summaryrefslogtreecommitdiff
path: root/arch/sparc/math-emu/math_64.c
Commit message (Collapse)AuthorAgeFilesLines
* sparc64: Make montmul/montsqr/mpmul usable in 32-bit threads.David S. Miller2012-10-261-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The Montgomery Multiply, Montgomery Square, and Multiple-Precision Multiply instructions work by loading a combination of the floating point and multiple register windows worth of integer registers with the inputs. These values are 64-bit. But for 32-bit userland processes we only save the low 32-bits of each integer register during a register spill. This is because the register window save area is in the user stack and has a fixed layout. Therefore, the only way to use these instruction in 32-bit mode is to perform the following sequence: 1) Load the top-32bits of a choosen integer register with a sentinel, say "-1". This will be in the outer-most register window. The idea is that we're trying to see if the outer-most register window gets spilled, and thus the 64-bit values were truncated. 2) Load all the inputs for the montmul/montsqr/mpmul instruction, down to the inner-most register window. 3) Execute the opcode. 4) Traverse back up to the outer-most register window. 5) Check the sentinel, if it's still "-1" store the results. Otherwise retry the entire sequence. This retry is extremely troublesome. If you're just unlucky and an interrupt or other trap happens, it'll push that outer-most window to the stack and clear the sentinel when we restore it. We could retry forever and never make forward progress if interrupts arrive at a fast enough rate (consider perf events as one example). So we have do limited retries and fallback to software which is extremely non-deterministic. Luckily it's very straightforward to provide a mechanism to let 32-bit applications use a 64-bit stack. Stacks in 64-bit mode are biased by 2047 bytes, which means that the lowest bit is set in the actual %sp register value. So if we see bit zero set in a 32-bit application's stack we treat it like a 64-bit stack. Runtime detection of such a facility is tricky, and cumbersome at best. For example, just trying to use a biased stack and seeing if it works is hard to recover from (the signal handler will need to use an alt stack, plus something along the lines of longjmp). Therefore, we add a system call to report a bitmask of arch specific features like this in a cheap and less hairy way. With help from Andy Polyakov. Signed-off-by: David S. Miller <davem@davemloft.net>
* sparc64: Fix several bugs in quad floating point emulation.David S. Miller2012-05-251-6/+14
| | | | | | | | | | | | | | | | UltraSPARC-T2 and later do not use the fp_exception_other trap and do not set the floating point trap type field in the %fsr at all when you try to execute an unimplemented FPU operation. Instead, it uses the illegal_instruction trap and it leaves the floating point trap type field clear. So we should not validate the %fsr trap type field when do_mathemu() is invoked from the illegal instruction handler. Also, the floating point trap type field is 3 bits, not 4 bits. Signed-off-by: David S. Miller <davem@davemloft.net>
* Disintegrate asm/system.h for SparcDavid Howells2012-03-281-0/+1
| | | | | | | Disintegrate asm/system.h for Sparc. Signed-off-by: David Howells <dhowells@redhat.com> cc: sparclinux@vger.kernel.org
* perf: Remove the nmi parameter from the swevent and overflow interfacePeter Zijlstra2011-07-011-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The nmi parameter indicated if we could do wakeups from the current context, if not, we would set some state and self-IPI and let the resulting interrupt do the wakeup. For the various event classes: - hardware: nmi=0; PMI is in fact an NMI or we run irq_work_run from the PMI-tail (ARM etc.) - tracepoint: nmi=0; since tracepoint could be from NMI context. - software: nmi=[0,1]; some, like the schedule thing cannot perform wakeups, and hence need 0. As one can see, there is very little nmi=1 usage, and the down-side of not using it is that on some platforms some software events can have a jiffy delay in wakeup (when arch_irq_work_raise isn't implemented). The up-side however is that we can remove the nmi parameter and save a bunch of conditionals in fast paths. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Michael Cree <mcree@orcon.net.nz> Cc: Will Deacon <will.deacon@arm.com> Cc: Deng-Cheng Zhu <dengcheng.zhu@gmail.com> Cc: Anton Blanchard <anton@samba.org> Cc: Eric B Munson <emunson@mgebm.net> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Paul Mundt <lethal@linux-sh.org> Cc: David S. Miller <davem@davemloft.net> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Jason Wessel <jason.wessel@windriver.com> Cc: Don Zickus <dzickus@redhat.com> Link: http://lkml.kernel.org/n/tip-agjev8eu666tvknpb3iaj0fg@git.kernel.org Signed-off-by: Ingo Molnar <mingo@elte.hu>
* sparc: Add alignment and emulation fault perf events.David S. Miller2009-12-111-0/+2
| | | | | | | This mirrors commit 196f02bf900c5eb6f85d889c4f70e7cc11fda7e8 (powerpc: perf_event: Add alignment-faults and emulation-faults software events) Signed-off-by: David S. Miller <davem@davemloft.net>
* sparc64: unify math-emuSam Ravnborg2008-12-041-0/+513
Move relavent files to sparc/math-emu and adjust path/include accordingly. Signed-off-by: Sam Ravnborg <sam@ravnborg.org> Signed-off-by: David S. Miller <davem@davemloft.net>