 35607b02dbef ("sparc: bpf_jit: fix loads from negative offsets")
* e0ee9c12157d ("x86: bpf_jit: fix two bugs in eBPF JIT compiler")
* 07aee9439454 ("bpf, sparc: fix usage of wrong reg for load_skb_regs after call")
* 6d59b7dbf72e ("bpf, s390x: do not reload skb pointers in non-skb context")
* 87338c8e2cbb ("bpf, ppc64: do not reload skb pointers in non-skb context")
For programs in native eBPF, LD_ABS/LD_IND are pretty much legacy
these days due to their limitations and more efficient/flexible
alternatives that have been developed over time such as direct
packet access. LD_ABS/LD_IND only cover 1/2/4 byte loads into a
register, the load happens in host endianness and its exception
handling can yield unexpected behavior. The latter is explained
in depth in f6b1b3bf0d5f ("bpf: fix subprog verifier bypass by
div/mod by 0 exception") with similar cases of exceptions we had.
In native eBPF more recent program types will disable LD_ABS/LD_IND
altogether through may_access_skb() in verifier, and given the
limitations in terms of exception handling, it's also disabled
in programs that use BPF to BPF calls.
In terms of cBPF, the LD_ABS/LD_IND is used in networking programs
to access packet data. It is not used in seccomp-BPF but programs
that use it for socket filtering or reuseport for demuxing with
cBPF. This is mostly relevant for applications that have not yet
migrated to native eBPF.
The main complexity and source of bugs in LD_ABS/LD_IND is coming
from their implementation in the various JITs. Most of them keep
the model around from cBPF times by implementing a fastpath written
in asm. They use typically two from the BPF program hidden CPU
registers for caching the skb's headlen (skb->len - skb->data_len)
and skb->data. Throughout the JIT phase this requires to keep track
whether LD_ABS/LD_IND are used and if so, the two registers need
to be recached each time a BPF helper would change the underlying
packet data in native eBPF case. At least in eBPF case, available
CPU registers are rare and the additional exit path out of the
asm written JIT helper makes it also inflexible since not all
parts of the JITer are in control from plain C. A LD_ABS/LD_IND
implementation in eBPF therefore allows to significantly reduce
the complexity in JITs with comparable performance results for
them, e.g.:
test_bpf tcpdump port 22 tcpdump complex
x64 - before 15 21 10 14 19 18
- after 7 10 10 7 10 15
arm64 - before 40 91 92 40 91 151
- after 51 64 73 51 62 113
For cBPF we now track any usage of LD_ABS/LD_IND in bpf_convert_filter()
and cache the skb's headlen and data in the cBPF prologue. The
BPF_REG_TMP gets remapped from R8 to R2 since it's mainly just
used as a local temporary variable. This allows to shrink the
image on x86_64 also for seccomp programs slightly since mapping
to %rsi is not an ereg. In callee-saved R8 and R9 we now track
skb data and headlen, respectively. For normal prologue emission
in the JITs this does not add any extra instructions since R8, R9
are pushed to stack in any case from eBPF side. cBPF uses the
convert_bpf_ld_abs() emitter which probes the fast path inline
already and falls back to bpf_skb_load_helper_{8,16,32}() helper
relying on the cached skb data and headlen as well. R8 and R9
never need to be reloaded due to bpf_helper_changes_pkt_data()
since all skb access in cBPF is read-only. Then, for the case
of native eBPF, we use the bpf_gen_ld_abs() emitter, which calls
the bpf_skb_load_helper_{8,16,32}_no_cache() helper unconditionally,
does neither cache skb data and headlen nor has an inlined fast
path. The reason for the latter is that native eBPF does not have
any extra registers available anyway, but even if there were, it
avoids any reload of skb data and headlen in the first place.
Additionally, for the negative offsets, we provide an alternative
bpf_skb_load_bytes_relative() helper in eBPF which operates
similarly as bpf_skb_load_bytes() and allows for more flexibility.
Tested myself on x64, arm64, s390x, from Sandipan on ppc64.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Diffstat (limited to 'include/linux')
-rw-r--r-- | include/linux/bpf.h | 2 | ||||
-rw-r--r-- | include/linux/filter.h | 4 |
2 files changed, 5 insertions, 1 deletions
diff --git a/include/linux/bpf.h b/include/linux/bpf.h index d0e3d7ef36a8..0e00a13ff01b 100644 --- a/include/linux/bpf.h +++ b/include/linux/bpf.h @@ -235,6 +235,8 @@ struct bpf_verifier_ops { struct bpf_insn_access_aux *info); int (*gen_prologue)(struct bpf_insn *insn, bool direct_write, const struct bpf_prog *prog); + int (*gen_ld_abs)(const struct bpf_insn *orig, + struct bpf_insn *insn_buf); u32 (*convert_ctx_access)(enum bpf_access_type type, const struct bpf_insn *src, struct bpf_insn *dst, diff --git a/include/linux/filter.h b/include/linux/filter.h index b7f81e3a70cb..da7e16523128 100644 --- a/include/linux/filter.h +++ b/include/linux/filter.h @@ -47,7 +47,9 @@ struct xdp_buff; /* Additional register mappings for converted user programs. */ #define BPF_REG_A BPF_REG_0 #define BPF_REG_X BPF_REG_7 -#define BPF_REG_TMP BPF_REG_8 +#define BPF_REG_TMP BPF_REG_2 /* scratch reg */ +#define BPF_REG_D BPF_REG_8 /* data, callee-saved */ +#define BPF_REG_H BPF_REG_9 /* hlen, callee-saved */ /* Kernel hidden auxiliary/helper register for hardening step. * Only used by eBPF JITs. It's nothing more than a temporary |